ICJK

ICCK Journal of Applied Mathematics
http:/dx.doi.org/10.62762/JAM.2025.993373

RESEARCH ARTICLE

Check for
updates

Reverse-Order Law for Weak Core Inverse

Amit Kumar®!”

! Department of Mathematics, National Institute of Technology Raipur, Raipur, Chhattisgarh 492010, India

Abstract

In this paper, some sufficient conditions for
the reverse-order law of the weak core inverse
are obtained. Several characterizations of the
reverse-order law for this generalized inverse
are then established. In addition, some results
concerning the absorption law for the weak core
inverse are proved.

Keywords: weak core inverse, core inverse, reverse-order
law, absorption law.

1 Introduction

In this article, R denotes a proper ring with involution.

A ring R is called as a proper ring if a*a = 0 = a = 0
for all a € R. An involution * is an anti-isomorphism
of order 2 that satisfies the conditions

(a+b)*=a*+b",
(ab)* = b*a”,
and (a*)* =a, foralla,b€ R.

An element a € R is Moore-Penrose invertible if there
exists a unique element x € R that satisfies the
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equations:

Then, x is called as the Moore-Penrose inverse [1] of
a, and is denoted as z = af. By R, we denote
the set of all Moore-Penrose invertible elements of
R. The set of all elements which satisfies any of the
combinations of the above four equations is denoted as
a{i, j, k,l}, where i, j, k,l € {1,2,3,4}, and is called a
generalized inverse of a. The first and third generalized
inverse of a is denoted as a!'%). The set of first and
third invertible elements of R, is denoted by R(13). An
element a is called Drazin invertible [2] if there exists
a unique element z € R such that za**! = a* az =
za, and ax? = z, for some positive integer k. If the
Drazin inverse of a exists, then it is denoted by a®. The
smallest positive integer & is called the Drazin index,
is denoted by i(a). The set of all Drazin invertible
elements of R will be denoted by R?. If i(a) = 1, then
the Drazin inverse of a is called as the group inverse of
a, and is denoted by a?. The set of group invertible
elements of R will be denoted by R*.

Xu et al. [3] proved that an element a € R is called
core invertible if there exists a unique element z € R
satisfying the following condition:

(az)* = az, az® =z, and zd® = a.

It is denoted by a®. An element a € R is said to be
pseudo core invertible [4] if there exists a unique element

Citation
Kumar, A. (2025). Reverse-Order Law for Weak Core Inverse. ICCK
Journal of Applied Mathematics, 1(3), 145-153.

© 2025 by the Author. Published by Institute of
Central Computation and Knowledge. This is an open
access article under the CC BY license (https://creati
vecommons.org/licenses/by/4.0/).

145


http://dx.doi.org/10.62762/JAM.2025.993373
http://crossmark.crossref.org/dialog/?doi=10.62762/JAM.2025.993373&domain=pdf
https://orcid.org/0000-0002-7529-9313
http://dx.doi.org/10.62762/JAM.2025.993373
mailto:amitdhull513@gmail.com
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

ICCK Journal of Applied Mathematics

ICJK

z € R such that

2 +1 _ m

(ax)* = az, az®* =z and za"™" =ad"™,
for some positive integer m. The least positive integer
m for which the above equations hold is called the
pseudo core index and denoted by I(a). The pseudo core
inverse of a is denoted by a®. Let a € R. Then, the
unique element y € R is called weak group inverse [5]
of a if it satisfies these three conditions:

yak+1

=d* ay? =y and (a¥)*a®y = (d¥)*a.

The weak group inverse of an element a € R is denoted
by a®. The least positive integer k that satisfying the
above condition is called the weak group index of
a, denoted by ind(a). The set of all the weak group
invertible element denoted by R°®. Let a € R. Then,
the unique element y € R is called weak core inverse [6]
of a if it satisfies these three conditions:

yak+1

= a*, ay® = y and (a*)*ay = (a*)*.

It is denoted by a®. The least positive integer k that
satisfies the above condition is called the weak core index
of a, and is denoted by ind,,.(a). The set of all the weak

core invertible element denoted by RZ.

