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Abstract

A nonlinear compartmental model is developed to
analyze crime dynamics in a structured society. The
population is stratified into eight compartments:
S(t) (susceptible), E(t) (exposed), C(t) (active
criminals), Cv(t) (convicted criminals), Ph(t)

(passive-honest), Pc(t) (committed-honest), Jh(t)

(honest judges), and Jc(t) (corrupt judges).
The model incorporates nonlinear mechanisms
such as institutional corruption (κ1), judicial
correction (κ2), recidivism feedback (ρ1, ρ2),
exposure intensity (η1), and rehabilitation (r2),
providing a realistic portrayal of crime–justice
interactions. Solutions remain positive and
bounded within a feasible domain D. Linear
stability analysis of the crime–free equilibrium Z0

is performed via the Jacobian J(Z0). Numerical
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simulations explore the long–term dynamics under
variations of key parameters (β1, η1, ρ1, ρ2, r2, κ1, κ2).
Results show that strong judicial recruitment (a1)
and honest reinforcement (β4) suppress criminal
activity, whereas increased corruption (κ1) and
recidivism (ρ1, ρ2) promote its growth. Bifurcation
curves, contour maps, and stability basins highlight
critical thresholds and equilibrium structures.
The analysis demonstrates that proactive policy
measures—reducing corruption, discouraging
recidivism, and enhancing judicial integrity—can
significantly lower crime levels and foster honest
societal behavior, offering valuable guidance for
designing effective crime–prevention strategies
across diverse socio–political contexts.
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1 Introduction

Throughout human history, crime has been a social
phenomenon that has varied throughout cultures,
legal systems, and historical eras. According to
the United Nations Office on Drugs and Crime
(UNODC) crime refers to acts that break laws and are
penalized by the state [1]. It includes a wide range of
actions that undermine social order and jeopardize
the safety and well-being of both individuals and
groups, such as theft, assault, corruption, and fraud.
“an act (or omission) that is forbidden and punishable
by law” [2] is how the Oxford Dictionary of Law
defines crime. Crime is frequently interpreted in
legal and criminological studies as a break of social
norms that calls for remedial or punitive actions
in addition to a violation of the law. Crime is
a pressing sociological problem that has garnered
extensive attention in academic research [3]. The
United States, for example, allocates approximately 80
billion dollars annually to its criminal justice system,
housing over 2.24 million inmates [4, 5]. In the
past two decades, spending on incarceration has
grown sixfold compared to investments in higher
education, adversely affecting vulnerable communities
and educational opportunities [6].

Figure 1 illustrates the time–series behavior of crime
trends in India based on publicly available national
crime statistics. The first subplot shows the overall
cognizable crime rate (per 100,000 population), which

reflects a gradual increase over the last two decades,
with a marked rise after 2015. The second subplot
displays the pattern of violent crimes, indicating
moderate but noticeable fluctuations over time. The
third subplot presents the trend in property-related
crimes, which generally exhibits steady growth.
These visual patterns provide an empirical basis
for validating the model assumptions, particularly
the observed rise in exposure and transmission
rates of criminal behavior. The empirical trends
also highlight structural factors such as population
growth, urbanization, and reporting improvements,
which ultimately justify incorporating time-dependent
parameters in the mathematical crime-dynamics
framework.

The causes of crime are multifaceted and often
interlinked, encompassing economic, social,
psychological, and institutional factors. One of
the most frequently mentioned explanations is poverty
and economic disparity, which can make people more
likely to commit crimes since they cannot access
chances that are legitimate [7]. Particularly for young
people, social exclusion and unemployment can
exacerbate emotions of alienation and annoyance.
Other important criminogenic characteristics include
childhood exposure to violence, family dysfunction,
and illiteracy. According to the social learning
hypothesis, antisocial behavior can be reinforced
and criminal behavior can be learned by association

Figure 1. Time-series crime trends in India: (a) total crime rate, (b) violent crime, and (c) property crime. Real data can
be inserted directly into the coordinate lists. Source: NCRB/Macrotrends.
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with delinquent peers [8]. The rule of law can be
undermined and crime rates raised by institutional
flaws such as inefficient policing, judicial corruption,
and a lack of faith in law enforcement. Repeated
offences and organized crime may be encouraged in
such settings by impunity and inadequate deterrents
[9]. Furthermore, especially in metropolitan or
conflict-affected areas, criminal networks may thrive
due to systemic corruption and inadequate governance
frameworks. Developing focused crime-prevention
methods and creating efficient mathematical models
to mimic crime dynamics require an understanding of
these underlying causes. Influences of socio-economic
variables—such as unemployment, inequality, and
wage disparities—on crime rates have been extensively
studied [10]. Moreover, criminologists have debated
the spatial dimensions of gun laws and their potential
spillover effects [11]. These insights underscore the
multifactorial nature of criminal activity and the
necessity for holistic policy responses.

In recent decades, the rising complexity of
crime—particularly in urban environments—has
prompted researchers to explore mathematical models
that describe its evolution, interaction with social
structures, and responses to institutional controls.
Compartmental models have emerged as a useful
tool to capture the nonlinear, feedback-driven, and
often hidden dynamics of criminal behavior and law
enforcement mechanisms. Mathematical models of
crime, often inspired by epidemiological frameworks,
have offered profound insights into criminal behavior
dynamics [12–14]. Traditional models based on
ordinary and partial differential equations have been
instrumental in analyzing crime spread and the
influence of institutional deterrents [15–17]. Recent
literature has emphasized the social transmission
hypothesis: criminal behavior is often acquired
through interaction with offenders, echoing the
principles of social contagion [17].

Understanding the complex dynamics of crime is
a pressing challenge for modern societies, as it
directly impacts social stability, public safety, and the

effectiveness of legal institutions. While traditional
compartmental models have provided useful insights
by categorizing populations into criminals, law
enforcers, and susceptible individuals, they often
overlook critical real-world mechanisms such as
recidivism, institutional corruption, and the effects of
education and policy reform.

This paper introduces an enriched nonlinear
compartmental model that captures the interplay
between social behavior and institutional structures.
The model incorporates dynamic transitions between
honest and criminal states, as well as between
passive and committed roles within the police and
judiciary systems. Key processes such as judicial
oversight, correctional influence, rehabilitation,
and social reinforcement are explicitly modeled
to reflect realistic crime evolution pathways. We
conduct analytical and numerical investigations to
examine the positivity, boundedness, and stability
of equilibrium states. Using extensive simulation
experiments, we analyze the system’s sensitivity to
variations in recruitment rates, corruption feedback,
and enforcement parameters. The results provide
insight into how targeted policy interventions can
suppress criminal behavior or, conversely, enable its
growth in the presence of systemic weaknesses. This
model, a system of six nonlinear ordinary differential
equations, is analyzed to identify equilibrium points
and compute the threshold parameter R0 using the
next-generation matrix approach [18]. The stability
analysis reveals that if R0 < 1, criminality diminishes
over time; otherwise, it persists. Through sensitivity
and elasticity analysis, the model also identifies
critical parameters influencing criminal behavior,
including recruitment of judges, police integrity, and
susceptibility to corruption.

Overall, the model offers a comprehensive framework
for evaluating both reactive and preventive strategies
in crime control, highlighting the crucial role of
institutional integrity and social resilience in shaping
long-term societal outcomes.
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2 Mathematical Model

We consider a crime–dynamics system in which the
total population is subdivided into seven mutually
interacting compartments: susceptible individuals
S(t), exposed individuals E(t), active criminals C(t),
convicted criminals Cv(t), passive honest individuals
Ph(t), committed honest individuals Pc(t), honest
judges Jh(t), and corrupt judicial personnel Jc(t). The
total population at any time t is therefore expressed as

N(t) = S(t) + E(t) + C(t) + Cv(t)

+ Ph(t) + Pc(t)

+ Jh(t) + Jc(t).

The temporal interaction between these
subpopulations is governed by the following
nonlinear system of differential equations. Susceptible
individuals may become exposed through interaction
with criminals, whereas exposure leads to active
criminality. Honest individuals may transition to
passive or committed roles within the judicial sector
depending on enforcement strength and recruitment
intensity. Criminals may also transition to conviction,
while convicted individuals can either be rehabilitated
or relapse into criminal behavior through recidivism.

The governing model can be written as:

dS

dt
= µN − β1SC

N
− a1S − a2S − η1S (1)

+ ρ2r2Cv − µS,
dE

dt
= η1S −

β1EC

N
− µE. (2)

dC

dt
=
β1(S + E)C

N
+ ρ1r2Cv + κ1Pc (3)

− β2PhC − µC,
dCv
dt

= β3Jh − r2Cv − µCv, (4)

dPh
dt

= a2S − β4CPh − κ1Ph + κ2Pc − µPh, (5)
dPc
dt

= β4CPh + κ1Pc − κ2Pc − µPc, (6)

dJh
dt

= a1S − κ1Jh + κ2Jh − µJh, (7)
dJc
dt

= κ1Jh − µJc. (8)

2.1 Parameters

All model parameters are assumed to be positive and
their detailed descriptions are summarized in Table 1.

Table 1. Description of model parameters used in the crime propagation system.
Parameter Description

µ Natural death or removal rate acting across all subpopulations.
β1 Crime transmission coefficient between S,E and C.
η1 Exposure rate causing movement from susceptible to exposed class.
a1 Recruitment rate of honest judicial members (Jh).
a2 Recruitment rate of passive honest individuals (Ph).
r2 Rehabilitation rate converting criminals to Cv.
r1 Model parameter removed in updated structure.
ρ1 Reinforcement driving recidivism from Cv to C.
ρ2 Positive support restoring susceptible class.
β2 Criminal capture/neutralization by passive honest population.
β3 Rate at which judicial action convicts criminals.
β4 Influence of criminals on passive population.
κ1 Flow from passive to committed individuals or corruption pathway.
κ2 Return rate from committed to passive state.
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Figure 2. Compartmental model illustrating transitions among Susceptible individuals, Exposed offenders, Active
criminals, Convicted individuals, Honest and Corrupt judges, and eventual removal µ. Solid arrows represent behavioral

transitions, dashed arrows indicate removal pathways.

The compartmental structure and transitions of the
proposed crime propagation model are depicted in
Figure 2. As shown, the system comprises eight
interconnected compartments representing different
societal and judicial roles.

3 Preliminaries

Definition 3.1 (Time-Dependent and
Time-Independent Dynamical Systems). Let

ż = G(z, τ), z(τ) ∈ Rm, (9)

where G : Rm × R→ Rm is sufficiently smooth.

• If G depends explicitly on the independent
variable τ , then (9) is called a time-dependent or
non-autonomous system.

• If G depends only on z and not explicitly on τ ,
then the model reduces to

ż = G(z),

and is referred to as an autonomous system.

