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Abstract
In solid-state laser systems with nanosecond
repetition rates and high energy, amplified
spontaneous emission (ASE) and parasitic
oscillation (PO) produced by the gain material
can significantly impact the laser output. A
well-designed cladding composite structure is an
effective solution to absorb ASE and suppress PO.
In this work, 5 at.% Sm:LuAG transparent ceramics,
a promising claddingmaterial for suppressors of PO
at 1064 nm of Nd:LuAG lasers, have been prepared
by solid-state reactive sintering at 1825 °C followed
by hot isostatic pressing (HIP) post-treatment
at 1750 °C. The influences of TEOS (tetraethyl
orthosilicate) content on microstructure evolution,
in-line transmittance of the 5 at.% Sm:LuAG
ceramics were studied. The results show that when
the TEOS content is 0.8 wt.%, high transparency
Sm:LuAG ceramics can be obtained by vacuum
sintering at 1825 °C for 5 h followed by HIP
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post-treatment at 1750 °C in an argon atmosphere
under 200 MPa for 3 h. The optimum in-line
transmittance of the HIP-ed Sm:LuAG ceramics (1.5
mm thickness) is 83.3% at a wavelength of 808 nm
and absorption coefficient of 3.46 cm−1 at 1064 nm,
indicating that it can effectively suppress ASE and
PO.

Keywords: Sm:LuAG, transparent ceramics, cladding
ceramics, microstructure evolution, sintering additives.

1 Introduction
Since the first ruby laser device was invented in 1960,
solid-state lasers (SSLs) have developed rapidly [1–
3]. At present, SSLs with high peak power, high
average power and high repetition rate are required
to suit the requirements of material processing,
lidar, and medical treatment. Laser gain materials
for high average power and high repetition rate
laser output, mainly containing garnet (YAG and
LuAG) [4–6], fluoride (CaF2) [7, 8], sesquioxide
(Lu2O3, Y2O3 and Sc2O3) [9–12], are crucial for
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energy conversion and laser generation, determining
the laser output power, slope efficiency, and beam
quality. To gain high average power and high
repetition rate laser output, laser gainmaterials require
appropriate saturation fluence, high optical quality
and high thermal conductivity. Appropriate saturation
fluence is a very important parameter for high
repetition-rate nanosecond high-energy SSLs, because
high saturation fluence limits the light extraction
efficiency, while low saturation fluence decreases the
light amplification efficiency, complicates the laser
system, and increases light loss. For laser systems
operating at room temperature, one of the most
used gain materials is Nd:YAG, but its relatively low
saturation fluence limits its scaling performance to
high energy laser applications [13–15]. Nd:LuAG
has recently been demonstrated with appropriate
scaling performance, as its saturation fluence of 1.93
J/cm2 is three times that of Nd:YAG [16]. It has
been proved Nd:LuAG has smaller splitting of 4F3/2
state (67 cm−1) than that of Nd:YAG (84 cm−1) [17],
which produces a higher amplification at 1064 nm
lasing wavelength. In conclusion, Nd:LuAG ceramics
has shown great potential as the gain medium in
high energy amplifier with strong capacity of energy
storage, due to its moderate emission cross section
(9.67 × 10−20 cm2) [18–20]. Nd:LuAG transparent
ceramics have been confirmed by Tsinghua University
to be a promising gain material for high-energy,
high-repetition-rate nanosecond SSLs, which has
successfully achieved a maximum energy output
of 10.3 J and a pulse width of 10 ns at room
temperature [13, 14].

In high-power, high-repetition-rate solid-state laser
systems, the thermal effect imposes a limit on the
power density dissipated within the gain element [21–
24]. However, this limitation can be reduced by
increasing the size of the gain medium, which also
enhances heat dissipation [25–27]. On the other
hand, when the aspect ratio of the gain medium
is large, spontaneous fluorescence can be amplified
to very high power. The spontaneous fluorescence
propagating transversely to the main beam leads to
amplified spontaneous emission (ASE) and parasitic
oscillation (PO), which depletes the upper laser level
population [28, 29]. Tomitigate this problem, cladding
on the lateral surface of the gain medium is one
of the strategies to suppress lateral reflection and
improve laser performance, which has been proven
to be effective by many research institutions [30–
32]. Based on the design requirements, the cladding

layers should meet the following criteria: (1) high
absorption coefficient at the laser emission wavelength,
(2) approximate refractive index that matches the
gain medium, (3) seamless integration with the gain
medium to minimize optical losses, and (4) high
transparency at pump wavelength especially for the
edge-pumped mode [33, 34].