If a and bare a pair of invertible elements, then ab is also
invertible and the inverse of the product ab satisfying

(ab)~t =b"ta™,
is called as the reverse-order law. On the other way,
(ab)~ ! =a tp7t

is known as the forward-order law. While the
reverse-order law does not hold for different
generalized inverses, the forward-order law is not true
even for invertible elements. The absorption law for
invertible elements a and b is

a Ha+bb t=a"t+b7L.

In 1966, Greville [7] first obtained sufficient conditions
for which the reverse-order law holds for the
Moore-Penrose inverse in matrix form, i.e., (AB)f =
BTAT. Djordjevié et al. [8] extended the reverse-order
law involving the Moore-Penrose inverse in matrix
setting to elements in ring. The same problem
was also considered by several authors for other
generalized inverses. For example, Deng [9] studied
the reverse-order law for the group inverse on Hilbert
space. In 2012, Mosic et al. [10] extended the
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reverse-order law for the group inverse in Hilbert
space to ring. In 2017, Chen et al. [11] discussed the
reverse-order law for the inverse along an element.
In 2019, Xu et al. [12] studied the reverse-order law
and the absorption law for the (b, c)-inverses in rings.
Stojanovi¢ et al. [13] proved the absorption law for
Moore-Penrose inverse, Drazin inverse, group inverse,
core inverse and dual core inverse, respectively. In
2021, Gao et al. [14] provided the reverse-order law,
the forward-order law and the absorption law for the
generalized core inverse. In 2020, Zhou et al. [5]
provided the forward-order law and additive property
for the Drazin inverse in a ring. In 2021, Li ef al. [15]
studied the forward-order law for the core inverse in
matrix setting. In 2024, Kumar et al. [19] discussed
several results on additive properties, reverse-order
law and forward-order law for the core inverse.
Hartwig et al. [16] provided several results on additive
properties, reverse-order law and forward-order law.
Panigrahy ef al. [18] obtained the following additive
property of the Moore-Penrose inverse. Motivated by
the works of these authors, we obtain various sufficient
conditions for the reverse-order law and the absorption
law for weak core inverse.

The objective of this paper is two-fold. First, sufficient
conditions under which the reverse-order law holds
for the weak core inverse are obtained. Second,
the absorption law for the weak core inverse is
studied. The paper is organized as follows. In
Section 2, preliminary results are recalled. In Section 3,
results useful for establishing sufficient conditions
for the reverse-order law of the weak core inverse
are presented, followed by the main theorem of the
section. Further results concerning the equivalence of
the reverse-order law for the weak core inverses of a
and b are discussed. In Section 4, the absorption law
for the weak core inverse is proved.

2 Preliminaries

In this section, we recall some previously established
results that will be used to prove main results of this
article. The following result is proved by Chen et al.
[11] for core invertible elements.

Lemma 2.1. (Theorem 3.2, [11])
Let a,b,x € R with xa = bx and za* = b*z. If a,b € R®,
then xa® = b®z.

Recently, Sahoo et al. [6] obtained the following results
for weak core inverse.

Lemma 2.2. (Proposition 3.6, [6])
Let a € R® with indy.(a) = k. Then a € R? with i(a) =
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k. Moreover a® = (a®)F+1aF.

Now, we recall the annihilators of an element in a ring.
The left annihilator of a € R is given by °(a) = {z €
R : za = 0} and the right annihilator of a is given by
(a)° ={z € R:azx =0}

Theorem 2.3. (Theorem 3.3, [17])
Let a € R. The following assertions are equivalent:
(1) y = a® and indye(a) < k;

(ii) yay =y, yR = a*R = a*'Rand a*R C y*R;
(#ii) yay = y, yR = a*R C a*"'Rand °(y*) C °(a");
(iv) yay =y, °(a**1) C °(a*) = °(y*) °(y*) € °(a");

Lemma 2.4. (Theorem 3.17, [6])
Let a € R®. Then, a® € R and (a®)" = (a™)® for all
n > 1. Moreover, a® = a1 (a™)®.