Remark The crime-interactionmodel developed in this
work belongs to the autonomous class, as the evolution
is governed solely by the state variables.

Definition 3.2 (Solution Path / Orbit). Given an initial
condition z(τ0) = z0, let z(τ) = Ψ(τ ; τ0, z0) denote the
unique solution of (9). The set

Γ(z0) = {Ψ(τ ; τ0, z0) : τ ≥ τ0}

is called the trajectory or orbit through the point z0.

Definition 3.3 (Invariant Region). A subset A ⊆ Rm

is called invariant with respect to (9) if every solution
that begins in A remains in A for all future times.

Definition 3.4 (Steady State / Equilibrium). A point
z∗ ∈ Rm is called a steady state (or equilibrium) of the
system (9) if

ż = G(z) and G(z∗) = 0.

Lemma 3.1 (Stability Test via Jacobian). Consider the
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autonomous system

ż = G(z),

with G continuously differentiable on an open set Ω ⊂ Rm,
and let z∗ ∈ Ω be an equilibrium. Let

J(z∗) = DG(z∗)

denote the Jacobian evaluated at equilibrium.

• If every eigenvalue of J(z∗) has a negative real part,
the equilibrium is locally asymptotically stable.

• If at least one eigenvalue has a positive real part, the
equilibrium is unstable.

• If one or more eigenvalues lie on the imaginary axis,
linearization alone cannot determine stability, and
higher-order analysis is required.

Lemma 3.2 (Types of Equilibria in the Crime Model).
For the state vector

z(τ) = (s(τ), e(τ), c(τ), r(τ),

hp(τ), hc(τ), jh(τ), jc(τ))>,

two main equilibrium classes arise:

1. Crime-Free Equilibrium (CFE):
Occurs when c = r = 0, with remaining states
governed solely by natural recruitment and transition
rates.

2. Endemic Equilibrium (EE):
All components attain positive steady-state values,
indicating persistent criminal activity and active
recidivism.

Definition 3.5 (Jacobian Matrix). For a smooth vector
field G = (G1, . . . , Gm)>, the Jacobian of G evaluated
at z is the matrix

J(z) =

[
∂Gi
∂zj

(z)

]m
i,j=1

,

which approximates the local dynamics near z through
linearization.

Definition 3.6 (Local Stability Concepts). A steady

state z∗ is said to be:

• locally stable if all solutions starting near z∗ remain
near it,

• locally asymptotically stable if additionally
Ψ(τ ; τ0, z0)→ z∗ as τ →∞,

• unstable if arbitrarily small perturbations cause
trajectories to diverge away.

Definition 3.7 (Hyperbolic Steady State). An
equilibrium z∗ is called hyperbolic if the Jacobian J(z∗)

has no eigenvalues with zero real part. Such equilibria
inherit stability conditions directly from the signs of
the real parts of their eigenvalues.

Lemma 3.3 (Routh–Hurwitz Conditions for a Cubic).
Consider a cubic characteristic polynomial

λ3 + a1λ
2 + a2λ+ a3 = 0.

All roots have negative real parts (implying local asymptotic
stability) if and only if

a1 > 0, a2 > 0, a3 > 0, a1a2 > a3.

Definition 3.8 (Basic Threshold Number). The basic
transition number R0 quantifies the average number
of new transitions instigated by a single individual
introduced into an otherwise susceptible population
[19–21].

• R0 < 1 implies eventual elimination of the
undesirable activity,

• R0 > 1 indicates persistence of the activity,

• R0 = 1 represents a critical threshold, often
associated with bifurcation.

Next-GenerationOperator. For systemswritten in the
form

ż = F(z)−V(z),

where F contains entry or “new-admission” terms and
V represents transitions, removals, and transfer losses,
the Next-Generation procedure consists of:
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1. Identify the infected/active transmission
components;

2. Compute the Jacobians at the crime-free
equilibrium (CFE),

F =
∂F

∂z

∣∣∣∣
CFE

, V =
∂V

∂z

∣∣∣∣
CFE

;

3. Construct the Next-Generation Matrix

K = FV −1;

4. Define the basic threshold number as

R0 = ρ(K),

where ρ(K) denotes the spectral radius ofK.

Definition 3.9 (Bifurcation and Stability Framework).
Bifurcation and stability analysis refers to the
qualitative study of how the long–term behavior
of a nonlinear dynamical system changes as key
parameters vary. In particular, it examines transitions
between stable equilibria, instability, and the
emergence of multiple solution branches or critical
thresholds. Such techniques are widely used in
social and population models to capture behavioral
responses, fear effects, and institutional feedback
mechanisms, including marriage–divorce dynamics
under psychological and social influence [22].

4 Positively Invariant Region and Positivity

Lemma 4.1 (Total Population Equation). Let

N(t) = S(t) + E(t) + C(t) + Cv(t)

+ Ph(t) + Pc(t) + Jh(t) + Jc(t).

denote the total population of system (1)–(8). Then N(t)

satisfies the linear differential equation

Ṅ(t) = Λ− µN(t), (10)

where Λ ≥ 0 is the recruitment rate and µ > 0 is the natural
removal rate.

Proof. Summing equations (1)–(8), all internal
transfer and interaction terms cancel due to
conservation of population, leaving only recruitment
and natural removal terms. Hence,

Ṅ(t) = Λ− µN(t),

which proves (10).

Lemma 4.2 (Explicit Population Bound). The solution
of (10) with initial condition N(0) = N0 is

N(t) = N0e
−µt +

Λ

µ

(
1− e−µt

)
, (11)

and satisfies

0 ≤ N(t) ≤ Nmax := max

{
N0,

Λ

µ

}
, t ≥ 0. (12)

Proof. Equation (10) is linear and admits the explicit
solution (11). Since Λ, µ > 0, the bound (12) follows
directly.

Lemma 4.3 (Positively Invariant Feasible Region).
Define the set

D =
{

(S,E,C,Cv, Ph, Pc, Jh, Jc) ∈ R8
+

: 0 ≤ N(t) ≤ Nmax

}
.

Then D is positively invariant for system (1)–(8).

Proof. From Lemma 4.2, any solution starting with
N(0) ≤ Nmax satisfies N(t) ≤ Nmax for all t ≥ 0.
Moreover, each compartment equation has the form

Ẋ(t) = FX(t)−αX(t)X(t), FX(t) ≥ 0, αX(t) ≥ 0,

which ensuresX(t) ≥ 0 for all t ≥ 0 wheneverX(0) ≥
0. Hence trajectories starting in D remain in D for all
future time.

Theorem 4.1 (Positivity and Boundedness). The
feasible region

D =
{

(S,E,C,Cv, Ph, Pc, Jh, Jc) ∈ R8
+ : N(t) ≤ Nmax

}
,

(13)

7
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where

N(t) = S + E + C + Cv + Ph + Pc + Jh + Jc,

Nmax = max

{
N0,

Λ

µ

}
,

(14)

is positively invariant for system (1)–(8). If

S(0), E(0), C(0), Cv(0), Ph(0),

Pc(0), Jh(0), Jc(0) ≥ 0,
(15)

then all corresponding solutions exist globally and remain
nonnegative and bounded for all t > 0.

Proof. Boundedness. Summing equations (1)–(8)
yields

dN

dt
= Λ− µN(t). (16)

Solving (16) with N(0) = N0 gives

N(t) = N0e
−µt +

Λ

µ

(
1− e−µt

)
. (17)

Consequently,

0 ≤ N(t) ≤ Nmax, ∀ t ≥ 0. (18)

Positivity. Each state variable X ∈
{S,E,C,Cv, Ph, Pc, Jh, Jc} satisfies a differential
equation of the form

dX

dt
= FX(t)− aX(t)X(t), FX(t) ≥ 0, aX(t) ≥ 0.

(19)

Using the integrating factor method, the solution of
(19) is

X(t) = X(0)e−
∫ t
0 aX(s) ds +

∫ t

0
e−

∫ t
u aX(s) dsFX(u) du.

(20)

Since every term on the right-hand side of (20) is
nonnegative whenever X(0) ≥ 0, it follows that

X(t) ≥ 0, ∀ t ≥ 0. (21)

Combining (18) and (21), we conclude that all

solutions starting inD remain inD for all t ≥ 0. Hence,
D is positively invariant.

5 Equilibrium Points

Consider the state vector

Z(t) = (S(t), E(t), C(t), Cv(t), Ph(t),

Pc(t), Jh(t), Jc(t))
>,

(22)

representing the susceptible, exposed,
active-criminal, convicted-criminal, passive–honest,
committed–honest, honest–judicial, and
corrupt–judicial subpopulations, respectively.

An equilibrium point (or steady state) of the system is a
constant vector

Z∗ = (S∗, E∗, C∗, C∗v , P
∗
h , P

∗
c , J

∗
h, J

∗
c ), (23)

satisfying
dZ

dt
= 0. (24)

Substituting Z = Z∗ into system (1)–(8) yields the
steady–state equations

0 = µN∗ − β1S
∗C∗

N∗
− (a1 + a2 + η1 + µ)S∗ + ρ2r2C

∗
v ,

(25)

0 = η1S
∗ − β1E

∗C∗

N∗
− µE∗, (26)

0 =
β1(S

∗ + E∗)C∗

N∗
+ ρ1r2C

∗
v + κ1P

∗
c − β2P ∗hC∗ − µC∗,

(27)

0 = β3J
∗
h − (r2 + µ)C∗v , (28)

0 = a2S
∗ − β4C∗P ∗h − (κ1 + µ)P ∗h + κ2P

∗
c , (29)

0 = β4C
∗P ∗h + κ1P

∗
h − (κ2 + µ)P ∗c , (30)

0 = a1S
∗ − (κ1 − κ2 + µ)J∗h, (31)

0 = κ1J
∗
h − µJ∗c . (32)

The total equilibrium population is given by

N∗ = S∗ +E∗ +C∗ +C∗v + P ∗h + P ∗c + J∗h + J∗c . (33)

8
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Theorem 5.1 (Existence of Equilibrium). Assume that
all model parameters are positive and that the system evolves
within the positively invariant region D. Then there exists
at least one equilibrium point

Z∗ ∈ D, Z∗ ≥ 0,

satisfying the full nonlinear system (1)–(8).

Proof. The right–hand side of system (1)–(8) is
continuous and locally Lipschitz in the positively
invariant, closed, and bounded set D. Moreover,
positivity of recruitment terms and boundedness of
the total population prevent solutions from leaving D.
Hence, by Schauder’s fixed–point theorem, the system
admits at least one steady state Z∗ ∈ D.

