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Abstract

Traditional hydrogels often exhibit disordered
molecular structures, resulting in limited

mechanical strength, toughness, and functionality,
which restrict their practical applications. Here,
we engineer an anisotropic Zr*t-crosslinked
P(DMA-AA)-CMC hydrogel via pre-stretching
to mimic muscle-like alignment. This strategy
enhances mechanical strength (5.6 MPa along
orientation axis, 1.8x higher than perpendicular)
and directional sensitivity through Zr**-stabilized
microstructural ordering. The sensor achieves 303%
AR/Ry at 100% strain with 2.2x higher sensitivity
parallel to pre-stretch direction, enabling precise
movement/orientation tracking. It maintains
stability over 200 cycles and accurately monitors
joint kinematics (e.g., elbow/knee flexion). This
biomimetic design advances wearable sensors for
human-machine interfaces.
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1 Introduction

Hydrogel-based sensors have emerged as promising
materials for applications in biomedicine,
environmental monitoring, wearable devices,
and flexible electronics due to their softness,
biocompatibility, and  tunable  conductive
properties [1-6].  Critical performance metrics
such as detection limit, sensing range, response time,
and sensitivity directly determine their practical
utility. High sensitivity, in particular, is essential
for precise detection of subtle physiological or
environmental changes. This enables advancements in
medical diagnostics and real-time health monitoring.
Despite progress, achieving consistently high
sensitivity in hydrogels remains challenging due to
their inherently disordered and isotropic network
structures, which limit mechanical strength and
electrical responsiveness [7-10].  Biological soft
tissues (e.g., muscles [11, 12], cartilage [13-15],
ligaments [16-18], and tendons [19-21]) exhibit
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highly ordered, anisotropic microstructures that
optimize mechanical and functional properties.
Inspired by this, engineering anisotropic structures in
hydrogels has become a key strategy to enhance their
sensing capabilities. Pre-stretching, in particular, offers
a simple and controllable method to align polymer
chains, reduce ion migration resistance, and improve
electrical conductivity [22, 23]. For instance, Lin et
al. [24] developed a poly(vinyl alcohol) /poly (acrylic
acid)/Fe3* hydrogel via mechanical stretching
and drying, achieving exceptional tensile stress
(47.26 MPa) and conductivity (292.64 mS/m).
Similarly, Ghosh et al. [25] fabricated an anisotropic
poly(acrylamide-maleic acid-acrylate) hydrogel
mimicking unidirectionally oriented muscle fibers,
demonstrating high tensile strength ( 7 MPa),
flexibility ( 370% fracture strain), toughness (16
M]/m3), and strain-sensitive conductivity. These
studies confirm the viability of microstructure
alignment for enhancing sensor performance.
However, achieving a balance between mechanical
strength and sensitivity in hydrogel sensors remains a
challenge.

Here, we propose a pre-stretching strategy
combined with Zr** ion crosslinking to
fabricate an anisotropic Zr**-crosslinked poly
(N,N-dimethylacrylamide-acrylic acid-carboxymethyl
cellulose) (Zr**-P(DMAA-AA)-CMC) hydrogel. This
design synergistically enhances mechanical strength,
electrical conductivity, and strain sensitivity while
ensuring stability under dynamic conditions. The
structure and performance were comprehensively
characterized using SEM, POM, FTIR, XPS, and
TGA. Its exceptional strain-sensing capabilities enable
real-time monitoring of human motions, highlighting
potential applications in wearable health monitoring
and flexible electronics.

2 Experimental Section

2.1 Materials

N,N-Dimethylacrylamide (DMAA) and
carboxymethyl cellulose (CMC) were purchased from
Shanghai Easyborn Chemical Technology Co., Ltd.
Acrylic acid (AA), N,N’-methylenebisacrylamide
(MBAA), and zirconyl chloride octahydrate
(ZrOCly-8H20) were obtained from Shanghai
Aladdin Biochemical Technology Co., Ltd. The
azo-based initiator (AIBA) was sourced from
Shanghai Yuanye Bio-Technology Co., Ltd. Deionized
(DI) water was used throughout all experiments.

2.2 Synthesis of P(DMAA-AA) Hydrogel

A solution of 4.32 g acrylic acid (AA) in 30 mL DI
water was prepared under stirring until complete
dissolution. Then, 3.96 g N,N-dimethylacrylamide
(DMAA) was added and homogenized using a
glass rod. Subsequently, 0.03 g of chemical
crosslinker N,N’-methylenebisacrylamide (MBAA)
and photoinitiator AIBA were introduced into the
mixture with continuous stirring. The solution was
transferred into a mold via pipette and exposed to
UV light (wavelength: 365 nm) for 3 min to yield the
P(DMAA-AA) hydrogel.