Theorem 2.5. (Theorem 3.11, [4])
Let a € R with i(a) = k. If (a*)(13) exists, then a € R®.
Moreover,

aEﬂ _ aDak(ak)(l,?;) )

The next result gives a characterization of
{1, 3}-inverse of an elements in a ring.

Lemma 2.6. ([16])
Let a,x € R. Then z is a-{1, 3} inverse of a if and only if
z*a*a = a.

Recall that an element ¢ € R is called strongly
m—regular in R if there exists =,y € R and a positive
integer k such that

Using m—regular element, we state the following
characterization of drazin invertible elements in a ring
obtained by Drazin [2].

Lemma 2.7. (Theorem 4, [2])
Leta € R.Thena € R ifand only if a is strongly m-reqular
in R.

3 Main Results

In this section, sufficient conditions under which the
reverse-order law holds for the weak core inverse are
established, and several characterizations of this law
are given. An example is first provided to demonstrate
that, in general, the reverse-order law does not hold
for the weak core inverse in a ring with involution.

Example 3.1. Let R = Mayx2(R) and a = [é 8}, b =

[ ! O] € R with involution transpose. Then,

-1 0
o ol # [0 o] e

Next lemma can be proved using similar steps as
Theorem 2.1. This result will be helpful while proving
main results of this section.

(ab)® =

Lemma 3.1. Let a,b, x € R with ax = bx and a*x = b*x.
Ifa,be RE then za® = v¥z.

For the special case a = b, we have the following
corollary.

Corollary 3.2. Let a,x € Rwithax = xaand a*z = xa*.
Ifa € R®, then xa® = a®z.

A result based on the definition of the weak core
inverse is stated below.

Lemma 3.3. Let a € R®, and x is the weak core inverse of
a. Then,

(i) ax = a™a™, for any positive integer m.

(ii) aFzFa® = a¥, where k is weak core index of a.
(iii) (az)* = ax.
(iv) xazx = .

The following characterization of core invertible
elements follows from the above result.

Theorem 3.4. Let a € R. Ifa € R® ifand only if a € R®
with weak core index k = 1.

Proof. Let a € R¥ with k = 1. Then, az? = z,ra? = a,
and a*ax = a*. By Lemma 3.3, we have (az)* = ax
and so a € R®. Conversely, let a € R®. So, az? = z,
ra? = a and (az)* = ax. Since, az?> = r and za? = q,
we get az?a? = a. Thus, az?a? = ax(za?) = aza.
Taking involution both sides, we get a*(az)* = a*. But,
(az)* = az, therefore, a*ax = a*. Hence, a € R? with
weak core index k = 1. O

Now, we are ready to prove our first main result
of the paper. The following result provides some
sufficient conditions for the reverse-order as well as
the forward-order laws hold for the weak core inverse.

Theorem 3.5. Let a,b € R® with ab® = b*a = bab and
a*b? = b?a* = ba*b. Then, ab € R¥ and (ab)® = bFa® =
a®p®.
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Proof. The condition ab® = b?a = bab implies that
(ab)) = a/bV = blal, @’ = b Tlal for any positive
integer j > 2. As a*b? = b?a*, taking involution both
sides, we get (b*)*a = a(b?)*. Again, by Theorem 3.2,
ab?® = b%a and (b*)*a = a(b?)* imply that a(b?)% =
(v*)®a. Applying Lemma 2.4, we have a(b%)? = (b%)2a.
Now, by lemma 3.3 (i), we get

abb® = ab?(b®)?

Taking involution both sides, we thus have a*bb® =
bbHa* and therefore, a®bb® = bpFa®, by Theorem 3.2.
Next, using definition of weak core inverse, we have

bBa = b(b%)%a = ba(b®)?
= bab(b®)? = ab?(b®)3
= a(B2(bP)%)b® = a(bb®)p®
= a(b(b¥)?)

= ab®.