The absorption spectra of YAG transparent ceramics
doped with various metal ions (Sm3+, Co2+, Co3+,
Cr3+, and Cr4+) were investigated by Yagi et al. [25] in
2006. According to the research, Sm:YAG transparent
ceramics were selected as the promising cladding
material for Nd:YAG laser ceramics due to the
highest absorption coefficient (3.6 cm−1) at 1064
nm. A high laser output power of 67 kW was
achieved by using the Sm:YAG-Nd:YAG composite
ceramics with a volume of 120 × 120 × 20 mm3 [35].
Because Nd-doped LuAG/YAG ceramics exhibit
similar emission spectra, and Sm-doped LuAG/YAG
also shows comparable absorption spectra, Sm:LuAG
is regarded as an ideal cladding material for Nd:LuAG.
In 2013, Gonçalvès-Novo et al. [36] using Yb:YAG AM
Lucia laser amplifier achieved 14 J at 2 Hz laser output.
Ma et al. [37] reported in 2017 a 10.3 mJ amplified
pulse using the Nd:LuAG ceramic seeded by a 5.2
mJ Nd:YAG Q-switched oscillator, corresponding to
a pulse peak power of 1.47 MW. In 2019, a 10.3 J, 10
Hz output was achieved using the Nd:LuAG ceramic
nanosecond laser amplifier [13]. Kong et al. [38]
also utilized Sm:YAG cladding ceramics to suppress
ASE of parasitic ring modes at 1064 nm, achieving a
single-pulse energy of 1.66 mJ with a repetition rate of
10 Hz.

For low reflection at the boundary, the refractive
index of the cladding material must match that of
the gain material, which means the host material for
cladding should be the same as the gain material.
Compared to single crystals, it is easier and cheaper
to produce large-sized ceramics while having the
same good performance as single crystals [25, 39].
Thus, transparent ceramics are promising laser gain
material for high-power lasers systems. According
to the research mentioned above, Sm:LuAG ceramics
exhibit superior characteristics like a high absorption
coefficient at 1064 nm and high transparency at
the pump wavelength of 808 nm, making Sm:LuAG
ceramics very effective in suppressing the ASE and PO
effect.

The synthesis of transparent Sm:LuAG ceramics
typically involves the use of sintering additives such
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as CaO and TEOS (tetraethyl orthosilicate) to achieve
high transparency at pump wavelength. Compared
to SiO2 powders, liquid TEOS is easier to mix
uniformly with other raw material powders during
the ball-milling. The more uniform distribution of Si4+
promotes uniform grain growth and enables effective
pores removal. Consequently, liquid TEOS helps
avoid problems such as the formation of intragranular
pores, which typically arise from different rates
of grain growth in ceramics. Therefore, in this
study, TEOS has been chosen to be the sintering
aid instead of SiO2 powders. While the influence
of sintering aids on the YAG and LuAG ceramic
sintering process has been widely investigated [40–
42]. However, the effect of TEOS on the kinetics
and microstructural evolution of Sm:LuAG ceramics
during sintering has not been explored. In this
study, the 5 at.% Sm:LuAG transparent ceramics
were fabricated with commercial Lu2O3, α-Al2O3 and
Sm2O3 powders using TEOS and CaO as sintering
additives. The influences of TEOS content on
microstructure evolution, in-line transmittance and
absorption spectra of the 5 at.% Sm:LuAG ceramics
were systematically investigated [43].