2.3 Synthesis of P(DMAA-AA)-CMC Hydrogel

First, 1 g CMC powder was dispersed in 20 mL hot
water (70°C) and stirred for 20 min using a magnetic
stirrer to ensure complete dissolution. The solution
was then sonicated for 20 min to eliminate bubbles.
Separately, 4.32 g AA and 3.96 g DMAA were dissolved
in 30 mL DI water. Then, 4.2 g of the prepared
CMC solution was incorporated into the monomer
mixture. After each addition, the solution was stirred
and sonicated to achieve homogeneity and remove
air bubbles. Next, 0.03 g MBAA and AIBA were
added under stirring. The mixture was transferred
into a mold and UV-irradiated for 3 min to obtain the
crosslinked P(DMAA-AA)-CMC hydrogel.

2.4 Preparation of Zr*'-P(DMAA-AA)-CMC
Hydrogel

The P(DMAA-AA)-CMC hydrogel was immersed

in 500 mL of 0.5 M ZrOCl,-8H5O solution for 24 h

to facilitate Zr*™ coordination. The hydrogel was

then thoroughly rinsed with DI water to remove

unbound Zr*" ions, yielding the Zr**-crosslinked

P(DMAA-AA)-CMC hydrogel.

2.5 Fabrication of Pre-stretched
Zr**-P(DMAA-AA)-CMC Hydrogel

The oriented hydrogels were fabricated
using a custom-made stretching mold.  First,
P(DMAA-AA)-CMC hydrogel was cut into

rectangular strips (10 mm in width, 40 mm in
length, and 2 mm in thickness). Each sample
was then clamped and uniaxially stretched to
predetermined tensile strains (50%, 100%, 125%,
150%, 175%, or 200%) at constant rates of 25% per
minute. Upon reaching the target strain, the sample
was immediately secured in the mold to maintain
its stretched state. The fixed sample was immersed
in 500 mL of 0.5 M ZrOCl;-8H20 aqueous solution
at room temperature for 24 hours to allow ion
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Figure 1. Schematic of the preparation of oriented Zr**-P(DMAA-AA)-CMC hydrogel.

diffusion and coordination, thereby permanently
locking the oriented microstructure formed during
pre-stretching. After coordination, the sample was
carefully released from the mold and thoroughly
rinsed with deionized water to remove unbound ions,
yielding the Zr'*-crosslinked oriented hydrogels,
denoted as zgel-X% (where X represents the pre-strain
percentage, e.g., zgel-125% for 125% pre-strain). This
procedure ensures that the alignment induced by
mechanical stretching is effectively preserved and
stabilized through subsequent ionic crosslinking.

3 Results and Discussion

3.1 Hydrogel Synthesis and Structural
Characterization

The fabrication process of oriented Zr**-crosslinked

P(DMAA-AA)-CMC hydrogels is illustrated

in Figure 1. Initially, CMC was dissolved in
deionized water at 70°C to form a homogeneous
transparent solution. Acrylic acid (AA),
N, N-dimethylacrylamide (DMAA), and crosslinker
N, N'-Methylenebisacrylamide (MBAA) were then
polymerized via free-radical polymerization under
UV initiation (AIBA) to form P(DMAA-AA)-CMC
hydrogels. Hydrogen bonding between CMC and
polymer chains enhanced mechanical robustness.
The hydrogels were pre-stretched (Parallel to
the orientation direction |, Perpendicular to the
orientation direction L) to varying strains (0-200%)
and immobilized using a custom mold. Subsequent
immersion in Zr** solution (ZrOCl,-8H,0) facilitated
coordination between Zr** ions and carboxyl groups
(—COO™) of CMC and PAA, yielding oriented
zgel-X% hydrogels (where X denotes pre-strain
percentage, e.g., zgel-50% for 50% pre-strain). The
synergistic combination of pre-stretching and Zr**
cross-linking successfully constructs and stabilizes
the anisotropic microstructure of the hydrogel.
While the pre-strain is maintained, immersion of
the hydrogel into the Zr'" solution enables rapid
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diffusion of Zr*t ions into the network, where they
strongly coordinate with the abundant —COO™
groups on both the CMC and PAA chains. Acting
as multidentate cross-linking junctions, the Zr**
ions preferentially bind to the —COO™ groups that
are spatially closer and more orderly aligned due
to the pre-stretching, thereby forming rigid and
stable ionic coordination bonds along the orientation
direction. These coordination bonds function as
solidified anchoring points, which effectively resist
the entropic elastic recoil of the polymer chains after
the external force is released, thus “locking” the
transient alignment induced by pre-stretching into a
permanent, ordered microstructure. All hydrogels
(Figure A1) were semi-transparent, colorless, elastic,
and exhibiting no macroscopic difference.