Replacing a by a*, we get Wa* = a*b®. By Theorem 3.2,
bEa = ab® and a*b® = bFa* imply that bFa® = aFvE.
Subsequently, we have to prove (ab)® = v¥a®. In fact,
abb®a® = bb¥aa® = aa®bb® and thus, (abb®a®)* =
abb®a®. Now,

((ab)*)*abbPa® =

(1)

ab(b®a®)? = abbaFpPa®
= bb% (aa®a®)p®
= bbHaFp®
= bbb
= b7

(2)
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and

bEEaEE (CLb)kJrl — bBﬂ (aEEak+1)bk+1

— bEEakbk-i-l

— (bEEbk-‘rl )ak

= bFak

= (ab)". (3)
Hence, by the definition of weak core inverse, we finally
get (ab)® = v¥a?, O

The following corollary directly follows from
Theorems 2.3 and 3.3.

Corollary 3.6. Let a,b € R with ab®> = b?a = bab
and a*b* = b*a* = ba*b. Then, following conditions are
equivalent:

(i) ab € R¥ and (ab)® = bFa®, with ind,c(a) < k;

(i1) bFaFab®a® = vFa®, V¥R = o*R = o* 'R and
a*R C (b¥a®)*R;

(4ii) bFaFab®a® = vFa®, bFa® R = o*R = 'R and
°((0%a%)*)="((ab)");

(iv) bPa®abBa® = 1Ba®, °((bFa®)*)=°((ab)*) and
°((ab)*1)=°((ab)")=°((t"a™)).

Similarly, we have another corollary which utilizes
Theorem 3.5.

Corollary 3.7. Let a,b € R* with ab = ba and ab* = b*a.
Then, (ab)® = a®b® = vFa.

Proof. Since ab = ba, ab* = b*a, then ab? = b*a = bab
and a*b* = b?a* = ba*b. Thus, applying Theorem 3.5,
we get (ab)® = bEa® = a®p®. O

Next, we have some equivalent conditions for the
reverse-order law for the weak core inverse.

Theorem 3.8. Let a,b,ab € R®. Then, the followings are
equivalent:

(i) (ab)® = b%a™;

(i) (ab)®a = bFa%a and (ab)® = (ab)Paa’;

(iii) b(ab)® = bbFa® and (ab)® = bFb(ab)®.

Proof. (i) <= (ii)

(ab)®a = bFa%a is obvious. Since, a® is an outer
inverse of a, we have (ab)® = 05aPaa® = (ab)Faa®.
Conversely, as (ab)fa = v¥a¥a, (ab)® = (ab)Paa®
and a¥ is outer inverse of a, it follows that (ab)® =
(ab)Baa® = bFaBaa® = vFa.

As b® is an outer inverse of b, we have (ab)® =
BbpBa® = bBp(ab)B.

B
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= b¥b(ab)® and b(ab)® = bb¥a",
bEa® O

Conversely, if (ab)?
then (ab)® = vFppFa™ =

Some more equivalent conditions are obtained next.

Theorem 3.9. Let a,b € R®. Then, the followings are
equivalent:

(i) ab € R® and (ab)® = b¥a";

ab € R® and [(ab)*(bPa®)*]* (ab)*
(ab)?(ab)* (bEa®)* = bBa® for some positive integer k;
(i33) (ab)® € RU3) and (ab)F+1(bFa®)*+2(gb)k+1
(ab)k, (ab)k[(bEEaEE)kJrQ(ab)kJrl]kJrl(ab)k[(ab)k](l’?’)
bBa® for some positive integer k.

Proof. (i) = (i4)
Let ab € R¥ withind(ab) = k, then ab € R? by Lemma
2.2. From (ab)® = b¥a® | it follows that

By use of (ab)® = b¥a®, Lemma 3.3 and definition of
Drazin inverse, we get

(i7) = (i) Since [(ab)*(b¥a®)*]*(ab)k
[(6%a®)F]*[(ab)*]* (ab)k = (ab)k, then (bFa®)* is a
{1,3}-inverse of (ab)* by Lemma 2.6. Again, since
ab € RY, by Theorem 2.5, ab € R% and

(ab)® = (ab)?(ab)* ((ab)*)™?)
= (a ) (ab)*(b%a™)"
= bEq%
From the assumption that (ab)® = b¥a”® and ind(ab) =