2 Experimental
High-purity commercial Lu2O3 (99.999%, Sheeny
Metal Material Co., Ltd., Shanghai, China), α-Al2O3

(99.99%, Sumitomo Chemical Co., Ltd., Tokyo, Japan)
and Sm2O3 (99.99%, Sheeny Metal Material Co., Ltd.,
Shanghai, China) powders were used as raw powders
in this work. 0.4-1.0 wt.% TEOS (99.99%, Alfa Aesar)
and CaO (99.99%, Alfa Aesar) were added as sintering
additives. All the ceramic samples contain the same
amount of CaO addition. The raw powders mixed
with TEOS and CaO were ball-milled in ethanol for 12
h with a speed of 130 r/min using 5 mm diameter
alumina balls as the milling medium. The weight
ratio of alumina balls and powders was 3:1. After
ball-milling the raw powder and sintering additives,
the slurry was dried at 80 °C and sieved through
200-mesh screen to obtain homogeneous powders. The
powders were then calcined at 600 °C for 4 h in air,
followed by dry pressing into disks with the diameter
of 18 mm under 40 MPa and further cold isostatic
pressing under 250 MPa. The green compacts were
pre-sintered under vacuum at 1825 °C for 5 h to acquire
transparent ceramics and then hot isostatic pressing
(HIP) post-treated at 1750 °C in an argon atmosphere
of 200 MPa for 3 h to eliminate residual pores and
improve the optical quality of Sm:LuAG transparent
ceramics. Finally, the Sm:LuAG transparent ceramics

were air annealed at 1400 °C for 10 h to eliminate
oxygen vacancies and then were mirror-polished into
1.5 mm for further characterization.
The morphology of the starting powders and
microstructures of polished ceramics were observed by
a field emission scanning electronmicroscopy (FESEM,
SU8220, Hitachi, Japan) equipped with an energy
dispersive X-ray spectroscope (EDS, X-MaxN 80,
Oxford Instruments, Britain). The phase composition
of the sintered ceramics was identified by the X-ray
diffraction (Cu Kα1 radiation (λ = 0.15405 nm), XRD,
Bruker D8 Focus, Germany) in the range of 2θ =
10–80 using nickel-filtered Cu-Kα radiation. Before
the FESEM observation, the ceramics were thermally
etched at 1400 °C for 10 h in air. The average
grain sizes were measured by the common linear
intercept analysis (more than 200 grains were counted)
according to the equation GS = 1.56 L, where L is
the mean intercept. The in-line transmittance and
absorption curves of the mirror-polished samples
were measured by a UV-VIS-NIR spectrophotometer
(Model Cary-5000, Varian, USA). The optical scattering
sources of polished ceramics were observed by a
transparent microscope (Optical Microscope, BX51TF,
Olympus, Japan).

3 Results and discussion
Figure 1 shows the FESEM micrographs of the raw
powders of Sm2O3, Lu2O3 and α-Al2O3 and the
powder mixture after ball milling. The particle size
of the α-Al2O3 raw powders is uniformly distributed,
while the average grain size is about 300 nm. As
shown in Figures 1(b) and (c), both Lu2O3 and Sm2O3

powders are essentially agglomerated into irregular
secondary particles with the particle sizes of several
microns. As shown in Figure 1(d), the ball-milled
powder is obviously smaller than the initial powders
of Lu2O3 and Sm2O3, which proves the effect of ball
milling on the crushing and mixing of raw material
powders.
After obtaining the mixture of raw powders and
different amounts of TEOS sintering additive, the
powders were dry pressed and further cold isostatic
pressed to obtain green compacts. The green
compacts were then pre-sintered at the temperature
of 1825°C for 5 h in vacuum to form garnet crystal
structure and eliminate pores. The morphologies
of vacuum-sintered 5 at.% Sm:LuAG ceramics, as
shown in Figure 2, are characterized by a homogenous
microstructure with minimal pores. No abnormal
grain growth is observed from any of the ceramic
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Figure 1. FESEM micrographs of the commercial powders (a) α-Al2O3, (b) Lu2O3, (c) Sm2O3 and (d) powders mixture
after ball milling.

samples. Furthermore, in Sm:LuAG ceramics doped
with 0.4–1.0 wt.% TEOS, no secondary phases were
detected along grain boundaries or in triple grain
boundaries. From the FESEM micrographs of
pre-sintering ceramics, all ceramics have a relatively
dense microstructure, but there are still some
intergranular pores between grain boundaries that
have not been eliminated [44]. Therefore, HIP
post-treatment for the vacuum pre-sintering ceramics
is essential to obtain transparent ceramics with higher
optical quality.