Scanning electron microscopy (SEM) revealed
porous  microstructures in = P(DMAA-AA),
P(DMAA-AA)-CMC, and Zr**-P(DMAA-AA)-CMC
hydrogels (Figure 2(a-c)). P(DMAA-AA) hydrogels
displayed irregular pores with diameters concentrated
at 15-20 pm (average: 17.87 pm) (Figure 2(a,
d)) [26, 27]. Further introduction of Zr*" ions
drastically reduced the average pore size to
5.36 pm with a narrower distribution (Figure 2(c,
f)), confirming that Zr**—carboxyl coordination
complexes compacted the polymer network and
increased crosslinking density [28]. EDS mapping
(Figure A2) confirmed homogeneous distribution of
Zr elements post-crosslinking, alongside consistent C,
N, and O signals, verifying successful integration of
Zr*T without altering bulk composition.

FTIR spectra (Figure 2(g)) displayed characteristic
peaks for all hydrogels. P(DMAA-AA) showed broad
peaks at 3200-3500 cm~! (O-H/N-H stretching) and
1712 em~! (C=0 stretching). Introducing CMC
induced slight shifts in C=0O peaks and emerging
C-O-C vibrations (1000-1200 cm™!), confirming
hydrogen bonding between CMC and polymer
chains. For Zr*"-P(DMAA-AA)-CMC, the C=0 peak
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Figure 2. (a—c) SEM images of P(DMAA-AA), P(DMAA-AA)-CMC, and Zr*"-P(DMAA-AA)-CMC hydrogels; (d-f)
pore size distribution statistics (calculated using Nanomeasurer software); (g) FTIR spectra; (h) XPS broad-scan spectra
of P(DMAA-AA)-CMC and Zr**-P(DMAA-AA)-CMC hydrogels; (i) Zr 3d high-resolution spectrum of
Zr**-P(DMAA-AA)-CMC hydrogel.

shifted significantly, and new vibrations appeared
at 600-800 cm~! (Zr-O stretching), indicating
coordination between Zr'" and carboxyl groups.
XPS wide-scan spectra (Figure 2(h)) confirmed
the presence of Zr elements in Zr*'-crosslinked
hydrogels, with distinct Zr 3d peaks at 182.5 eV
(Zr 3ds)2) and 184.9 €V (Zr 3ds),) (Figure 2(i)),
aligning with Zr**—carboxyl coordination. Peak
deconvolution of O 1s spectra increased —COO~ /Zr*+
contributions post-crosslinking, further validating
metal-ion coordination.

The properties of the hydrogels were systematically
tuned through compositional modification and
physical processing, as detailed in the supplementary
figures. Figure A3 demonstrates a tunable swelling
capacity, where P(DMAA-AA) exhibits the highest
equilibrium swelling ratio (117.7 g/g) due to its

porous structure, while subsequent incorporation of
CMC and Zr'" cross-linking progressively reduces
swelling by densifying the network. This increased
crosslinking density concurrently enhanced surface
hydrophobicity, evidenced by a systematic rise in the
contact angle from 21.5° to over 52° (Figure A4). The
mechanical properties were significantly reinforced by
ionic crosslinking, with the Zr**-crosslinked hydrogel
showing a ~20-fold increase in tensile stress and a
~25-fold increase in elastic modulus (Figure A5).
Furthermore, the mechanical enhancement was
dependent on Zr*" concentration, peaking at 0.5 M
before declining at higher concentrations due to
over-crosslinking (Figure A6). Subsequent physical
modification via pre-stretching induced only physical
alignment without chemical change, as confirmed
by FTIR (Figure A7). This process further induced
microstructural densification, leading to reduced
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Figure 3. Photographs (a—d) of zgel-X% (X = 0, 50, 100, 200) hydrogels; cross-sectional SEM images (e-h); POM images
(i-1).

swelling, lower water content, and enhanced surface
hydrophobicity, as summarized in Figure A8.

