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Abstract
To address two critical gaps in vegetation
carbon sink (VCS) research—its limited policy
relevance at the county scale and the insufficient
identification of nonlinear interactive effects within
driving mechanisms—this study focuses on the
Chengdu-Chongqing Economic Circle (CCEC).
Using MODIS NPP data (2002–2022), we examined
the spatiotemporal dynamics of VCS through
time-series analysis, standard deviational ellipse,
and spatial autocorrelation analysis. Crucially, we
applied the Geodetector model to quantitatively
disentangle the roles of natural and anthropogenic
drivers. The results show that: (1) VCS followed
a fluctuating upward trajectory, peaking in 2019,
but declined sharply in 2006 due to an extreme
drought; (2) spatially, a “three-belt agglomeration”
pattern was identified, with high-value clusters
in mountainous areas (Southwestern Sichuan,
Southeastern Chongqing, Southeastern Sichuan)
and low-value diffusion in plains (Chengdu
Plain, Chongqing Valley). The VCS centroid

Submitted: 23 August 2025
Accepted: 29 August 2025
Published: 01 September 2025

Vol. 1, No. 1, 2025.
10.62762/JGEE.2025.856697

*Corresponding author:
� Yuanjie Deng
ecodyj@suse.edu.cn

remained consistently located in Anyue County,
while spatial clustering gradually weakened;
(3) single-factor detection highlighted natural
factors—especially elevation (q > 0.76)—as
dominant drivers of spatial heterogeneity,
whereas interaction detection revealed widespread
“nonlinear enhancement” between natural and
anthropogenic factors. These interactions explained
far more variance than individual factors and
amplified spatial heterogeneity synergistically.
By integrating county-scale analysis with the
identification of nonlinear interaction mechanisms,
this study provides a scientific foundation for
differentiated ecological governance and the
precise implementation of China’s “Dual Carbon”
(carbon peaking and carbon neutrality) goals in the
CCEC.
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1 Introduction
Climate change has become a pressing global
challenge, with increasingly severe problems such
as frequent extreme weather events, ecosystem
degradation, and threats to food security. These
challenges have prompted the international
community to accelerate climate governance efforts [1].
Enhancing carbon sink capacity—particularly
Vegetation Carbon Sinks (VCS)—is a crucial pathway
toward achieving carbon neutrality and has become a
key indicator of ecosystems’ capacity to respond to and
regulate climate change [2]. VCS absorb atmospheric
CO2 through photosynthesis and represent one of
the most significant potential types of carbon sinks
within terrestrial ecosystems. They play a vital role
in mitigating greenhouse gas emissions, improving
ecological environments, and supporting sustainable
development [3, 4]. Therefore, investigating the
spatiotemporal evolution of VCS and uncovering their
driving mechanisms is essential for advancing China’s
“Dual Carbon” strategy, enhancing ecosystem carbon
sequestration capacity, and formulating sound climate
governance policies.

Previous research has extensively examined the
estimation, dynamics, and drivers of VCS. On the
one hand, remote sensing and modeling approaches
have been widely used to characterize spatiotemporal
variations of Net Primary Productivity (NPP) and
VCS, highlighting the combined influence of natural
and anthropogenic factors [5–8]. On the other hand,
linear regression and geostatistical models have been
applied to identify and quantify the drivers of carbon
sinks [9–13]. However, two major gaps remain. First,
most studies adopt a grid scale as the analytical unit,
while largely overlooking the county scale—a critical
spatial unit that directly aligns with policymaking and
ecological governance [14]. This omission limits the
practical policy relevance of findings. Second, most
analyses rely on traditional linear models, with limited
application of non-parametric approaches such as the
Geodetector, which is specifically designed to identify
spatial heterogeneity and factor interactions [15, 16].
This restricts our understanding of the inherent
complexity underlying VCS formation. These
shortcomings not only reduce the policy applicability
of existing research but may also underestimate
the deep influence of coupled human–environment
processes on VCS dynamics. To address these gaps,
it is essential to analyze VCS drivers at the county
scale by integrating spatial statistical methods such
as the Geodetector. This approach allows for scientific

identification of VCS evolution mechanisms under the
dual dimensions of natural ecological foundations and
anthropogenic interventions.