Figure 3 exhibits the XRD patterns of the 5 at.%
Sm:LuAG ceramics with 0.4–1.0 wt.% TEOS
pre-sintered at 1825 °C for 5 h and HIP post-treated at
1750 °C for 3 h. The diffraction peaks of the ceramics
match well with the cubic LuAG standard card (PDF#
73-1368). No additional phases were revealed within
the detection limit of XRD. All samples exhibit sharp
diffraction peaks, indicating an excellent crystallinity
after sintering.

The lattice constant of the ceramics was calculated
based on the XRD patterns of the Sm:LuAG ceramics.
Figure 4 shows the lattice constant of Sm:LuAG

ceramics as a function of TEOS addition. The lattice
parameters of all the Sm:LuAG ceramics are higher
than that of undoped LuAG (11.9064 Å). This is
because the ionic radius of Sm3+ at coordination
number of 8 (0.96 Å) is larger than that of Lu3+ (0.85
Å). Consequently, when Lu3+ ions are replaced by
Sm3+ ions in the LuAG lattice, the lattice expands and
the lattice constants increase. With the TEOS content
increasing from 0.4 to 1.0 wt.%, the lattice constants
decrease accordingly from 11.9269 Å to 11.9199 Å. This
is because the use of the SiO2 sintering additive leads
to the substitution of Al3+ (0.53 Å) ions by smaller
Si4+ ions (0.4 Å) in the garnet structure, resulting in a
decrease of the lattice parameter of the ceramics.
As shown in Figure 2, there are still some intergranular
pores between grain boundaries after vacuum
pre-sintering. High porosity will cause severe optical
scattering and lead to unnecessary heat generation
during laser working. Therefore, HIP post-treatment
is necessary for further densification and can facilitate
the reduction of the intergranular pores in the
ceramics. Figure 5 shows the FESEM micrographs of
the 5 at.% Sm:LuAG ceramics pre-sintered at 1825 °C
for 5 h and HIP post-treated at 1750 °C for 3 h added
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Figure 2. FESEM micrographs of the 5 at.% Sm:LuAG ceramics pre-sintered at 1825 °C for 5 h with the addition of (a) 0.4
wt.%, (b) 0.6 wt.%, (c) 0.8 wt.%, (d) 1.0 wt % TEOS.

Figure 3. XRD patterns of the 5 at.% Sm:LuAG ceramics
with 0.4–1.0 wt.% TEOS.

with 0.4–1.0 wt.% TEOS and 0.05 wt.% CaO. The
Sm:LuAG ceramics with 0.6 and 0.8 wt.% TEOS exhibit
dense microstructure, and no secondary phases at
grain boundaries are found in those ceramics after

Figure 4. Lattice constants of the 5 at.% Sm:LuAG ceramics
with 0.4–1.0 wt.% TEOS.

HIP treatment. On the other hand, there are still some
micropores after HIP for the ceramics with 0.4 and 1.0
wt. % TEOS. In addition, all the Sm:LuAG ceramics
display a uniform microstructure and there is no
exaggerated grain growth.
To better investigate the microstructure evolution in
Sm:LuAG ceramics during sintering, the average grain
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Figure 5. FESEM micrographs of the 5 at.% Sm:LuAG ceramics pre-sintered at 1825 °C for 5 h and HIP post-treated at
1750 °C for 3 h with the addition of (a) 0.4 wt %, (b) 0.6 wt.%, (c) 0.8 wt.%, (d) 1.0 wt.% TEOS.

sizes before and after HIP for ceramics were calculated.
Figure 6 shows the average grain sizes before and after
HIP post-treatment for 5 at.% Sm:LuAG transparent
ceramics with 0.4–1.0 wt.% TEOS and 0.05 wt.% CaO.
The average grain sizes of ceramics with different
amounts of TEOS addition before HIP post-treatment
are about 11.5 µm, with little variation. The average
grain sizes of ceramics are approximately 15 µm
after HIP post-treatment. After HIP post-treatment,
there is no significant increase in the average grain
sizes of Sm:LuAG ceramics. This is because the HIP
post-treatment temperature is close to the vacuum
sintering temperature, which does not promote a fast
grain growth rate.