3.2 Anisotropy and Mechanical Enhancement

To elucidate the microstructural evolution of oriented
hydrogels, we systematically analyzed samples
subjected to varying pre-strain levels (denoted as
zgel-X%, where X represents pre-strain percentage).
Macroscopic images (Figure 3 (a—d)) revealed
progressive axial elongation with increasing pre-strain,
visually confirming alignment along the stretching
direction. ~ Scanning electron microscopy (SEM)
further demonstrated structural transformations:
isotropic P(DMAA-AA)-CMC hydrogels exhibited
uniformly distributed porous networks (Figure 3
(e)), whereas pre-stretched samples (Figure 3 (f-h))
displayed reduced porosity and distinct striated
patterns parallel to the alignment axis. These patterns
intensified at higher pre-strain (e.g., zgel-200%),
indicating enhanced polymer chain orientation.

Polarized optical microscopy (POM) provided
additional evidence of anisotropy.  Unstrained
hydrogels showed complete darkness under
cross-polarizers (Figure 3 (i)), confirming isotropic
behavior. In contrast, pre-stretched samples
exhibited pronounced birefringence, with brightness
escalating alongside pre-strain (Figure 3 (j-1)). This
optical anisotropy aligns with SEM observations,
underscoring the role of pre-stretching in inducing
microstructural alignment.

Tensile tests along the orientation direction (Figure 4
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(a—c)) demonstrated significant mechanical
improvements with increasing pre-strain.  The
zgel-0% || hydrogen exhibited a tensile strength of
1.2 MPa and fracture strain of 101%, while zgel-200%
| achieved 5.6 MPa and 204%—representing a
3.7-fold increase in strength and 2.4-fold rise in
elastic modulus. This enhancement stems from
pre-stretch-induced reorganization of polymer chains
into aligned configurations, enabling efficient load
distribution [29].

Perpendicular to the orientation (Figure 4 (d-f)),
mechanical properties also improved but to a lesser
extent. For instance, zgel-200% _L reached 3.0 MPa
strength and 168% strain—values notably lower
than those along the alignment axis. Comparative
analysis (Figure 4 (g—i)) revealed anisotropic ratios
of 1.7 (strength), 1.2 (modulus), and 1.3 (strain) for
zgel-200%, highlighting the critical influence of chain
orientation on mechanical asymmetry.

Oscillatory shear tests confirmed dominant elastic
behavior across all pre-strain levels, with storage
modulus (G’) consistently exceeding loss modulus
(G") (Figure A9). No significant variations in
complex viscosity (1) were observed, indicating stable
viscoelastic properties despite structural changes.

Tear tests further underscored anisotropy (Figure A10).
Isotropic zgel-0% hydrogels displayed similar fracture
energy in all directions, whereas zgel-200% exhibited
divergent behaviors: zgel-200%]|| tear energy was
65] m~2 (crack propagation along aligned chains via
dynamic Zr** bond dissociation) but zgel-200% L tear
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Figure 4. (a) Stress-strain curve, (b) stress plot, and (c) elastic modulus plot of zgel-X% || hydrogel; (d) stress-strain
curve, (e) stress plot, and (f) elastic modulus plot of zgel-X% L hydrogel; Comparison of stress plots (g), elastic
modulus plots (h), and strain plots (i) for zgel-X% hydrogels with different orientations.

energy surged to 389 ] m—2 (crack deflection requiring
covalent chain rupture). This 6-fold anisotropy aligns
with observations in biomimetic hydrogels designed
for tendon/ligament applications.

The synergy between pre-stretching and Zr"
crosslinking drives microstructural alignment and
mechanical augmentation. Pre-straining extends
random polymer chains into oriented configurations,
while Zr*" ions immobilize this structure through
coordination with carboxyl groups (—COO7)
from CMC and P(AA). This dual mechanism not
only enhances tensile properties but also enables
strain-dependent conductive pathways for sensing
applications [25].

3.3 Electrical Properties and Sensing Performance

The incorporation of Zr*" ions induce coordination
crosslinking with carboxylate groups in the hydrogel
network, enhancing both mechanical robustness and
electrical conductivity by facilitating ion transport
pathways [30]. Conductivity directly influences strain
sensitivity, as higher conductivity enables pronounced
resistance changes (AR/Rjp) under deformation,
critical for high-performance sensing.