5.1 Definition: State Variables and Equilibrium

Definition 5.1 (State Vector). The state of the
crime–justice system at time t is represented by the
vector

Z(t) = (S(t), E(t), C(t), Cv(t), Ph(t),

Pc(t), Jh(t), Jc(t))
>,

(34)

where the components denote, respectively,
the susceptible, exposed, active–criminal,
convicted–criminal, passive–honest,
committed–honest, honest–judicial, and
corrupt–judicial subpopulations.

Definition 5.2 (Equilibrium). A vector

Z∗ = (S∗, E∗, C∗, C∗v , P
∗
h , P

∗
c , J

∗
h, J

∗
c ) (35)

is called an equilibrium (or steady state) of system
(1)–(8) if it satisfies

dZ

dt

∣∣∣∣
Z=Z∗

= 0, (36)

equivalently, all right–hand sides of the system vanish
at Z = Z∗.

5.2 Definition: State Variables and Equilibrium

Definition 5.3 (State Vector). The state of the
crime–justice system at time t is represented by the
vector

Z(t) = (S(t), E(t), C(t), Cv(t),

Ph(t), Pc(t), Jh(t), Jc(t))
>,

(37)

where the components denote, respectively,
the susceptible, exposed, active–criminal,
convicted–criminal, passive–honest,
committed–honest, honest–judicial, and
corrupt–judicial subpopulations.

Definition 5.4 (Equilibrium). A vector

Z∗ = (S∗, E∗, C∗, C∗v , P
∗
h , P

∗
c , J

∗
h, J

∗
c ) (38)

is called an equilibrium (or steady state) of system
(1)–(8) if it satisfies

dZ

dt

∣∣∣∣
Z=Z∗

= 0, (39)

equivalently, all right–hand sides of the system vanish
at Z = Z∗.

Lemma 5.1 (Existence of the Zero Equilibrium). Let

Z0 = (0, 0, 0, 0, 0, 0, 0, 0).

Then Z0 is an equilibrium of system (1)–(8) if and only if
Λ = 0. In this case, the total population satisfies N∗ = 0,
and all recruitment terms vanish identically.

Proof. At Z0, all state variables vanish, so all nonlinear
interaction and transfer terms are zero. The system
reduces to Ṅ = Λ−µN . Hence, Ṅ = 0 atN = 0 if and
only if Λ = 0. Therefore, Z0 is an equilibrium exactly
when Λ = 0.

Lemma 5.2 (Closed–FormRelations at the Non–Trivial
Equilibrium). Assume Λ > 0 and C∗ > 0. Let

Λj = κ1 + µ− κ1κ2
κ2 + µ

.

Then the endemic (non–trivial) equilibrium components

9
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satisfy the following closed–form relations:

S∗ =
µN∗

a1 + a2 + η1 + µ+ β1C∗

N∗

, (40)

J∗h =
a1
Λj

S∗, J∗c =
κ1

κ2 + µ
J∗h, (41)

C∗v =
β3

r2 + µ
J∗h. (42)

Substituting (40)–(42) into the remaining steady–state
equations yields a reduced algebraic equation in C∗, whose
positive root determines the endemic equilibrium completely.

Lemma 5.3 (Judicial–Absence Equilibrium (JAE)).
Assume that judicial recruitment is absent, i.e., a1 =

0. Then system (1)–(8) admits a Judicial–Absence
Equilibrium (JAE) given by

Zj = (S∗, E∗, C∗, 0, P ∗h , P
∗
c , 0, 0),

where
J∗h = J∗c = C∗v = 0.

Under this assumption, the model reduces to a
five–dimensional subsystem in

S, E, C, Ph, Pc,

with total equilibrium population

N∗ = S∗ + E∗ + C∗ + P ∗h + P ∗c .

For any given equilibrium crime levelC∗ > 0, the remaining
steady–state components satisfy

S∗ =
µN∗

a2 + η1 + µ+ β1C∗

N∗

, (43)

E∗ =
η1S

∗

µ+ β1C∗

N∗

, (44)

P ∗h =
a2S

∗

β4C∗ + κ1 + µ− κ1κ2
κ2+µ

, (45)

P ∗c =
β4C

∗ + κ1
κ2 + µ

P ∗h . (46)

Hence, Zj represents a societal state with complete
judicial collapse, where crime dynamics evolve solely
through susceptibility, exposure, criminal reinforcement,
and non–judicial control mechanisms.

Lemma 5.4 (Jacobian Matrix of the Crime–Justice
System). Let

X = (S,E,C,Cv, Ph, Pc, Jh, Jc)
>,

N = S + E + C + Cv + Ph + Pc + Jh + Jc,

and let fi(X), i = 1, . . . , 8, denote the right–hand sides of
system (1)–(8). Then the Jacobian matrix

J(X) =

[
∂fi
∂Xj

]
8×8

can be written in the block form

J(X) =


ASE BSC 02×4

02×2 ACCv DCJ

EPS FPC GPJ

 , (47)

where the blocks are defined as follows.

(i) Susceptible–Exposed block (2× 2):

ASE =

−(a1 + a2 + η1 + µ)− β1
(
C
N −

SC
N2

)
β1

SC
N2

η1 + β1
EC
N2 −µ− β1

(
C
N −

EC
N2

)
 .

(ii) Coupling from criminals to (S,E) (2× 2):

BSC =

−β1( SN − SC
N2

)
ρ2r2 + β1

SC
N2

−β1
(
E
N −

EC
N2

)
β1

EC
N2

 .

(iii) Criminal–Convicted block (2× 2):

ACCv =

β1(S + E)

N
− β1(S + E)C

N2
− β2Ph − µ ρ1r2

0 −(r2 + µ)

 .

10
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(iv) Judicial influence on criminal dynamics (2× 4):

DCJ =

0 0 κ1 0

0 0 0 0

 .

(v) Passive/committed honest and judicial blocks:

EPS ∈ R4×2, FPC ∈ R4×2, GPJ ∈ R4×4,

whose entries follow directly from linear differentiation of
(5)–(8).

The local stability of any equilibrium follows by evaluating
J(X) at the corresponding steady state and analyzing the
spectrum of the resulting matrix.

Lemma 5.5 (Jacobian at the Trivial Equilibrium).
Assume Λ = 0. At the trivial equilibrium

Z0 = (0, 0, 0, 0, 0, 0, 0, 0),

all bilinear interaction terms vanish and the Jacobian matrix
takes the block–triangular form

J(Z0) =

ASE 02×2 02×4

02×2 ACCv DC,J

EP,S FP,C GP,J

 .

The blocks evaluated at Z0 are given by

ASE =

−(a1 + a2 + η1 + µ) 0

η1 −µ

 ,

ACCv =

−µ ρ1r2

0 −(r2 + µ)

 ,

DC,J =

0 0 κ1 0

0 0 0 0

 ,

EP,S =


a2 0

0 0

a1 0

0 0

 , FP,C = 04×2,

GP,J =


−(κ1 + µ) κ2 0 0

κ1 −(κ2 + µ) 0 0

0 0 −(κ1 + µ) κ2

0 0 κ1 −(κ2 + µ)

 ,

where the first 2× 2 subblock corresponds to (Ph, Pc) and
the second to (Jh, Jc).

Consequently, J(Z0) is block–triangular and its
characteristic polynomial factorises as

χJ(Z0)(λ) = det(λI2 −ASE) det(λI2 −ACCv)

× det(λI4 −GP,J).

Writing the factors explicitly,

χSE(λ) = (λ+ a1 + a2 + η1 + µ)(λ+ µ),

χC,Cv(λ) = (λ+ µ)(λ+ r2 + µ),

χP,J(λ) =
[
λ2 +(κ1 +κ2 +2µ)λ+µ(κ1 +κ2)+κ1κ2

]2
.

Hence the spectrum of J(Z0) consists of the roots of these
three polynomials, allowing stability to be determined by
low–dimensional Routh–Hurwitz conditions. �

Lemma 5.6 (Characteristic Equation at the Trivial
Equilibrium). Assume Λ = 0 and let

Z0 = (0, 0, 0, 0, 0, 0, 0, 0)

be the trivial equilibrium of system (1)–(8). Let J(Z0)

denote the Jacobian matrix evaluated at Z0. Then J(Z0) is
block–triangular and its characteristic equation is given by

χJ(Z0)(λ) = (λ+ a1 + a2 + η1 + µ)(λ+ µ)2(λ+ r2 + µ)

×
[
λ2 + (κ1 + κ2 + 2µ)λ

+ κ1κ2 + µ(κ1 + κ2)
]2
.

(48)

Consequently, the spectrum of J(Z0) consists of the
eigenvalues

λ = −(a1+a2+η1+µ), λ = −µ (double), λ = −(r2+µ),

11
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and the roots of

λ2 + (κ1 + κ2 + 2µ)λ+ κ1κ2 + µ(κ1 + κ2) = 0,

each with multiplicity two. Since all coefficients are positive,
all eigenvalues have strictly negative real parts. Hence, the
trivial equilibrium Z0 is locally asymptotically stable.

Lemma 5.7 (Jacobian at the Crime–Free Equilibrium).
Let

Z1 = (S∗, E∗, 0, 0, P ∗h , P
∗
c , J

∗
h, J

∗
c )

denote the crime–free equilibrium of system (1)–(8), where

N∗ = S∗ + E∗ + P ∗h + P ∗c + J∗h + J∗c .

Then the Jacobian matrix evaluated at Z1 admits the
block–triangular form

J(Z1) =


ASE ASC ASJ

02×2 ACCv ACJ

APS APC APJ

 , (49)

where the blocks are given by

(i) Susceptible–Exposed block:

ASE =

−(a1 + a2 + η1) µ

η1 −µ

 ,

ASC =

µ −β1S
∗

N∗

0 −β1E
∗

N∗

 .

(ii) Criminal–Convicted block:

ACCv =

β1(S∗ + E∗)

N∗
− β2P ∗h ρ1r2

0 −(r2 + µ)

 ,

ACJ =

0 κ1 0 0

0 0 β3 0

 .

(iii) Institutional subsystem:

APS =

a2 0

0 0

 , APC =

−β4P ∗h 0

β4P
∗
h 0

 ,

APJ =


−(κ1 + µ) κ2 0 0

κ1 −(κ2 + µ) 0 0

0 0 −(κ1 + µ) κ2

0 0 κ1 −(κ2 + µ)

 .

This block structure reveals a partial decoupling of the
dynamics: the susceptible–exposed subsystem evolves
independently of criminal variables, while the institutional
variables form a coupled law–enforcement block. �

Lemma 5.8 (Characteristic Equation at the Crime–Free
Equilibrium). Let

Z1 = (S∗, E∗, 0, 0, P ∗h , P
∗
c , J

∗
h, J

∗
c )

be the crime–free equilibrium of system (1)–(8), and let
J(Z1) be the Jacobian matrix given in Lemma 5.7. Then
J(Z1) is block–triangular and its characteristic polynomial
factorises as

χJ(Z1)(λ) = χSE(λ)χC,Cv(λ)χP,J(λ), (50)

where the three factors correspond to the susceptible–exposed
block, the criminal block, and the institutional block,
respectively.