The uniformity of element distribution is one of the
key factors affecting the optical quality of transparent
ceramics. Inhomogeneous element distribution will
lead to light refraction in different aeras of transparent
ceramics, which will reduce the optical quality.
Therefore, EDS analysis on ceramics sintered at
1825 °C for 5 h and HIP post-treated at 1750 °C
for 3 h was performed to study the microscale
element homogeneity of Sm:LuAG ceramics. The SEM

Figure 6. Average grain sizes before and after HIP
post-treatment for 5 at.% Sm:LuAG transparent ceramics

with 0.4–1.0 wt.% TEOS.

images and elemental distribution images of ceramics
synthesized at 1825 °C are shown in Figure 7. It reveals
the distribution of Lu, Al, O and Sm elements in the
Sm:LuAG ceramics, the distribution of constituent
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Figure 7. (a) FESEM micrographs of Sm:LuAG ceramics added with 0.8 wt.% TEOS after HIP post-treatment and EDS
mapping analysis of Sm:LuAG ceramics: (b) Al, (c) Lu, (d) O and (e) Sm element.

elements and Sm3+ ions is uniform both within the
grain and along the grain boundaries.

Figure 8 shows the photograph and the in-line
transmittance of the 5 at.% Sm:LuAG ceramics with
0.4–1.0 wt.% TEOS and CaO pre-sintered at 1825 °C
for 5 h and HIP post-treated at 1750 °C for 3 h. All
the ceramic samples were double polished to 1.5 mm
thickness. After HIP post-treatment, all the Sm:LuAG
ceramics are transparent, and the words below the

ceramics can be observed clearly. With the increase of
TEOS content from 0.4 wt.% to 1.0 wt.%, the in-line
transmittance of Sm:LuAG ceramics first increases and
then decreases. According to the LuAG-SiO2 phase
diagram, TEOS begins to form a liquid phase at around
1400 °C, which increases the mass diffusion during
sintering and promotes the densification process of
ceramics [45]. When the TEOS content is 0.4 wt.%
and 0.6 wt.%, less SiO2 liquid phase is formed, leading
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Figure 8. (a) Photograph and (b) the in-line transmittance
of the 5 at.% Sm:LuAG ceramics with 0.4–1.0 wt.% TEOS.

to a slower mass diffusion rate. Therefore, there are
some residual pores that have not been eliminated in
the Sm:LuAG ceramics with 0.4 wt.% and 0.6 wt.%
TEOS, as can be seen from Figures 5 and 9. When the
TEOS content is 0.8 wt.%, the in-line transmittance of
the Sm:LuAG transparent ceramics at 808 nm reaches
83.3%, due to the suitable SiO2 liquid phase, which
promotes the mass diffusion rate and the removal of
pores. When the TEOS content is 1.0 wt.%, the optical
quality deteriorates due to the increased SiO2 liquid
phase, which makes the mass diffusion rate faster than
the pore migration rate, preventing the internal pores
from being completely expelled. Therefore, the in-line
transmittance of the Sm:LuAG transparent ceramics
with 1.0 wt.% TEOS at 808nm is only 81.3%.
Additionally, the high in-line transmittance at the
absorption band of Nd:LuAG indicates that using the
5.0 at.% Sm:LuAG ceramics as cladding materials is
suitable for edge-pumped lasers.
To study the difference in in-line transmittance
and pore distribution of the Sm:LuAG ceramics
with different TEOS doping content. Figure 9
shows the optical microscopic images of the 5 at.%
Sm:LuAG ceramics with 0.4–1.0 wt.% TEOS and CaO
pre-sintered at 1825 °C for 5 h and HIP post-treated