To evaluate sensing performance, hydrogels were
subjected to uniaxial stretching using a universal
testing machine, while real-time resistance changes
were recorded via an electrochemical workstation.
Figure 5 (a) depicts the AR/ R versus strain curve for
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Figure 5. Strain sensors made of zgel-0% hydrogel and zgel-125% (|| and L) hydrogel: (a—c) Variation of relative
resistance with strain; (d—f) Relative resistance changes under different strains; (g) Comparison of relative resistance
changes; (h) Cyclic stability of zgel-125% L hydrogel strain sensor after 200 cycles at 20% tensile strain.

isotropic hydrogels (zgel-0%). The gauge factor (GF),
calculated as the slope of this curve, quantifies strain
sensitivity. Segmented linear regression revealed GF
values of 0.52 (0-30% strain), 0.81 (30-60%), and 0.86
(60-100%), indicating enhanced sensitivity at higher
strains due to progressive disruption of conductive
pathways [31].

Pre-stretched hydrogels (zgel-125%) exhibited
significantly improved sensitivity (Figure 5 (b—c)).
GF values reached 1.79 (0-30%), 2.70 (30-60%),
and 3.26 (60-100%)—3.1-3.8 times higher than
isotropic samples. This enhancement arises from
aligned polymer chains reducing ion migration
resistance and promoting efficient electron/ion
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transport. Perpendicular to the orientation, GF values
remained lower (1.10, 1.84, and 2.12 for respective
strain ranges) yet superior to zgel-0%, confirming
that pre-straining universally improves sensitivity
regardless of direction [32].

Cyclic stretching tests (20-100% strain, 5 cycles)
demonstrated exceptional reproducibility and stability
(Figure 5 (d—f)). The zgel-125% || achieved AR/Ry
of 310.1% at 100% strain—3.8 times higher than
zgel-0% (80.5%)—while zgel-125% L achieved
138.7% (Figure 5 (g)). All samples maintained
consistent AR/R, across cycles, highlighting
structural reversibility. Long-term durability was
confirmed via 200 cycles at 20% strain (Figure 5 (h)),
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Figure 6. (a) Change in relative resistance of zgel-X% || (X = 50, 100, 125, 150, 175, 200) under different pre-stretch strains;

(b) Comparison of relative resistance changes in zgel-X% || under different tensile strains; (c) Relative resistance changes

in zgel-X% L (X =50, 100, 125, 150, 175, 200) under different pre-stretch strains; (d) Comparison of relative resistance

changes in zgel-X% L under different tensile strains; (e) Comparison of the relationship between relative resistance and

strain for strain sensors made from zgel-X% (X = 50, 100, 125, 150, 175, 200); (f) Comparison of GF values for zgel-X%
hydrogels oriented parallel and perpendicular to the direction.
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Figure 7. Anisotropic zgel-125% (|| and L) hydrogel sensors with photographic illustrations for monitoring (a) elbow
flexion, (b) neck flexion, (c) knee flexion, and (d) hand dorsiflexion.

where AR/Rj stabilized at ~30% without signal
decay [43].

Pre-strain optimization studies (50—200% pre-strain)
revealed zgel-125% as the optimal condition, achieving
a gauge factor (GF) of 3.26 within the 60-100% strain
range (Figure 6). Beyond 125% pre-strain, the GF
declined sharply (e.g., to 1.23 at 150% pre-strain),
which is attributed to excessive water loss and
microstructural damage that impair the continuity
of the conductive ion channels. Detailed relative
resistance versus strain curves for all pre-strain levels
in both parallel and perpendicular orientations are
provided in Figures A1l and A12, further confirming
the optimal performance at 125% pre-strain and the
consistent directional sensitivity anisotropy across
the full range of tested conditions. Anisotropy was
consistently observed across all pre-strain levels: the
parallel orientation yielded GF values 1.2-1.7 times
higher than the perpendicular orientation (Figure 6
(f)), with a maximum anisotropy ratio (sensitivity
ratio) of approximately 2.2, underscoring the role
of aligned polymer chains and ion pathways in
enhancing sensitivity along the stretching axis [33-
36]. When contextualized among state-of-the-art
anisotropic sensing systems, this anisotropy ratio,
while not the highest in absolute terms [37-39],
remains significant (see Table Al). It is achieved here
through a relatively straightforward and controllable
fabrication process combining pre-stretching and ionic
crosslinking, offering a favorable balance between
performance and manufacturability. Regarding its
suitability for complex motion detection, a 2.2-fold
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directional sensitivity provides a clear signal contrast
for distinguishing uniaxial tensile movements along
predefined axes, which is sufficient for monitoring
basic joint motions or directional deformations.