(i) Susceptible–Exposed block. The characteristic
polynomial of ASE is

χSE(λ) = det(λI2−ASE) = (λ+a1+a2+η1)(λ+µ)−µη1.
(51)

(ii) Criminal–Convicted block. The characteristic
polynomial of ACCv is

χC,Cv(λ) = det(λI2 −ACCv)

= (λ+ r2 + µ)
(
λ− β1(S

∗ + E∗)

N∗

+ β2P
∗
h + µ

)
.

(52)

12
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(iii) Institutional block. The 4 × 4 block APJ is
block–diagonal with two identical 2× 2 subblocks, yielding

χP,J(λ) =
[
λ2 +(κ1 +κ2 +2µ)λ+κ1κ2 +µ(κ1 +κ2)

]2
.

(53)

Combining (56)–(58) yields the full characteristic equation
(55). �

Lemma 5.9 (Characteristic Equation at the Crime–Free
Equilibrium). Let

Z1 = (S∗, E∗, 0, 0, P ∗h , P
∗
c , J

∗
h, J

∗
c ) (54)

be the crime–free equilibrium of system (1)–(8), and let
J(Z1) denote the Jacobian matrix evaluated at Z1 (see
Lemma 5.7). Then the characteristic equation of J(Z1) is
given by

χJ(Z1)(λ) = χSE(λ)χC,Cv(λ)χP,J(λ), (55)

where the individual factors are defined below.

(i) Susceptible–Exposed block. The characteristic
polynomial associated with the (S,E)–subsystem is

χSE(λ) = det(λI2−ASE) = (λ+a1+a2+η1)(λ+µ)−µη1.
(56)

(ii) Criminal–Convicted block. The characteristic
polynomial of the (C,Cv)–subsystem is

χC,Cv(λ) = det(λI2 −ACCv)

= (λ+ r2 + µ)

×
(
λ− β1(S

∗ + E∗)

N∗
+ β2P

∗
h + µ

)
.

(57)

(iii) Institutional block. The characteristic polynomial
associated with the institutional variables (Ph, Pc, Jh, Jc)

is

χP,J(λ) =
[
λ2 +(κ1 +κ2 +2µ)λ+κ1κ2 +µ(κ1 +κ2)

]2
.

(58)

Combining (56)–(58) yields the full characteristic equation
(55), which determines the local stability of the crime–free
equilibrium Z1. �

Theorem 5.2 (Local Stability of the Crime–Free
Equilibrium). Let

Z1 = (S∗, E∗, 0, 0, P ∗h , P
∗
c , J

∗
h, J

∗
c ) (59)

be the crime–free equilibrium of system (1)–(8), and let
χJ(Z1)(λ) be the characteristic equation given in Lemma 5.9.
Define the basic threshold number

R0 =
β1(S

∗ + E∗)

(β2P ∗h + µ)N∗
. (60)

Then the following statements hold:

1. If
R0 < 1, (61)

all eigenvalues of J(Z1) have strictly negative real
parts, and the crime–free equilibrium Z1 is locally
asymptotically stable.

2. If
R0 > 1, (62)

the Jacobian J(Z1) admits a positive real eigenvalue,
and the crime–free equilibrium Z1 is unstable.

Proof. From Lemma 5.9, the characteristic equation of
J(Z1) factors as

χJ(Z1)(λ) = χSE(λ)χC,Cv(λ)χP,J(λ). (63)

The roots of χSE(λ) and χP,J(λ) have strictly negative
real parts for all admissible parameter values. The
remaining eigenvalue governing crime invasion arises
from

λ =
β1(S

∗ + E∗)

N∗
− β2P ∗h − µ. (64)

Condition (61) is equivalent to λ < 0, implying local
asymptotic stability of Z1, whereas (62) yields λ >

0, implying instability. Hence, the threshold R0 = 1

separates stability from instability of the crime–free
equilibrium.

Remark 5.1 (Policy Interpretation of the Threshold
R0). The basic transition number R0 represents the
average number of secondary criminal transitions

13
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generated by a single criminal individual introduced
into an otherwise crime–free society.

If R0 < 1, each criminal generates less than one
new criminal on average, implying that crime cannot
sustain itself and will eventually be eradicated. This
situation corresponds to effective institutional control,
strong judicial recruitment (a1), efficient correction
mechanisms (κ2), and low corruption or recidivism
feedback.

If R0 > 1, criminal activity reproduces faster than
it is removed, leading to persistent or growing crime
levels. This scenario reflects weak judicial enforcement,
high corruption transitions (κ1), or strong criminal
reinforcement.

Thus, R0 provides a quantitative benchmark for
evaluating crime control policies: reducingR0 below
unity is both necessary and sufficient for eliminating
criminal activity in the long run.

Theorem 5.3 (Bifurcation at the Critical Threshold
R0 = 1). Let R0 be defined as in (60), and suppose all
parameters except the crime transmission rate β1 are fixed.
Then the system (1)–(8) undergoes a bifurcation at

R0 = 1. (65)

Specifically:

1. For R0 < 1, the crime–free equilibrium Z1 is locally
asymptotically stable and no endemic equilibrium
exists.

2. At R0 = 1, the Jacobian J(Z1) admits a simple
zero eigenvalue, while all remaining eigenvalues have
strictly negative real parts.

3. For R0 > 1, Z1 becomes unstable and a unique
endemic (crime–persistent) equilibrium Z∗ emerges.

Hence, the system exhibits a forward (transcritical)
bifurcation at R0 = 1, marking the transition from a
crime–free state to persistent criminal activity.

Lemma 5.10 (Basic Reproduction Number R0). The

basic reproduction number R0 is defined as the average
number of new criminal cases generated by a single active
criminal introduced into an otherwise crime–free population.
It acts as a threshold parameter determining whether
criminal activity dies out or persists in the society.

To compute R0, we employ the next–generation matrix
approach. Let the vector of crime–generating compartments
be

x = (E, C, Cv)
>, (66)

and decompose the corresponding subsystem as

ẋ = F(x)− V(x), (67)

where F represents the rate of appearance of new criminal
cases and V represents transitions, rehabilitation, and
removals.

Linearizing at the crime–free equilibrium (CFE), where
E = 0,C = 0, andCv = 0, the Jacobian matrices F = DF
and V = DV define the next–generation matrix

K = FV −1. (68)

The basic reproduction number is then given by

R0 = ρ(K), (69)

where ρ(·) denotes the spectral radius.

Based on the model structure, new criminal activity is
primarily generated through

β1SC

N
,

β1EC

N
, ρ1r2Cv, δ1JcC. (70)

Assuming the susceptible population is at equilibrium S∗

and N is the total population, a simplified approximation of
the reproduction number is

R0 ≈
β1S

∗

µ+ d
+

ρ1r2
µ+ r2

+
δ1J
∗
c

µ+ d′
, (71)

where d and d′ denote additional correction or rehabilitation
rates and J∗c is the corrupt–judicial population at the CFE.
�
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6 Results and Discussion

This section presents a comprehensive examination of
the expanded crime–dynamics model. The results are
organized to illustrate both the numerical behavior
of the system under different parametric conditions
and the associated theoretical insights. Using
Jacobian–based linearization, we begin by analysing
the local stability of the crime–free equilibrium.
The long–term dynamics of the population
compartments are subsequently investigated through
time–dependent numerical simulations, including
time–series plots, two–dimensional contour diagrams,
and three–dimensional surface visualizations.
Each figure demonstrates the sensitivity of key
state variables to variations in critical parameters
such as corruption feedback, exposure intensity,
recruitment rates, and correctional effects. Overall,
the results provide a systematic understanding of
how institutional dynamics and social interventions
influence the escalation or suppression of criminal
activity within a community.

6.1 Physical Validity and Empirical Justification of
Parameter Choices

The qualitative behaviour of the crime–justice
model depends on parameters representing social
influence, policing efficiency, judicial transitions, and
demographic turnover. To ensure that the simulations
reflect realistic societal conditions, all parameter
values employed in this study were chosen to lie
within empirically defensible ranges, supported by
national and international criminological datasets.

The parameters are interpreted on a normalized
annual time scale, where one unit of time corresponds
approximately to one year. For instance, the natural
exit rate µ = 0.1 represents an annual turnover
rate of 10%, which is consistent with population
mobility and attrition statistics reported in recent
NCRB records. Similarly, values such as β1 = 0.3 and
β4 = 0.2 correspond to moderate crime–contact and
corruption–influence intensities, aligning with urban
crime exposure levels and police–criminal interaction

Table 2. Empirically plausible parameter ranges for crime–dynamics models.
Parameter Interpretation Range Empirical Basis / Source

µ Natural demographic removal
/ exit rate

0.02–0.12 NCRB population churn [23]; UN
demographic data [24].

β1 Crime exposure / contact rate 0.10–0.40 Youth at-risk fractions; UNODC crime
contagion studies [25].

η1 Exposure intensity (social
vulnerability)

0.03–0.10 Peer-risk and neighbourhood criminology
studies [26].

a1 Judicial recruitment rate 0.05–0.15 Judicial recruitment statistics, Ministry of
Law and Justice [27].

a2 Policing recruitment rate 0.07–0.18 Police modernization and vacancy data
[28].

κ1 Transition to committed /
corrupt state

0.05–0.15 Corruption drift estimates from
Transparency International [29].

κ2 Return to honest / passive
state

0.05–0.12 Judicial and police disciplinary records
[30].

β4 Criminal influence on police 0.10–0.30 Police misconduct and criminal pressure
statistics [31].

r2 Rehabilitation / corrective
release rate

0.20–1.00 Average prison release cycles (1–5 years)
[32].

ρ1, ρ2 Recidivism and institutional
reinforcement

0.05–0.30 NCRB recidivism statistics (17–32%) [33].
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patterns documented in India.

Although detailed parameter calibration could be
performed using least–squares or likelihood–based
fitting to time–series crime data (e.g., annual
cognizable crime reports published by the NCRB),
the baseline values adopted here lie well within
empirically observed ranges. Table 2 summarizes
representative parameter magnitudes together with
their supporting references.

6.2 Crime-Free Equilibrium Analysis

In this subsection, we investigate how key judicial
and demographic parameters influence the crime-free
equilibrium (CFE) structure of themodel. The analysis
is carried out by varying one parameter at a time

while keeping the remaining parameters fixed, and
examining the resulting equilibrium responses.