(ab)*,

k, it follows that

(ab)k+1(bﬁﬂaﬁﬂ)k+2(ab)k+1

_ (ab)kﬂ [ ]
= [(a0)**" [(a )E]k“} (ab) (ab)t+!
= (ab

(a

(

k+2 b)k-i—l

(ab)®)(ab)™ (ab)*+!
ab((ab)®)?(ab)* !
— b)EE(ab)k-H
= (ab)

ab)k

Now,

E+1 1,3)

(ab>k (bﬂﬂaﬂﬂ>k+2(ab)k+1} (ab)k [(ab)k](
() [(at))
P ()t [(ab)]

}13)

_((ab)Bﬂ)k+2(ab)k+1 1.3)

— (ab)*
— (ab)*
— (ab)*

= (ab)*

((ab)®) (ab)(ab ’f“}

k+1
k—l—l (ab) k [

’]
)" [(ab
< by (aby(at)* [(at)*]'

(ant] "

}k+1 } (1,3)

_ (@)} (1,3)

= (ab) (ab)d(ab)d(ab)k

— (ab)d(ab)* [(ab)k] o

= (ab)® = b%d%.

—
=

2.5,

In view of Theorem
(ab) [(BEaB)h+2(ab) 1) (ab)k [(ab)k] "
bEa® = (ab)®.

(13i) = (4)

Since (ab)**1(b%a®)**+2(ab)**+! = (ab)*, ab is strongly
m—regular, so 2.7, we have ab € R? and again by 2.5
we have ab € R®

(ab)? = [(bEEaEE)k—H(ab)k}
[(ab)d] R [(baaaaa)kﬂ(ab)krﬂ

Pre-multiply by (ab)* both sides, we get

(ab)k [(ab)d]k (ab) [ 4B, BH b1 (ab k} k41
(ab) {(ab)d} = (ab)* { (BBa®)+ (ab) k} kt1
(ab) {(ab)dr _ (ab) [ (Fa 53 k42 (ab) k+1} k+1
k+1

(ab)? = (ab)* [(bﬂﬂ Hﬂ)m(ab)m]

149

(1,3)



ICCK Journal of Applied Mathematics

ICJK

Therefore, (ab)®

Moreover,
(ab)F = (ab)"(at)" [(a)"] "
— (ab)k [(bﬁﬂaﬁﬂ)k+2(ab)k+1} k+1
< (ab)* [ (ab)¥] 2
= pB4®.

This completes the proof.

Now, we have the following lemma.

Lemma 3.10. Let a,b,ab € R® with aba =
aba* = a*ab. Then,
(1) (a®ab)® = (ab)®a

(ii) (ab)® = (a®ab)Pa®

Proof. Equality aba = a%b implies that (ab)*
for any k € N. Both aba = a?b and aba® = a*ab in

conjunction with Theorem 3.2 give that

aba® = aPab,
(ab)®a = a(ab)®,
(ab)Ba® = a®(ab)®.
Suppose that max{ind(a), ind(b)}=m
(1) Note that
a®ab(ab)fa = a®aab(ab)® [(ab)aa]m

= aZaa™b™ [(ab)™™

— ambm [ Eﬁ]m

= (ab)™ [(ab)*]"

= ab(ab) .

Thus, [a®ab(ab)®
that

((a®ab)F)* [aEEab(ab)EEa]

= ((a®ab)k)* [aaaab(ab)EEa]*
]

= [aBab(ab)Za(aPab)*]*
_ :aaa(ab)k(am)kr
aaa(aaa)k]
= [(ab) (a2
= -(aEEab)k} .

*

= _(ab)ka
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= -aEEab(ab)Bﬂ(ab)ka(aEH)k} "

exists in light of Theorem 2.5.

a2b, and

_ ak’bk

a]” = a®ab(ab)Ea. Now, we observe

(4)

Further,

a®ab [(ab)EEa]2 = ab(ab)®(ab)®a = (ab)Za (5)

and
(ab)®a [aaaab] e (ab)Ba(a®)™ 1 (ab)m !
= (ab)®(a®)™ (ab)™ !
= (a®)™(ab)®(ab)™** (6)
= (@)™ (ab)™
= (a®ab)™.