3.4 Human Motion Monitoring Applications

The anisotropic zgel-125% hydrogel sensor
demonstrated robust performance in monitoring joint
movements (elbow, knee, hand, neck). zgel-125%
| yielded AR/Ry of 24% (elbow bend) and 221%
(knee bend)—2.7-2.8 times higher than zgel-125%
1 (9% and 79%, respectively) (Figure 7 (a—d)). In
practical applications, this design significantly reduces
interference from other directions. Resistance changes
scaled with motion amplitude and remained stable
during cyclic tests, confirming reliability for wearable
health monitoring.

4 Conclusion

This study demonstrates the successful fabrication of
an anisotropic Zr**-crosslinked P(DMAA-AA)-CMC
hydrogel via pre-stretching and ion coordination. The
optimized zgel-125% hydrogel exhibited exceptional
mechanical anisotropy (tensile strength: 5.6 MPa, 1.8 x
higher parallel vs. perpendicular to orientation) and
strain-sensitive conductivity, achieving a gauge factor
of 3.26 (60-100% strain) with 2.2x higher sensitivity
along the alignment axis. The incorporation of CMC
and Zr*" enhanced crosslinking density, reducing
swelling ratios and improving hydrophobicity for
broader environmental adaptability. The sensor
maintained stable resistance responses over 200 cycles
and detected human joint movements with high
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precision (AR/Ry = 310.1% at 100% strain). These
properties underscore its potential for wearable health
monitoring and soft robotics.
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Appendix
A Experimental section

A.1 Characterization and Testing

The microstructures of P(DMAA-AA),
P(DMAA-AA)-CMC, Zr**-P(DMAA-AA)-CMC, and
zgel-X% hydrogels were characterized using FE-SEM
(Hitachi S-4800). Samples were freeze-fractured in
liquid nitrogen, lyophilized for 48 h, mounted on
conductive tape, and sputter-coated with gold prior to
imaging. Anisotropy was evaluated using POM (Leica
DM4P) with cross-polarizers. Samples (zgel-X%, X =
0, 50, 100, 200) were rotated to 45°, and birefringence
images were captured using an integrated camera.
Chemical structures were analyzed using an FTIR
spectrometer (Nicolet iS 10) with ATR accessory.
Spectra were recorded in the range of 4,000-650 cm~*

at a resolution of 4 cm~1.

A.2 Swelling Ratio Tests

To evaluate the effects of metal ion crosslinking and
pre-stretching on swelling behavior, swelling tests
were conducted. Initially, hydrogel samples were
freeze-dried for 48 h, and their dry weights (W)
were recorded. The lyophilized samples were then
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immersed in deionized water at room temperature
(25°C) for 24 h to reach equilibrium swelling. After
immersion, surface moisture was gently removed
using filter paper, and the swollen weight (W) was
measured. Each test was performed in triplicate to
ensure statistical reliability. The swelling ratio (SR)
was calculated as follows:

Waq—Wo

Swelling ratio(%) = W
0

x 100% (A1)
As shown in Equation A1, the swelling ratio quantifies
the water absorption capacity of the hydrogels.

A.3 X-Ray Photoelectron Spectroscopy (XPS)

Surface elemental composition and chemical states of
pristine and Zr*"-crosslinked P(DMAA-AA)-CMC
hydrogels were analyzed using XPS (Thermo
K-Alpha). Spectra were acquired with a
monochromatic Al Ka source (1486.6 eV), and
binding energies were calibrated relative to the C 1s
peak at 284.8 eV. Peak fitting and quantitative analysis
were performed using Avantage software, referencing
standard spectral libraries for accurate assignment of
elemental states.

Figure Al. Photographs of (a) P(DMAA-AA), (b)
P(DMAA-AA)-CMC, and (c) Zr**-P(DMAA-AA)-CMC
hydrogels (scale bar: 1 cm).

Figure A2. EDS spectra of P(DMAA-AA)-CMC and
Zr*T-P(DMAA-AA)-CMC hydrogels.

A.4 Contact Angle Measurements

Water contact angles were measured to assess surface
wettability using a contact angle goniometer (OCA20,
Dataphysics). A 4 puL droplet of deionized water
was deposited onto flat, horizontal hydrogel surfaces
via a microsyringe with programmable pump control.
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Figure A3. (a) Swelling ratio and (b) water content of
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hydrogels.

Images of the stabilized droplet were captured within 5
s of deposition, and contact angles were analyzed using
Image] software. Measurements were repeated at five
different locations per sample to ensure consistency.