6.2.1 Impact of the Judicial Correction Rate κ2
To assess the role of the judicial correction rate κ2 on
the crime-free equilibrium, we analyzed the variation
of equilibrium compartments with respect to the
total population N for five distinct values of κ2,
while keeping all other parameters fixed at µ = 0.02,
a1 = 0.03, a2 = 0.04, η1 = 0.01, r1 = 0.05, and
κ1 = 0.06, with κ2 ∈ {0.03, 0.05, 0.07, 0.09, 0.11}. As
shown in Figure 3, all equilibrium components scale
linearly with N , consistent with the linear recruitment
structure of the model. Increasing κ2 strengthens the
judicial correctionmechanism, resulting in a noticeable
reduction in the correctable police and judicial

Figure 3. Variation of crime-free equilibrium values with the total population N ∈ [1000, 10000] for different values of the
judicial correction rate k2. The six subplots illustrate the equilibrium values of: (i) susceptible individuals S0, (ii)

habitual police officers P 0
h , (iii) correctable police officers P 0

c , (iv) habitual judges J0
h , (v) correctable judges J0

c , and (vi)
zero-valued criminal compartments E0 = C0 = C0

v = 0. Each curve corresponds to a distinct value of
k2 ∈ {0.03, 0.05, 0.07, 0.09, 0.11}.
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Figure 4. Effect of judicial feedback rate r1 on the crime–free equilibrium. Crime–free equilibrium values versus total
population N ∈ [1000, 10000] for different values of the judicial feedback rate r1 ∈ {0.01, 0.03, 0.05, 0.07, 0.09}. The six
subplots depict the equilibrium levels of: (i) susceptible individuals S0, (ii) habitual police officers P 0

h , (iii) correctable
police officers P 0

c , (iv) habitual judges J0
h , (v) correctable judges J0

c , and (vi) zero-valued criminal compartments
(E0 = C0 = C0

v = 0). Each colored curve corresponds to a distinct value of r1.

compartments (P 0
c , J

0
c ) due to faster reintegration.

Concurrently, higher values of κ2 increase the habitual
(uncorrected) compartments (P 0

h , J
0
h), reflecting

shorter residence times in correctional states. Notably,
the susceptible population S0 remains relatively
stable across variations in κ2, indicating robustness
of the crime-free baseline. Overall, these findings
underscore the critical role of judicial efficiency in
shaping equilibrium distributions and supporting
effective long-term crime prevention strategies.

6.2.2 Effect of Judicial Feedback Rate r1
To examine the influence of the judicial feedback
rate r1 on the crime-free equilibrium, we analyzed
the variation of equilibrium components with respect

to the total population N while varying r1 ∈
{0.01, 0.03, 0.05, 0.07, 0.09} and fixing the remaining
parameters as µ = 0.02, a1 = 0.03, a2 = 0.04, η1 =

0.01, κ1 = 0.06, and κ2 = 0.07. As illustrated in
Figure 4, increasing r1 leads to a consistent increase in
the susceptible equilibrium population S0, reflecting
stronger judicial rehabilitation and more effective
reintegration into lawful behavior. Simultaneously,
higher values of r1 reduce the equilibrium sizes of the
correctable police and judicial compartments (P 0

c , J
0
c )

due to faster transitions out of correctional states.
Despite these redistributions, the overall equilibrium
structure remains stable, demonstrating the stabilizing
role of judicial feedback. These results indicate
that enhancing judicial rehabilitation and outreach
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Figure 5. Impact of the natural death rate µ ∈ [0.005, 0.05] on the crime–free equilibrium components S0, P 0
h , P 0

c , J0
h , and

J0
c for two susceptibility levels η1 = 0.04 (blue curves) and η1 = 0.08 (red curves). All other parameters are fixed at

a1 = 0.03, a2 = 0.04, r1 = 0.05, κ1 = 0.06, κ2 = 0.07, and total population N = 5000.

mechanisms can significantly suppress the long-term
spread of criminal behavior.

6.2.3 Impact of Natural Death Rate µ under Different
Susceptibility Levels

To further analyze the sensitivity of the crime–free
equilibrium, we examined the influence of the
natural death rate µ for two susceptibility levels
η1 ∈ {0.04, 0.08}. The numerical results illustrated in
Figure 5 indicate a pronounced inverse dependence
of all equilibrium components on µ; as µ increases,
the equilibrium populations S0, P 0

h , P 0
c , J0

h , and
J0
c decrease sharply, particularly for small values

of µ. The system exhibits high sensitivity in the
range µ ≤ 0.015, beyond which the equilibrium
levels stabilize near low values. Moreover, a higher
susceptibility rate (η1 = 0.08) consistently yields

lower equilibrium populations compared to the
lower susceptibility case (η1 = 0.04), indicating
that increased social vulnerability amplifies the
adverse effects of demographic turnover. Overall,
these results highlight the delicate balance between
mortality-driven population dynamics and crime
vulnerability, suggesting that effective public health
and crime-prevention policies must address both
demographic stability and social susceptibility
simultaneously to ensure long-term societal resilience
and institutional integrity.

6.2.4 Impact of Parameters a1, a2, and κ1 on the Crime-Free
Equilibrium

In this section, Figures 6, 7 and 8 illustrate
the effect of variations in the recruitment and
transition parameters a1, a2, and κ1 on the crime-free
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Figure 6. Effect of the judicial recruitment rate a1 on the crime–free equilibrium components S0, P 0
h , P 0

c , J0
h , and J0

c . The
plots illustrate sharp nonlinear sensitivity of equilibrium values with respect to a1, indicating critical transition

thresholds in judicial staffing dynamics. Fixed parameter values are a2 = 0.04, κ1 = 0.06, µ = 0.02, r1 = 0.05, η1 = 0.01,
and N = 5000.

equilibrium (CFE) of the model. Under the crime-free
assumption, the criminal compartments E0, C0, and
C0
v remain identically zero. The remaining equilibrium

variables—susceptible individuals S0, police officers
P 0
h , P 0

c , and judges J0
h , J0

c—are analyzed to assess their
sensitivity to parameter changes.

Observations from Figure 6 (Effect of a1).

• All equilibrium variables exhibit discontinuous
behavior near a critical value of a1, where
the denominator of the equilibrium expressions
approaches zero, resulting in sharp spikes.

• Beyond this critical threshold, some equilibrium

values become negative, indicating loss of
feasibility and instability of the crime-free
equilibrium.

• Increasing a1 enhances recruitment into the
judicial compartments J0

h and J0
c , while the

susceptible population S0 decreases sharply.

Observations from Figure 7 (Effect of a2).

• As a2 increases, the honest and corrupt police
populations P 0

h and P 0
c initially rise sharply,

reflecting increased recruitment from the
susceptible class.
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Figure 7. Effect of varying the policing recruitment rate a2 (rate at which susceptible individuals transition to habitual
police) on the crime–free equilibrium components S0, P 0

h , P 0
c , J0

h , and J0
c . Other parameters are fixed at µ = 0.02,

a1 = 0.03, r1 = 0.05, η1 = 0.01, κ1 = 0.06, κ2 = 0.07, and total population N = 5000.

• After crossing a critical value of a2, these
populations decline rapidly, revealing a nonlinear
response of law enforcement capacity to
recruitment.

• Similar to the case of a1, unbounded or negative
equilibrium values beyond the critical point
suggest that feasible solutions exist only within a
restricted parameter range.

Observations from Figure 8 (Effect of κ1).

• Increasing κ1 produces a stabilizing and
redistributive effect: the populations of honest

police P 0
h and honest judges J0

h decrease, while
the corresponding corrupt compartments P 0

c and
J0
c increase.

• The susceptible population S0 remains nearly
constant, indicating that κ1 primarily governs
internal transitions rather than total population
recruitment.

• The equilibrium responses vary smoothly with
κ1, and no instability or nonphysical values are
observed within the considered parameter range.
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Figure 8. Effect of the transition parameter κ1 (rate of conversion between habitual and correctable subgroups) on the
crime–free equilibrium components S0, P 0

h , P 0
c , J0

h , and J0
c . The susceptible population S0 remains nearly invariant,

while increasing κ1 shifts population mass from habitual compartments (P 0
h , J

0
h) toward correctable compartments

(P 0
c , J

0
c ). Parameter values used are a1 = 0.03, a2 = 0.04, µ = 0.02, r1 = 0.05, η1 = 0.01, κ2 = 0.07, and N = 5000.

6.3 Local Stability of the Crime-Free Equilibrium

To investigate the local stability of the crime-free
equilibrium (CFE) of the proposed system, we analyze
the eigenvalues of the Jacobian matrix evaluated at
the equilibrium point. Distinct parameter sets are
considered in order to capture different socio-economic
and judicial scenarios. For each parameter set, the real
and imaginary parts of the eigenvalues are plotted
in the complex plane (see Figure 9). The vertical
dashed line at<(λ) = 0 separates the stable region (left
half-plane) from the unstable region (right half-plane).

• Set 1: The system exhibits both stable and
unstable eigenvalues, with at least one
eigenvalue lying in the right-half complex
plane. Consequently, the crime-free equilibrium
is unstable for this parameter configuration.

• Set 2: All eigenvalues lie strictly in the left-half

complex plane, indicating that the system returns
to equilibrium following small perturbations.
Hence, the crime-free equilibrium is locally
stable.

• Set 3: The presence of eigenvalues with positive
real parts leads to an unstable equilibrium. This
implies that a crime-free state cannot be sustained
under these parameter values.

• Set 4: Similar to Sets 1 and 3, the Jacobian
matrix admits eigenvalues with positive real
parts, confirming the instability of the crime-free
equilibrium.

• Set 5: All eigenvalues possess negative real parts,
signifying a stable equilibrium configuration.
This parameter regime may support long-term
crime eradication if maintained.
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Figure 9. Eigenvalue distributions in the complex plane corresponding to six distinct parameter sets. Red circles represent
the eigenvalues of the Jacobian matrix evaluated at the equilibrium point. The vertical dashed line Re(λ) = 0 separates
the stable region (Re(λ) < 0) from the unstable region (Re(λ) > 0). Each subplot is annotated to indicate the resulting

stability classification (stable or unstable) for the chosen parameter configuration.

• Set 6: The entire eigenvalue spectrum lies
within the left-half complex plane, indicating
that the system is again locally stable under this
parameter set.

These results demonstrate that the stability of
the crime-free equilibrium is highly sensitive to
specific combinations of model parameters, including
recruitment rates, natural death rates, rehabilitation
efforts, and social feedback mechanisms. Carefully
targeted control of these parameters may therefore
enable the formulation of effective policies aimed at
stabilizing crime-free societal states.

6.4 Reproduction Number Sensitivity

To investigate the influence of key model parameters
on the basic reproduction numberR0, a one–at–a–time
sensitivity analysis is performed by varying each
parameter individually while keeping all other

parameters fixed. In the context of the crime dynamics
model,R0 measures the ability of criminal activity to
persist or die out in the population.