In view of 4, 5 and 6, (aaaab) (ab)

(4) It suffices to prove (ab)® = (ab)Faa®, since we have
proved (a®ab)® = (ab)®a. That is to say, we have to
check three equations for the definition of the pseudo
core inverse. Firstly, observe that

ab(ab)®aa® = aa®ab(ab)®

So,
[ab(ab)EEaaEE

Finally, note that

[(ab)kr [ab(ab)EEaaEE]* = :(ab)kr [ab(ab)EEaaE]*

= [(an)*]". (8)
Also,
ab [(ab)EEaaEE]Z = ab(ab)®(ab)Paa® = (ab)Paa® (9)
and
(ab)Baa®(ab)™ = aa®(ab)® (ab)™ !

= aad®(ab)™
= aa®a™p™ (10)
=a"b"

= (ab)™.
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In light of 8, 9 and 10, (ab)® = (ab)Paa®. This
completes the proof. O

Similarly, we can prove the following result.

Lemma 3.11. Let a,b,ab € R® with bab = b%a, and
bab* = b*ab. Then
(i) (abt®)F = b(at)®:

(i5) (ab)® = bB(abb®)E.

Now, we present a relation between (ab)® and (aaaab)Ea
with the help of Lemma 3.10 under some conditions.

Theorem 3.12. Let a,b € R® with aba = a®b and aba* =
a*ab. Then the following are equivalent:

(5) (ab)® = H%aP.
(ii) (a®ab)® = bFaFa.
Proof. (i) = (ii) aab(b®a¥a) = a®ab(ab)®a =
a®aab(ab)® = aPaabb®Ba® = aBaaabbEEaEEaaEE =
aa®a®aab(ab)Faa® = aa®ab(ab)®BaPaa® =
aa®ab(ab)Paa®.
Thus

(aZabbBPa®a)* = aZabb®aZa. (11)

Note that

[(aﬁaab)k} " aPBabt®aBa = :(aEEab)k} ' [aEEabbEEaEEa]*
= -amabbEaEﬁa(aEab)k]*
= —aaaabbaaaaa(ab)ka(am)k} ’
= _aaa(ab)kaaaa])k
= :aﬁaa(aaﬂ)k(ab)kr
= [(@®) (@b |
= [(@®ap)*]",

(12)

aab [baaaaaaf = aZab(ab)®a(ab)Pa?
= a®(ab)Fa?
= a®a(ab)®a
= a%ab®aFa
= a%a(ab)Faa®a (13)
= (ab)®a®aaaa

= (ab)®aa®a

Suppose max{ind(a), ind(ab)}=k.

bBaZa(a®ab)* 't = (ab)®(ab)(a®ab)k
= (ab)®(ab)**! (a%)*
= (ab)*(a®)"
= (a"ab)". (14)
In view of 12, 13 and 14, (a®ab)® = bFa%a.

(1) = (i) From the assumption that aba = a?b and
aba® = a*ab, it follows that
(ab)® = (a®ab)®a?,

by Lemma 3.10. Since (a®ab)® = v¥aFa, then (ab)® =
(a¥ab)® = bFaFBaa® = vFa®.

O

The section is concluded with the following result,
which is proved as Theorem 3.12.

Theorem 3.13. Lef a,b € R® with bab = b*a and bab* =
b*ab. Then the following are equivalent:

(i) (ab)® = bEa®,

(ii) (abb™)F = bbFa®,

4 Absorption law for weak core inverse

In this section, we obtain some sufficient conditions
under which absorption law hold in case of weak core.
But, first we demonstrate that absorption law in general
doesn’t hold for weak core inverse by an example.

Example 4.1. Let R = Zypand let a = 3,b = 6 € R.
Then a® = 7and b® = 6. However, a® (a+b)b* # a®+b%.

Now, we prove the first result of this section which
is about some equivalent conditions such that the
absorption law holds.