A.5 Mechanical Tensile Tests

Uniaxial tensile tests were performed using a universal
testing machine (T-30, Shenzhen Sansi) equipped with
a 100 N load cell. Hydrogel samples were cut into
rectangular strips (10 mm x 40 mm x 2 mm) and
tested at a strain rate of 50 mm/min. Stress (o) and
strain () were calculated as:

F
e=L=Lo 100y (A3)

L

where F is the applied load, Ay is the initial
cross-sectional area, L is the initial gauge length,
and L is the extended length. Stress-strain curves
were analyzed via Origin software to determine tensile
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Figure A5. (a) Stress-strain curves, (b) stress plots, and (c) elastic modulus plots of P(DMAA-AA), P(DMAA-AA)-CMC,
and Zr**-P(DMAA-AA)-CMC hydrogels; (d) oscillation frequency scan, (e) G*, and (f) n*.

Table Al. The comparation of anisotropy metrics.

Tensile strength ~ Strain coefficient

Hydrogel (MPa) (GF) Ref.
alginate-based double-network composite 5 / [47]
hydrogels

Methacrylic acid-Fe** cross-linked 2.7 / [48]
anti-swelling hydrogel

High-Strength Poly (vinyl alcohol) Hydrogels 4.95 / [49]
PAAm/PAAc Physically Entangled Hydrogels 0.33 / [50]
anisotropic carboxymethyl cellulose-based 432 / [42]
double-network conductive hydrogels

Magnetically induced anisotropic conductive 0.15 32 [51]
hydrogels

sodium alginate-co-polyacrylamide Ionic 1.67 2.58 [52]
Conductive Hydrogels

Chitosan-based hydrogels 0.091 2.72 [53]
Multifunctional PVA/SA-based hydrogels 1.793 2.76 [54]
AM/Ge/QCS/CNFs/PBFDO-DES 0.184 3.03 [55]
(AGQCP-DES) eutectic hydrogel

Low-Hysteresis Hydrogels with 0.18 2.6 [56]
Antidehydration

Zr*t-P(DMAA-AA)-CMC  Pre-Stretching 5.6 3.26 This work
hydrogels

strength, fracture strain, and elastic modulus. Three A.6 Rheological Characterization

replicates were tested for each condition. Dynamic oscillatory shear tests were conducted
using a rotational rheometer (MCR 302, Anton
Paar) with 25 mm parallel plates. Frequency
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Figure A6. (a) Stress-strain curves and (b) stress plots of
parallel-aligned zgel-100% hydrogels in Zr** solutions of
varying concentrations; (c) stress-strain curves and (d)
stress plots of perpendicular-aligned zgel-100% hydrogels
in Zr*" solutions of varying concentrations.
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Figure A8. (a) Swelling ratio, (b) water content, and (c)
water contact angle of zgel-X% (X = 0, 50, 100, 200)
hydrogels.

sweeps (0.1-100 rad/s) were performed at 25°C to
measure storage modulus (G’) and loss modulus
(G”) for the following samples: P(DMAA-AA),
P(DMAA-AA)-CMC, Zr**-P(DMAA-AA)-CMC, and
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Figure A9. (a) Oscillation frequency scan, (b) G*, and (c)
n* of zgel-X% (X = 0, 50, 100, 200) hydrogels.

zgel-X% (X =50, 100, 200) hydrogels. Strain amplitude
was maintained within the linear viscoelastic region
(1% strain) to avoid structural disruption.

A.7 Tear Resistance Tests

Tear energy was evaluated via trouser tear tests using
rectangular samples (40 mm length x 5 mm width
x 0.5 mm thickness) with a 20 mm pre-cut notch.
Samples were mounted on a universal testing machine
(T-30) and stretched at 50 mm/min. Tear energy (I")
was calculated as:

Tear Energy = (A4)

1
FdA
t Lypuix /

where F'is the force during tearing, A is displacement,
t is sample thickness, and Ly, is the residual length
post-tearing.

A.8 Sensing Performance Evaluation

Real-time resistance changes during stretching were
monitored using an electrochemical workstation
(CHI660E, Shanghai Chenhua) coupled with the
T30 tensile tester. Hydrogel sensors were stretched
at controlled strains (0-100%) and strain rates
(1-50 mm/min). Humidity was controlled at
50% using a humidifier to minimize environmental
variability. Resistance (R) was calculated via Ohm’s

law:

U
k=7

where U is the applied voltage and I is the measured
current. Relative resistance change (AR/Ry) and
gauge factor (GF') were derived as:

(A5)