The basic reproduction number is given by

R0 =
β1S

∗

N(µ+ d)
+

ρ1r2
µ+ r2

+
δ1J
∗
c

µ+ d′
, (72)

where S∗ denotes the susceptible population at
equilibrium, µ is the natural removal rate, d and d′

are decay parameters, β1 is the crime contact rate, ρ1
and r2 represent reform feedback mechanisms, and
δ1J
∗
c captures the effect of judicial intervention.

Figure 10 illustrates the variation ofR0 with respect to
key parameters, with the epidemic thresholdR0 = 1

indicated by a dashed horizontal line. The following
observations are obtained.

• Effect of µ (Removal Rate): Increasing the
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Figure 10. Variation of the basic reproduction numberR0 with respect to key model parameters: the natural death rate µ,
crime exposure rate β1, recidivism reinforcement rate ρ1, rehabilitation rate r2, judicial feedback intensity δ1, and the

equilibrium level of corrupt judges J∗
c . The red dashed horizontal line represents the critical thresholdR0 = 1.

Parameter values were varied over the interval [0.01, 1] while all remaining parameters were held fixed.

natural removal rate µ significantly reduces
R0. This indicates that enhanced natural
exit mechanisms, such as rehabilitation,
disengagement from crime, or mortality,
are effective in suppressing the persistence of
criminal activity.

• Effect of β1 (Crime Contact Rate): The
reproduction number increases almost linearly
with β1, showing that higher interaction rates
between susceptible individuals and criminals
strongly amplify crime propagation. This
highlights the importance of reducing exposure
to criminal networks and crime hotspots.

• Effect of ρ1 (Reform Feedback): A moderate
increase in ρ1 leads to an increase inR0, although
at a slower rate compared to β1. This suggests that
poorly designed or ineffective reform feedback
mechanisms may unintentionally strengthen
criminal influence rather than suppress it.

• Effect of r2 (ReformRate): Initially, increasing r2
causesR0 to rise, after which the growth saturates.
This nonlinear behavior reflects the possibility
that inadequate post–reform monitoring may
allow reformed individuals to relapse into
criminal behavior.
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Figure 11. Combined two–dimensional contour plots (top row) and three–dimensional surface plots (bottom row)
illustrating the Judicial–Absence Equilibrium (JAE) for four key compartments: susceptible individuals S, exposed

individuals E, passive criminals Ph, and convicted criminals Pc. The equilibrium distributions are shown as functions of
the crime level C ∈ [0.01, 1] and the total population size N ∈ [0.5, 2]. These plots demonstrate how variations in crime
intensity and population size influence compartmental equilibria in the absence of judicial enforcement, highlighting

increased vulnerability and structural shifts in population composition.

• Effect of δ1 (Judicial Impact): An increase in
δ1 produces a steady rise in R0, suggesting that
certain judicial processes, if not accompanied
by strong deterrent measures, may inadvertently
sustain crime cycles.

• Effect of J∗c (Equilibrium Corrupt Judges):
Higher values of J∗c directly increaseR0, reflecting
weakened judicial effectiveness. This indicates
that corruption or inefficiency within the judiciary
significantly contributes to the persistence of
crime.

Overall, the sensitivity analysis reveals that the
parameters µ, β1, and δ1 exert the strongest influence
on R0. In particular, when R0 > 1, criminal
activity is predicted to persist or grow within the
population. Therefore, public policies aimed at
increasing natural crime removal rates, reducing
crime contact opportunities, and strengthening judicial
integrity are crucial for maintaining R0 < 1 and
ensuring long–term crime control.

6.5 PopulationDynamics of the CrimeModel under
Judicial–Absence Equilibrium (JAE)

In this section, we investigate the population dynamics
of the crime model under the Judicial–Absence
Equilibrium (JAE), a scenario in which both judicial
compartments, namely the honest judges Jh and
corrupt judges Jc, are absent. This situation represents
a breakdown of judicial processing or a failure of the
legal system in which no active judicial intervention
exists.

Under this assumption, the system simplifies
considerably and admits explicit analytical expressions
for the remaining population classes: Susceptible
individuals (S), Exposed individuals (E), Passive
criminals (Ph), and Convicted criminals (Pc),
expressed as functions of the total population size N
and the crime level C.

The model is evaluated using the following parameter
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values:

µ = 0.1, β1 = 0.3, a1 = 0.1, a2 = 0.15,

η1 = 0.05, κ1 = 0.1, κ2 = 0.1, β4 = 0.2.

Under the JAE assumption, the equilibrium
expressions for each population class are given
by

S(C,N) =
µN2

β1C + γN
, (73)

E(C,N) =
η1µN

2

(β1C + γN)

(
µ+

β1C

N

) , (74)

Ph(C,N) =
a2µN

2(κ2 + µ)

(β1C + γN)

× 1

[(κ2 + µ)(β4C + κ1 + µ)− κ2(β4C + κ1)]
,

(75)

Pc(C,N) =
β4C + κ1
κ2 + µ

Ph(C,N). (76)

where
γ = a1 + a2 + η1 + µ

represents the total outflow rate from the susceptible
class.

Figure 11 presents combined two–dimensional contour
plots and three–dimensional surface representations
of the equilibrium populations as functions of the
crime level C and the total population size N . The
susceptible population S decreases steadily with
increasing C, particularly for smaller values of N ,
indicating intensified transitions from susceptibility
to exposed or criminal states as crime pressure grows.
The exposed population E displays a non–monotonic
pattern, reaching a maximum at intermediate crime
levels and declining for larger C due to saturation
effects and reduced inflow from the susceptible

class. The passive criminal population Ph remains
comparatively small but increases gradually with both
N and C, demonstrating the combined influence of
population growth and crime propagation. Since
the convicted criminal population Pc is directly
proportional to Ph, it follows a similar qualitative
trend while attaining higher magnitudes in densely
populated environments. Overall, the JAE analysis
highlights the critical role of judicial presence in
regulating crime dynamics; in the absence of judicial
control, criminal populations become highly sensitive
to initial population size and crime contact rates,
underscoring the necessity of effective enforcement
and judicial mechanisms to prevent long–term crime
escalation and systemic instability.

6.6 Behavior of the system’s compartments over
time

In this section, we investigate the temporal evolution
of the extended crime dynamics model under different
parameter scenarios using numerical simulations. The
objective is to understand how variations in key
socio-criminal and institutional parameters influence
the evolution of the system over time. The behavior
of the eight state variables—susceptible individuals
(S), exposed individuals (E), criminals (C), convicted
criminals (Cv), honest policymakers (Ph), corrupt
policymakers (Pc), honest judiciary (Jh), and corrupt
judiciary (Jc)—is analyzed through time-series plots.
Each simulation highlights the dynamic interplay
between crime propagation, enforcement mechanisms,
and institutional integrity.

6.6.1 Impact of recruitment and exposure rates (µ, η1)

Figure 12 illustrates the effect of increasing the natural
recruitment rate µ and exposure rate η1 on the system
dynamics. Higher values of µ and η1 initially increase
the susceptible and exposed populations, which
subsequently leads to a rise in criminal recruitment.
Over time, the system approaches a dynamic balance
where criminal activity and recovery processes coexist
due to judicial and policy interventions. This behavior
indicates that recruitment-driven crime growth can be
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Figure 12. Time evolution of all state variables for different combinations of the natural death rate µ and susceptibility
rate η1. The red, green, and blue curves correspond to the parameter sets (µ, η1) = (0.005, 0.01), (0.01, 0.03), and

(0.02, 0.05), respectively. The plots illustrate the transient and long–term dynamics of susceptible (S), exposed (E), active
criminals (C), convicted criminals (Cv), passive–honest citizens (Ph), committed–honest citizens (Pc), honest judges (Jh),

and corrupt judges (Jc). An increase in µ and η1 accelerates population decay and suppresses institutional
compartments, while lower values promote persistence and higher equilibrium levels.
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Figure 13. Time evolution of all state variables (S,E,C,Cv, Ph, Pc, Jh, Jc) for different values of the crime exposure rate
β1 and rehabilitation rate r2. Parameter sets considered are (β1, r2) = (0.3, 0.02) (red), (0.5, 0.04) (green), and (0.7, 0.06)
(blue), while all other parameters are held fixed. The results illustrate how stronger crime transmission and rehabilitation
intensity jointly influence the transient and long-term dynamics of criminal, institutional, and judicial compartments.

mitigated through effective institutional responses.

6.6.2 Impact of crime transmission and conviction influence
rates (β1, r2)

Figure 13 demonstrates the system dynamics under
variations in the crime transmission rate β1 and

the conviction influence rate r2. An increase in
β1 significantly amplifies the criminal population
C by intensifying interactions between susceptible
individuals and criminals.

While a higher r2 accelerates the transition of criminals
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Figure 14. Time evolution of all compartments under varying policymaker corruption and institutional transition rates.
The figure illustrates the impact of changes in the criminal influence on institutions β4 and the transition rate between
habitual and correctable states κ1 on the dynamics of susceptible (S), exposed (E), criminals (C), convicted criminals

(Cv), passive individuals (Ph), correctable individuals (Pc), honest judiciary (Jh), and corrupt judiciary (Jc). Parameter
sets used are (β4, κ1) = (0.1, 0.03) (red), (0.2, 0.06) (green), and (0.3, 0.09) (blue), while all other parameters are fixed.

to the convicted class Cv, it also introduces a feedback
effect through institutional corruption, which may
indirectly sustain criminal activity. Hence, the net
impact of r2 is nonlinear and context-dependent.

6.6.3 Impact of corruption rates among policymakers
(β4, κ1)

Figure 14 presents the effect of varying the
corruption-related parameters β4 and κ1 associated
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Figure 15. Time evolution of all population compartments for increasing values of the crime–judicial interaction rate β6
and susceptibility parameter η1. The trajectories correspond to the parameter sets (β6, η1) = (0.15, 0.005) (red),

(0.25, 0.01) (green), and (0.35, 0.02) (blue). An increase in β6 and η1 accelerates the depletion of susceptible and honest
populations (S,E, Ph, Jh), while amplifying criminal and correctional compartments (C,Cv, Pc, Jc), indicating enhanced

crime propagation under higher exposure and institutional corruption effects.

with policymakers. An increase in these parameters
leads to faster transitions from honest policymakers
Ph to corrupt policymakers Pc. This shift weakens

law enforcement effectiveness, resulting in enhanced
criminal activity and reduced deterrence. The results
emphasize the critical role of political integrity in
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Figure 16. Variation of the equilibrium values of all population compartments at a fixed final time t = 100 with respect to
the natural death rate µ for different values of the crime transmission rate β1 = 0.3 (red), β1 = 0.5 (green), and β1 = 0.7
(blue). Each subplot corresponds to a distinct compartment: susceptible individuals S, exposed individuals E, criminals
C, convicted criminals Cv , honest police Ph, corrupt police Pc, honest judiciary Jh, and corrupt judiciary Jc. The results
illustrate the combined influence of demographic turnover and crime exposure intensity on the long–term population

distribution.

controlling crime dynamics.
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6.6.4 Impact of judicial corruption and cooperation with
crime (β6, δ1)

Figure 15 highlights the consequences of judicial
corruption parameters β6 and δ1 on the evolution
of the system. Higher values of β6 accelerate the
transition from honest judges Jh to corrupt judges Jc,
thereby strengthening criminal support from within
the judiciary. The parameter δ1 directly contributes
to the growth of the criminal population, particularly
in the presence of a large corrupt judiciary class. This
reveals a detrimental feedback loop between crime and
judicial failure. Overall, these numerical simulations
demonstrate that increases in corruption-related
parameters consistently elevate criminal and corrupt
compartments, whereas enhancements in recovery,
conviction, and institutional enforcement parameters
tend to stabilize or reduce criminality. The results
underscore the critical importance of systemic integrity
and coordinated institutional control in mitigating
long-term crime dynamics.