Theorem 4.1. Let a,b € R® with k = max{ind(a),
ind (b)} Then the following are equivalent:

(i) a (a—l—b)bEB:aEE—i—bEE;

(i1) aa® = bb¥;
(vi1) kR = ka
(iv) °(a*)=°(b").

Proof. (i) = (i) Pre multiplying a®(a+b)b® = o +b%
by aa®a. Then,

aa®bb® = aa®. (15)

By above condition, we have a®bb® = .

Again, post-multiplying a®(a + b)b® = oF + ¥ by
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b +2(p%)F+1. Then,

aﬁﬂabﬁﬂbk+2(bﬁﬂ)k+1 + aEEbk‘-f-Q(bEE)k’-i-l
— aEEbk+2(bEE)k+1 + bB;\bk+2(bBa)k+1
aBabb® = bp®.

Pre-miltiply by aa®, then

a®Babb® = aabb?®. (16)
So, we get
aa®bb = bb®. (17)
Hence, aa®™ = bb™® in view of 15 and 17.
(ii) = (i) Since aa™ = bb®, then
a®ob® = %,
and
a®Bab® = BppFp®
= a®q2qp®
— aEEak—i—l(aBH)kbEEi
= aa®p®
= bbEp®
= b=
Hence, a®(a + b)b* = aFab® + a®0b® = o + %,
(41) = (ii1) From aa® = bb¥, it follows that

BF = bEOE)E = bbBpE = aaBbk = ok (aB)RDE de.

b*R C a*R.

Analogously, a*R C b*R. Hence, a*R = V*R.
(#ii) = (iv) It is obvious, since a,b € R®.

(iv) = (i1) Since °(a*)=°(b*), then

(1—bP)a* =0, ie, bbPaa® = ad®,  (18)
and
(1 —aa®)* =0, ie., aa®bb® ==, (19)
Applying an invlution on 19, we obtain
bb%Paa® = bb®. (20)
In view of 18 and 20, aa® = bb®.
O

Now, we end this section with this result.
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Theorem 4.2. Let a,b € R¥. Then the following are
equivalent:
(i) a®(a+ b)b® = a® + bvF;
(ii) Ra® = R(a®bb®), bR = (a®ab®)R;
(4ii) bR C a® R and Ra® C RbF.
Proof. (i) = (i7) It is derived that

a® = aPpp® and bF = aFad®
by, respectively, pew-multiplying a«%a and
post-multiplying % on a®(a + b)bF = o + vE.
Hence, Ra® = R(a®0b¥), v¥R = (a®ab®)R.
(71) = (4i7) It is clear.
(iii) = (i) B®R C a®R implies that b¥ = oz
for some z € R. Since a¥ is an outer inverse
of a, then ¥ = d¥z = dFad®2r = oFab®.
Similarly, Ra® C Rb¥ leads to a® = a®bb®. Hence,
a®(a + b)b® = aBab® + aBb® = b + % O

Data Availability Statement
Not applicable.

Funding

This work was supported without any funding.

Conflicts of Interest

The author declares no conflicts of interest.

Ethical Approval and Consent to Participate
Not applicable.

References

[1] Penrose, R. (1955, July). A generalized inverse for
matrices. In Mathematical proceedings of the Cambridge
philosophical society (Vol. 51, No. 3, pp. 406-413).
Cambridge University Press. [CrossRef]

Drazin, M. P. (1958). Pseudo-inverses in associative
rings and semigroups. The American mathematical
monthly, 65(7), 506-514. [ CrossRef]

Xu, S., Chen, ], & Zhang, X. (2017). New
characterizations for core inverses in rings with
involution. Frontiers of Mathematics in China, 12(1),
231-246. [CrossRef]

Drazin, M. P. (2013). Commuting properties of
generalized inverses. Linear and Multilinear Algebra,
61(12), 1675-1681. [CrossRef]


https://doi.org/10.1017/S0305004100030401
https://doi.org/10.1080/00029890.1958.11991949
https://doi.org/10.1007/s11464-016-0591-2
https://doi.org/10.1080/03081087.2012.753593

ICJK

ICCK Journal of Applied Mathematics

(5]

6]

[12]

[13]

Zhou, M., Chen, J., & Zhou, Y. (2020). Weak group
inverses in properx-rings. Journal of Algebra and its
Applications, 19(12), 2050238. [ CrossRef]

Sahoo, J. K., Behera, R,, Das, S., Mohapatra, R. N., &
Prajapati, S. K. (2020). Generalized Core Inverse in a
proper*-ring. arXiv preprint arXiv:2005.13782.