AR _R— Ry

— = A6
o o (A6)
GF = ARE/ Ho (A7)
where ¢ is the applied strain. A higher GF

value indicates greater sensitivity to mechanical
deformation, making the sensor suitable for
high-precision strain detection applications.
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B Supplementary figures

The swelling capacity of the hydrogels is effectively
tunable through compositional modification. As
shown in Figure A3(a), P(DMAA-AA) exhibits
the highest equilibrium swelling ratio (117.7 g/g),
attributed to its macroporous structure that facilitates
water infiltration and retention. In contrast, the
incorporation of CMC significantly reduces swelling
(352 g/g) due to enhanced hydrogen bonding,
which tightens the polymer network and restricts
water penetration. Further crosslinking with Zr*"
yields the lowest swelling ratio (1.37 g/g)-an 85-fold
reduction compared to P(DMAA-AA)—resulting
from additional chemical crosslinks that markedly
limit water absorption.

Water content measurements (Figure A3(b))
corroborate this trend: P(DMAA-AA) shows
the highest water content (88.8%), followed by
P(DMAA-AA)-CMC (66.3%), and Zr**-crosslinked
hydrogel (55.5%). The consistent decrease in both
swelling ratio and water content, aligned with SEM
observations, confirms that introducing CMC and
Zr'T progressively densifies the hydrogel network,
providing a effective means to tailor its swelling
behavior.

The surface wettability of the hydrogels was
evaluated by contact angle measurements (Figure A4).
P(DMAA-AA) exhibited the smallest contact angle
(21.5°), indicating high hydrophilicity, which
is consistent with its high swelling capacity. The
introduction of CMC increased the contact angle to 26°,
reflecting reduced surface hydrophilicity. In contrast,
the Zr**-crosslinked hydrogel showed a markedly
higher contact angle (over 52°), demonstrating
enhanced hydrophobicity. This transition is attributed
to the increased crosslinking density from Zr** ions,
which reduces surface porosity and inhibits water
adsorption [40, 41].

The mechanical properties of the hydrogels were
systematically enhanced through the incorporation
of CMC and Zr*" cross-linking. Uniaxial tensile
tests (Figure Ab5(a)) revealed that the pristine
P(DMAA-AA) hydrogel exhibited low mechanical
strength (stress: 73.2 kPa; strain: 115%). The
addition of CMC significantly improved both
stress (70.2 MPa) and strain (247%), owing to
additional physical crosslinking via hydrogen
bonds and electrostatic interactions [42]. Further
reinforcement was achieved with Zr*", which raised
the stress to 1.2 MPa—approximately 20 times that
of P(DMAA-AA)—though with reduced strain
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Figure A11. (a—f) Change in relative resistance versus strain for zgel-X% hydrogel strain sensors oriented parallel to the
alignment direction; (g-1) Change in relative resistance versus strain for zgel-X% hydrogel strain sensors oriented
perpendicular to the alignment direction.

(101%), indicating strengthened yet less extensible
network formation. The elastic modulus of the
Zr'T-crosslinked hydrogel increased 25-fold to 2.1
MPa (Figure A5(c)), underscoring the pronounced
effect of ionic crosslinking.

Rheological analysis confirmed these trends: all
modified hydrogels showed solid-like behavior (G’ >
G") across the tested frequency range (0.1-100 rad/s).
The incorporation of CMC and Zr*" led to a steady
increase in complex modulus (G*) and a decrease in
complex viscosity (n*), consistent with the formation
of a more elastic and mechanically robust network [44].

The mechanical strength of the hydrogel exhibited
a non-monotonic dependence on Zr** concentration,

34

achieving optimal performance at 0.5 M. As shown
in Figure A6(a, c), stress increased significantly with
rising Zr* concentration up to 0.5 M, where parallel-
and perpendicular-oriented samples reached stresses
of 2.8 MPa and 2.0 MPa, respectively—representing
15- and 22-fold enhancements compared to the 0.1 M
condition. Beyond this point, further concentration
increases led to a decline in mechanical properties,
with stresses dropping to approximately 2.2 MPa
(parallel) and 0.8 MPa (perpendicular) at 1 M Zr**.
This reduction, particularly the 46% decrease in
perpendicular stress relative to the 0.5 M condition,
indicates that excessive crosslinking disrupts network
homogeneity and compromises tensile strength [45,

46].

Thus, while moderate Zr*" concentrations
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Figure A12. (a—f) Relative resistance changes of zgel-X% hydrogel strain sensors under different strains parallel to the
orientation direction; (g-1) Relative resistance changes of zgel-X% hydrogel strain sensors under different strains
perpendicular to the orientation direction.
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