at 1750 °C for 3 h. All the Sm:LuAG ceramics have
relatively low porosity. With the increase of TEOS
doping content from 0.4 wt.% to 1.0 wt.%, the number
of pores initially decreases and then increases, which is
consistent with the change of in-line transmittance. It
is hard to find residual pores in the Sm:LuAG ceramics
with 0.8 wt.% TEOS content, which have the highest
in-line transmittance of 83.3% at the wavelength of 808
nm.
According to the in-line transmittance of the Sm:LuAG
ceramics, the ceramics have high optical quality at the
pump wavelength. At the same time, the absorption
coefficient of Sm:LuAG ceramics in the laser emission
wavelength is also important, which is conducive to
suppressing the POs due to ASE from the residual
luminescence of Nd3+ ions. Figure 10 shows the
absorption curves of the 5 at.% Sm:LuAG ceramics
with 0.4–1.0 wt.% TEOS and CaO pre-sintered at
1825 °C for 5 h and HIP post-treated at 1750 °C for 3 h.
The strong absorption peaks in near-infrared region
are located at about 1070 nm, 1229 nm, 1360 nm and
1467 nm. The absorption peak at 1070 nm corresponds
to the 4H5/2 →4 H9/2 transition of Sm3+ ions. With
TEOS content increasing from 0.4 to 1.0wt.%, the
absorption coefficients of the ceramics at 1064 nm are
3.49, 3.45, 3.46 and 3.47 cm−1, respectively, showing
little variation. The high absorption coefficient at
1064 nm indicate the Sm:LuAG ceramics are promising
as cladding materials for Nd:LuAG laser ceramics.
According to the requirements of the laser system, the
remaining reflection from the claddingmaterial should
be:

R =
(n1 − n2)2

(n1 + n2)2
(1)

where n1 is the refractive index of LuAG at 1064
nm, n2 is the refractive index of air. Then the
reflectivity of LuAG is calculated to be 8.5%. After
twice absorption of incident emission by Sm:LuAG
ceramics, the intensity of the reflected emission is:

T = Re−2αl (2)
where α is the absorption coefficient of the Sm:LuAG
ceramics at 1064 nm, l is the length of the cladding
layer along the radial direction. Therefore, when
the remaining reflection is < 0.2%, the length of
the cladding layer should be > 5.4 mm. With
the help of ceramic technology developed in this
research, it is possible to prepare high optical quality
Sm:LuAG ceramics with 5.4 mm thickness. The
Sm-doping concentration of 5.0 at.% is appropriate
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Figure 9. Optical microscopic images of the Sm:LuAG transparent ceramics added with (a) 0.4 wt.%, (b) 0.6 wt.%, (c) 0.8
wt.%, (d) 1.0 wt.% TEOS.

Figure 10. Absorption curves of the 5 at.% Sm:LuAG
ceramics added with 0.4–1.0 wt.% TEOS after pre-sintering

and HIP post-treatment.

because lower doping concentration brings large-scale
ceramics with increased optical loss, and higher
doping concentration will cause severe thermal effects.

4 Conclusions
The 5 at.% Sm:LuAG transparent ceramics were
fabricated by solid-state reactive sintering, and TEOS
and CaO were used as sintering aids. The SiO2 liquid
phase formed during the sintering process increases
the mass diffusion rate and promotes the densification
process. The Sm:LuAG ceramics with different
amounts of TEOS exhibit a dense microstructure
after pre-sintering at 1825 °C for 5 h. All ceramic
samples show a uniform grain size distribution and the
average grain sizes are approximately 15 µm after HIP
post-treatment. With the content of TEOS increasing
from 0.4 to 1.0 wt.%, the residual pores of Sm:LuAG
ceramics decrease and then increase, ceramics with 0.8
wt.% TEOS possess the highest in-line transmittance
of 83.3% at 808 nm. The absorption coefficient of
the optimal 5 at.% Sm:LuAG ceramics is 3.46 cm−1

at 1064 nm, which can effectively suppress the PO
and ASE effects. The high in-line transmittance at
the pump wavelength of Nd:LuAG and the high
absorption coefficient at emission wavelength of
Nd:LuAG indicate that the 5 at.% Sm:LuAG ceramics
are suitable as cladding materials for edge-pump
lasers.
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