6.7 Impact of µ on system dynamics for varying β1
Figure 16 illustrates the combined influence of the
natural removal rate µ and the crime transmission
rate β1 on the long–term population distributions
at time t = 100. As µ increases, the susceptible
and exposed populations (S,E) exhibit a gradual
increase, particularly for lower values of β1, reflecting
reduced criminal transmission under stronger
removal mechanisms. In contrast, both the criminal
(C) and convicted (Cv) populations decline sharply
with increasing µ, with the effect being more
pronounced for higher β1, where crime transmission
is initially stronger. All law–enforcement and judicial
compartments (Ph, Pc, Jh, Jc) also decrease as µ

grows, indicating reduced institutional pressure
when criminal activity weakens. However, larger
values of β1 consistently sustain higher criminal and
conviction levels even for moderate µ, highlighting
that suppressing crime transmission is as crucial
as enhancing removal or rehabilitation. Overall,
the results in Figure 16 demonstrate a nonlinear
interplay between µ and β1, emphasizing that effective

long–term crime control requires simultaneous
reduction of criminal transmission and strengthening
of removal and rehabilitation processes.

6.8 Impact of varying the arrest rate parameters a1
and a2

Figure 17 illustrates the impact of varying the arrest
rate parameter a1 on the system dynamics at a
fixed time t = 100, for three different values
of the rehabilitation rate a2 ∈ {0.01, 0.03, 0.05}.
Each subplot corresponds to one of the eight
model compartments: susceptible (S), exposed (E),
criminals (C), convicted criminals (Cv), passive honest
individuals (Ph), committed honest individuals (Pc),
honest judges (Jh), and corrupt judges (Jc). The
numerical results show that both the susceptible and
exposed populations increase with higher arrest rates
a1, indicating that stronger enforcement slows the
immediate transition into active criminality, while
the influence of a2 on these compartments remains
comparatively mild. The criminal population (C)

grows with increasing a1 but declines as a2 increases,
revealing a trade–off between enforcement intensity
and effective rehabilitation. The convicted class (Cv)

is highly sensitive to both parameters and reaches
its largest values when arrest and rehabilitation rates
are simultaneously high, emphasizing their joint role
in transferring individuals from crime to conviction.
Both honest populations (Ph, Pc) increase with a1,
with Pc responding more strongly to changes in
a2, highlighting the importance of rehabilitation in
sustaining committed honest behavior. Finally, the
judicial compartments (Jh, Jc) expand with increasing
a1, especially for larger a2, suggesting that intensified
enforcement and reform place greater demands
on judicial institutions and may accelerate internal
transitions, including the emergence of corruption.
Overall, Figure 17 demonstrates that while higher
arrest rates intensify criminal justice involvement,
coordinated rehabilitation efforts are essential to
counterbalance this effect and promote long–term
crime reduction and social stability.
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Figure 17. Time–asymptotic values of all model compartments at fixed time t = 100 as functions of the arrest rate a1 for
three different rehabilitation rates: a2 = 0.01 (red), a2 = 0.03 (green), and a2 = 0.05 (blue). Each subplot corresponds to
one compartment of the model: susceptible individuals S, exposed individuals E, criminals C, convicted criminals Cv ,

honest police Ph, corrupt police Pc, honest judiciary Jh, and corrupt judiciary Jc.

6.9 Results and Discussion: Joint Impact of β2 and
δ1

Figure 18 illustrates the combined influence of law
enforcement effectiveness β2 and the interaction

strength between honest and corrupt judges δ1

on the long–term dynamics of the crime–justice
system through contour plots of all eight population
compartments evaluated at t = 100 for β2 ∈
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Figure 18. Contour plots of population compartments at t = 100 with respect to variations in the crime transmission rate
β2 and judicial deterrence parameter δ1. Each subplot represents the steady–state value of a specific compartment:

Susceptible individuals (S), Exposed individuals (E), Criminals (C), Convicted criminals (Cv), Passive honest police
(Ph), Committed honest police (Pc), Honest judges (Jh), and Corrupt judges (Jc). The color gradients illustrate the

sensitivity of each compartment to joint changes in crime transmission and judicial intervention intensity.

[0.2, 0.6] and δ1 ∈ [0.005, 0.03]. The susceptible and
exposed populations show only mild sensitivity to

these parameters, with larger values of δ1 slightly
reducing S and increasing E, indicating that judicial
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Figure 19. Three–dimensional surface plots illustrating the combined impact of the corruption influence rate β4 (x–axis)
and the judicial correction rate κ2 (y–axis) on the steady–state population compartments at time t = 100. Each subplot
corresponds to one compartment of the model: susceptible individuals (S), exposed individuals (E), criminals (C),
convicted criminals (Cv), passive honest police (Ph), committed honest police (Pc), honest judges (Jh), and corrupt
judges (Jc). The surfaces reveal the nonlinear sensitivity of institutional and population dynamics to variations in

corruption pressure and judicial efficiency.

corruption indirectly raises exposure by weakening
deterrence. In contrast, the criminal population

C responds strongly: increasing β2 significantly
suppresses crime due to more effective enforcement,
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whereas higher δ1 promotes criminal persistence
by undermining judicial credibility. A similar
interaction is observed for convicted criminals Cv,
whose levels rise with δ1 but display a non-monotonic
dependence on β2, suggesting saturation effects under
corrupt institutional conditions. Among the honest
subpopulations, passive honest individuals Ph decline
as δ1 increases, reflecting erosion of public trust,
while the committed honest group Pc exhibits a more
complex nonlinear response driven by competing
enforcement and corruption effects. The judicial
compartments are the most sensitive: honest judges
Jh decrease sharply with increasing δ1, whereas
corrupt judges Jc expand rapidly, confirming the
dominant role of judicial corruption in reshaping
institutional integrity. Overall, Figure 18 demonstrates
that although strengthening law enforcement (β2) is
effective in reducing crime, its benefits are substantially
weakened when judicial corruption (δ1) is high,
highlighting the need for integrated policies that
simultaneously enhance enforcement capacity and
protect judicial integrity to achieve sustainable crime
reduction.

6.10 3D Surface Analysis of the Impact of β4 and κ2
Figure 19 illustrates the combined influence of the
crime–honest interaction rate β4 and the judicial
transition rate κ2 on the long–term behavior
of the extended crime–justice system, using
three–dimensional surface plots of all eight population
compartments evaluated at t = 100 for β4 ∈ [0.1, 0.4]

and κ2 ∈ [0.01, 0.08]. The susceptible and exposed
populations vary only mildly across the parameter
space, with larger κ2 generally reducing both due
to faster institutional transitions, while β4 has a
weaker effect. In contrast, the criminal population C
decreases noticeably as β4 increases, reflecting stronger
interactions with honest individuals, although higher
κ2 can counteract this reduction in certain regions
by destabilizing committed honesty and enabling
indirect criminal resurgence; the convicted class Cv
responds accordingly. The honest subpopulations
show complementary behavior: the committed honest

group Pc grows with κ2, indicating enhanced recovery
and institutional reinforcement, whereas the passive
honest group Ph generally declines as individuals
transition toward stronger civic engagement or other
states. Judicial compartments are the most sensitive,
with both honest judges Jh and corrupt judges Jc
exhibiting pronounced nonlinear responses to κ2,
revealing regions where either integrity or corruption
dominates. Overall, Figure 19 highlights the strong
interplay between social interaction dynamics
(β4) and institutional transition mechanisms (κ2),
underscoring that effective crime–control strategies
must jointly strengthen civic engagement and judicial
reform rather than targeting either mechanism in
isolation.

6.11 Impact of µ and ρ2 on Equilibrium States

Figure 20 depicts the sensitivity of the equilibrium
states to variations in the natural death rate µ,
with the total population fixed at N = 500

and the active criminal population at C = 100,
for three levels of social reinforcement ρ2 =

{0.05, 0.10, 0.15}. As µ increases over [0.005, 0.1],
the susceptible population S∗ increases steadily
across all ρ2, reflecting reduced progression into
other compartments and enhanced social stability
under stronger feedback. In contrast, the honest
judge population J∗h decreases nonlinearly with µ, as
higher mortality weakens judicial recruitment and
retention; however, this decline is partially alleviated
for larger ρ2, underscoring the stabilizing role of social
reinforcement. The corrupt judge population J∗c also
declines with increasing µ, though more gradually
than J∗h , suggesting that corruption may persist longer
under high mortality and weak feedback. Similarly,
the convicted criminal population C∗v drops sharply
as µ rises, particularly for small ρ2, indicating reduced
conviction accumulation when social feedback is
weak. Overall, Figure 20 highlights that while
increased mortality suppresses criminal and judicial
compartments, strong social reinforcement is crucial
for sustaining institutional stability and preventing
long-term persistence of corruption.
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Figure 20. Effect of varying the natural death rate µ on equilibrium population levels for different values of the
institutional reinforcement parameter ρ2. The plots illustrate the equilibrium susceptible population S∗, honest judges J∗

h ,
corrupt judges J∗

c , and convicted criminals C∗
v as functions of µ. Results are shown for ρ2 ∈ {0.05, 0.10, 0.15}, with total

population N = 500 and initial criminal population C = 100 fixed.