Greville, T. N. E. (1966). Note on the generalized
inverse of a matrix product. SIAM Review, 8(4),
518-521. [CrossRef]

Djordjevié, D. S., & Din¢i¢, N. C. (2010). Reverse
order law for the Moore-Penrose inverse. Journal of
Mathematical Analysis and Applications, 361(1), 252-261.
[CrossRef]

Deng, C. Y. (2011). Reverse-order law for group
inverses. Journal of Mathematical Analysis and
Applications, 382(2), 663-671. [ CrossRef]

Mosic, D., & Djordjevic, D. S. (2012). Reverse-order
law for the group inverse in rings. Applied Mathematics
and Computation, 219(5), 2526-2534. [ CrossRef |

Chen, J., Zhu, H., Patricio, P., & Zhang, Y. (2017).
Characterizations and representations of core and
dual core inverses. Canadian Mathematical Bulletin,
60(2), 269-282. [CrossRef]

Xu, S., Chen, J., Benitez, J., & Wang, D. (2019).
Centralizer’s applications to the (b, c)-inverses in rings.
Revista de la Real Academia de Ciencias Exactas, Fisicas
y Naturales. Serie A. Matemdticas, 113(3), 1739-1746.
[CrossRef]

Stojanovi¢, K. S., & Mosi¢, D. (2020). Generalization
of the Moore-Penrose inverse. Revista de la Real

Academia de Ciencias Exactas, Fisicas y Naturales.
Serie A. Matemiticas, 114(4), 196. [CrossRef|

[14]

Gao, Y., Chen, J., Wang, L, & Zou, H. (2021).
Absorption laws and reverse order laws for
generalized core inverses. Communications in
Algebra, 49(8), 3241-3254. [ CrossRef]

Li, T., Mosi¢, D., & Chen, J. (2021). The forward order
laws for the core inverse. Aequationes mathematicae,
95(3),415-431. [CrossRef]

Hartwig, R. E. (1976). Block generalized inverses.
Archive for Rational Mechanics and Analysis, 61(3),
197-251. [CrossRef]

Gao, Y. E,, & Chen, J. L. (2018). Pseudo core inverses
in rings with involution. Communications in Algebra,
46(1), 38-50. [CrossRef]

Panigrahy, K., & Mishra, D. (2020). On reverse-order
law of tensors and its application to additive results on
Moore-Penrose inverse. Revista de la Real Academia de

Ciencias Exactas, Fisicas y Naturales. Serie A. Matemdticas,
114(4), 184. [CrossRef]

Kumar, A., & Mishra, D. (2024). On WD and
WDMP generalized inverses in rings. Filomat, 38(16),
5681-5697. [ CrossRef]

Amit Kumar received the Ph.D. degree in
Mathematics from the National Institute of
Technology Raipur, India, in 2024. (Email:
amitdhull513@gmail.com)

153


https://doi.org/10.1142/S0219498820502382
https://doi.org/10.1137/1008107
https://doi.org/10.1016/j.jmaa.2009.08.056
https://doi.org/10.1016/j.jmaa.2011.04.085
https://doi.org/10.1016/j.amc.2012.08.088
https://doi.org/10.4153/CMB-2016-045-7
https://doi.org/10.1007/s13398-018-0574-0
https://doi.org/10.1007/s13398-020-00928-x
https://doi.org/10.1080/00927872.2021.1892712
https://doi.org/10.1007/s00010-021-00793-y
https://doi.org/10.1007/BF00281485
https://doi.org/10.1080/00927872.2016.1260729
https://doi.org/10.1007/s13398-020-00916-1
https://www.jstor.org/stable/27387492

	Introduction
	Preliminaries
	Main Results
	Absorption law for weak core inverse
	Amit Kumar