6.12 Impact of Exposure Rate η1 on Equilibrium
Populations

Figure 21 illustrates the sensitivity of the equilibrium
populations to variations in the exposure rate η1, which
represents social vulnerability to crime. The parameter
η1 is varied over [0.005, 0.1] while fixing N = 500

and C = 100, and considering three levels of social
reinforcement ρ2 = {0.05, 0.10, 0.15}. As η1 increases,
the susceptible population S∗ decreases monotonically,
reflecting the direct impact of higher exposure in
reducing the pool of unexposed individuals; this
decline is more pronounced for smaller values of
ρ2. The honest judge population J∗h exhibits a
nonlinear decreasewith increasing η1 due toweakened
recruitment from the susceptible class, although this
effect is partially mitigated under stronger social
reinforcement. The corrupt judge population J∗c also
declines with η1 but with weaker sensitivity, indicating

that exposure primarily disrupts honest institutional
pathways rather than directly accelerating corruption.
Similarly, the convicted criminal population C∗v

decreases as higher exposure overwhelms corrective
mechanisms, particularly when social reinforcement is
weak. Overall, Figure 21 highlights the destabilizing
role of increased exposure on institutional stability
and emphasizes the buffering effect of strong
social reinforcement and post-conviction support in
sustaining long-term societal equilibrium.

6.13 Impact of Recruitment Parameters a1 and a2 on
System Equilibrium

In Figure 22, we examine the effect of recruitment
in judicial and police institutions on the long–term
equilibrium of the system by varying the recruitment
rates of honest judges (a1) and honest police officers
(a2) over the range [0.01, 0.05]. All other parameters
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Figure 21. Effect of varying the exposure rate η1 on equilibrium population levels for different values of social
reinforcement ρ2. The panels show the equilibrium values of susceptible individuals (S∗), honest judges (J∗

h), corrupt
judges (J∗

c ), and convicted criminals (C∗
v ) as functions of η1. Three values of ρ2 are considered: ρ2 = 0.05 (blue),

ρ2 = 0.10 (red), and ρ2 = 0.15 (yellow). Fixed parameters are N = 500, C = 100, µ = 0.01, a1 = 0.02, a2 = 0.03,
β1 = 0.6, β3 = 0.5, r2 = 0.04, κ1 = 0.05, and κ2 = 0.03.

are fixed with total population N = 500, active
criminals C = 100, µ = 0.01, η1 = 0.03,
β1 = 0.6, β3 = 0.5, r2 = 0.04, ρ2 = 0.1, and
κ1 = 0.05, κ2 = 0.03. The results show that
the equilibrium susceptible population S∗ decreases
as both a1 and a2 increase, indicating that stronger
institutional recruitment reduces societal susceptibility.
The equilibrium level of honest judges J∗h rises
sharply with a1 and is only weakly affected by a2,
consistent with direct judicial recruitment from the
susceptible class. As a consequence of increased

judicial inflow, the corrupt judge population J∗c

also increases with a1, while remaining relatively
insensitive to a2. The convicted criminal populationC∗v
grows with increasing a1, reflecting enhanced judicial
capacity, but its growth slows or slightly declines for
larger a2, suggesting that police recruitment alone
is insufficient to sustain long–term conviction levels
without parallel judicial strengthening. Overall, the
contour analysis highlights the synergistic role of
coordinated recruitment in judicial and police sectors,
where balanced investment in both yields the most
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Figure 22. Contour plots illustrating the equilibrium values of key population compartments as functions of the
recruitment parameters a1 and a2. The panels correspond to the susceptible population (S∗), honest judges (J∗

h), corrupt
judges (J∗

c ), and convicted criminals (C∗
v ). Warmer colors indicate higher equilibrium levels. Fixed parameter values are

N = 500, C = 100, µ = 0.01, η1 = 0.03, β1 = 0.6, β3 = 0.5, r2 = 0.04, ρ2 = 0.1, κ1 = 0.05, and κ2 = 0.03.

effective crime control outcomes.

Conclusion

This study presented an extended nonlinear
compartmental model to investigate and predict the
dynamics of crime in society. The proposed framework
integrates multiple interacting subpopulations,
including susceptible individuals, exposed
individuals, active criminals, convicted criminals,
passive and committed honest citizens, and judicial
actors (honest and corrupt judges). By incorporating
recruitment, exposure, correction, corruption, and
judicial transitions, the model captures essential
societal mechanisms governing real-world crime
dynamics. Analytical results established the positivity

and boundedness of solutions under biologically
meaningful parameter constraints. A crime-free
equilibrium was derived, and its local stability
was examined using Jacobian-based eigenvalue
analysis. These findings revealed the critical roles of
recruitment, attrition, and transition rates in shaping
the system’s stability landscape. A comprehensive
set of numerical simulations—including time-series
analysis, parametric line plots, contour maps, and
three-dimensional surface visualizations—was
conducted to explore the long-term impact of key
parameters. The main findings can be summarized as
follows:

• Stabilization and Crime-Free Behavior:
Time-series simulations demonstrated that
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the system converges to equilibrium within a
finite time horizon (approximately t ≈ 100),
validating the relevance of steady-state analysis
for long-term policy evaluation.

• Sensitivity to Core Parameters: The evolution
of criminal and honest populations is highly
sensitive to the natural death rate µ, exposure
rate η1, and crime transmission rate β1. In
particular, increases in β1 consistently led to
higher criminal prevalence, emphasizing the
importance of limiting crime contact mechanisms.

• Impact of Institutional Mechanisms:
Parameters associated with institutional
strength—such as judicial recruitment (a1, a2),
commitment transitions (κ1, κ2), and recidivism
control (r1, r2)—play a decisive role in
suppressing crime and reinforcing honest
subpopulations.

• Effects of Reinforcement andCorruption: Social
and judicial reinforcement parameters (ρ1, ρ2)
improve system outcomes by reducing criminal
activity, whereas high corruption feedback (δ1)
erodes judicial integrity. This highlights the
delicate balance between governance strength and
institutional decay.

• Nonlinear and Threshold Behavior: Contour
and three-dimensional surface analyses revealed
nonlinear relationships and threshold effects in
population transitions, suggesting bifurcation-like
behavior and underscoring the importance of
parameter tuning in crime control strategies.

In summary, this work provides a robust
theoretical and computational framework for
understanding crime dynamics in complex social
systems. The results demonstrate that targeted
interventions—particularly those strengthening social
reinforcement, judicial integrity, and coordinated
institutional recruitment—can substantially alter
long-term outcomes. These findings offer valuable
insights for designing effective crime prevention
policies and enhancing societal resilience against

criminal proliferation.
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Appendices

A Impact of the judicial correction rate k2 on
Crime free Equilibrium Point

To examine the influence of judicial efficiency on the
crime-free equilibrium, we analyzed the variation of
equilibrium compartment values with respect to the
total population size N for different values of the
judicial correction rate k2, while keeping all other
parameters fixed. The parameter values used were
µ = 0.02, a1 = 0.03, a2 = 0.04, η1 = 0.01, r1 = 0.05,
and κ1 = 0.06. As shown in Figure 3, all non-criminal
equilibrium components scale linearly with the total
populationN , which is consistent with the structure of
the crime-free steady state. The susceptible population
S0 remains unaffected by variations in k2, indicating
robustness of the susceptible class under crime-free
conditions.

In contrast, the redistribution among institutional
compartments is strongly affected by k2. Specifically,
increasing k2 leads to higher equilibrium levels of
habitual police officers P 0

h and habitual judges J0
h ,

while simultaneously reducing the populations of
correctable police officers P 0

c and correctable judges
J0
c . This reflects a more efficient correctionmechanism,

whereby individuals spend shorter durations in
correctable states before transitioning into stable,
honest institutional roles. Moreover, the criminal
compartments remain identically zero (E0 = C0 =

C0
v = 0) for all values of k2, confirming the persistence

of the crime-free equilibrium under enhanced judicial
correction. Overall, these results highlight the
critical role of judicial efficiency in shaping the
institutional composition of the crime-free equilibrium.
An optimized judicial correction rate k2 promotes
long-term crime prevention by strengthening honest
institutional structures and accelerating transitions out
of correctional states.

B Effect of Judicial Feedback Rate r1 on Crime
free equilibrium Point

Figure 4 illustrates the influence of the judicial
feedback rate r1 on the crime–free equilibrium
structure as the total population N varies. The
parameter r1 represents the effectiveness of judicial
rehabilitation and feedback mechanisms that promote
lawful behaviour. As observed in Figure 4, increasing
r1 leads to a systematic increase in the susceptible
population S0, indicating enhanced reintegration
of individuals into lawful social states. This
positive effect is accompanied by corresponding
growth in the habitual police (P 0

h) and habitual
judge (J0

h) compartments, reflecting strengthened
institutional stability under higher judicial feedback.
Conversely, higher values of r1 significantly reduce the
equilibrium sizes of the correctable police (P 0

c ) and
correctable judges (J0

c ) compartments. This reduction
suggests shorter durations in corrective or transitional
judicial states due to more efficient rehabilitation
and judicial outreach. Throughout all variations
of r1, the criminal compartments remain identically
zero, confirming the persistence of the crime–free
equilibrium. Overall, these results demonstrate that
stronger judicial feedback mechanisms substantially
enhance equilibrium stability by reinforcing lawful
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Figure A1. Impact of the natural death rate µ ∈ [0.005, 0.05] on the crime-free equilibrium variables S0, P 0
h , P 0

c , J0
h , and

J0
c for two susceptibility rates η1 = 0.04 (blue curves) and η1 = 0.08 (red curves). All remaining parameters are fixed as
a1 = 0.03, a2 = 0.04, r1 = 0.05, κ1 = 0.06, κ2 = 0.07, and N = 5000. The plots demonstrate a strong inverse dependence
of equilibrium populations on µ, with heightened sensitivity at lower µ values and systematically lower equilibria under

higher susceptibility.

behaviour, reducing reliance on correctional structures,
and suppressing the long-term potential for criminal
resurgence. This highlights the critical policy role
of judicial efficiency and rehabilitation programs in
sustaining crime–free societal states.

C Impact of Natural Death Rate µ under
Different Susceptibility Levels onCrime free
Equilibrium Point

Figure A1 illustrates the variation of the crime-free
equilibrium components S0, P 0

h , P 0
c , J0

h , and J0
c with

respect to the natural death rate µ ∈ [0.005, 0.05] for
two susceptibility levels η1 = 0.04 and η1 = 0.08. All
equilibrium variables exhibit a pronounced inverse
dependence on µ, with sharp declines observed at
lower values of µ, indicating high sensitivity of the
system in low-mortality regimes. As µ increases
beyond approximately 0.015, the equilibrium values
stabilize and approach near-zero levels, reflecting
reduced population persistence in the crime-free
state. Moreover, higher susceptibility (η1 = 0.08)

consistently produces lower equilibrium populations
across all compartments compared to η1 = 0.04,
demonstrating that increased exposure to criminal
influence suppresses both susceptible and institutional
populations at equilibrium. These results highlight
the delicate balance between demographic attrition
and crime vulnerability, suggesting that effective
crime-prevention and public policy strategies must
jointly address mortality effects and susceptibility
reduction to sustain long-term social stability and
institutional integrity.
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