TheCCEC is located at the intersection of the ecological
barrier in the upper Yangtze River andChina’s national
urbanization strategy. With complex topography,
diverse ecosystem types, and simultaneous pressures
from economic development and ecological protection,
the CCEC is a critical demonstration zone for
exploring pathways of “ecological conservation and
green development [17, 18].” Geographically, the
region consists of an interlocked distribution of
mountains, hills, plains, and basins. Natural terrain
and vegetation cover exert strong influences on the
spatial distribution of VCS, offering rich potential for
analyzing spatial heterogeneity. Meanwhile, counties
serve as the fundamental administrative units for
resource management and policy implementation,
and enhancing their VCS capacity is vital for
achieving regional “Dual Carbon” goals. Against
this background, this study uses MODIS NPP data
(2002–2022), combined with time-series and spatial
analysis methods, to systematically characterize the
spatiotemporal evolution of VCS at the county
scale in the CCEC. Furthermore, the Geodetector is
introduced to reveal the roles and interactions of
natural and anthropogenic drivers. The findings
aim to enrich the multi-scale research framework on
carbon sinks and provide both theoretical support
and practical guidance for enhancing ecosystem
carbon sink functions and implementing differentiated,
county-level ecological governance.

2 Data Sources and Research Methods
2.1 Study Area Overview
The CCEC (see Figure 1) is a regional cluster centered
on the twin cores of Chengdu and Chongqing[19].
Geographically, it lies between 27◦39′–33◦02′N and
101◦56′–110◦12′E, encompassing 15 prefecture-level
cities in Sichuan Province (e.g., Chengdu, Zigong,
Luzhou) and 29 districts/counties under Chongqing
Municipality (e.g., Yuzhong, Wanzhou, Dadukou).
The CCEC is located in the core zone of the Sichuan
Basin, characterized by pronounced topographic relief.
The surrounding areas consist of low mountains and
hills (such as the Southwestern Sichuan Mountains
and Southeastern Chongqing Mountains) with
high vegetation coverage, while the northeastern
boundary includes the folded mountain ranges
of the Eastern Sichuan Ridge-and-Valley zone. In
contrast, densely populated and industrialized urban
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Figure 1. Map of the study area.

cores are concentrated in the Chengdu Plain and the
Chongqing Western Valley, which feature plains and
shallow hills [20]. This “peripheral mountains–central
plains” topographic configuration creates a clear
spatial separation between high-VCS zones dominated
by natural vegetation and low-VCS zones strongly
influenced by human activity. The CCEC also lies
at the intersection of the Yangtze River Corridor
(horizontal axis) and the Baotou–Kunming Corridor
(vertical axis) within China’s “Two Horizontal and
Three Vertical” national urbanization strategy. As the
country’s designated “Fourth Growth Pole [21],” the
region possesses significant locational advantages,
linking east and west as well as north and south.
Consequently, the spatiotemporal evolution of VCS
in the CCEC provides an important demonstration
for both ecological barrier construction in the upper
Yangtze River and the advancement of regional “Dual
Carbon” goals.

2.2 Data Sources
Vegetation NPP data were obtained from NASA’s
MOD17A3 product (spatial resolution: 500 m;
temporal resolution: annual) and processed through
the Google Earth Engine (GEE) platform to generate a
2002–2022 dataset for Sichuan Province. Climatic data,
including annual mean temperature and precipitation,
were derived from 1 km resolution gridded monthly
datasets (1901–2022) provided by the National
Tibetan Plateau Data Center (https://data.tpdc.ac.cn/ho
me). Elevation and slope data were extracted from the
250 m digital elevation model (DEM) released by the

Resource and Environment Data Center of the Chinese
Academy of Sciences (https://www.resdc.cn/data.aspx?D
ATAID=123). Population density data were obtained
from the LandScanGlobalHigh-Resolution Population
Dataset (https://landscan.ornl.gov/). County-level per
capita GDP data were sourced from the EPS Data
Platform (https://www.epsnet.com.cn/).
2.3 Research Methods
2.3.1 VCS Estimation
NPP can be estimated based on the amount of carbon
dioxide (CO2) absorbed through plant photosynthesis
and the content of dry matter produced [22, 23]. The
chemical reaction process is as follows:

6CO2 + 6H2O
light, chloroplast, enzyme
−−−−−−−−−−−−−−−→ C6H12O6 + 6O2

(1)

Based on the above reaction equation, plants consume
1.62 g of CO2 to synthesize 1 g of dry matter
through photosynthesis. Carbon content constitutes
approximately 45% of the total NPP in dry matter.
Therefore, the VCS can be calculated as follows:

VCS = 1.62× (NPP/0.45) (2)

where VCS represents the VCS, expressed as carbon
mass, with units of grams per square meter per year
[g C m−2 a−1]. NPP represents the net primary
productivity of vegetation, similarly expressed as
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carbon mass, with units of grams per square meter
per year [g C m−2 a−1].

2.3.2 Standard Deviation Ellipse(SDE) and Centroid Shift
SDE is a spatial statistical method used to characterize
the distribution patterns and evolutionary processes
of geographical elements. Key parameters of this
method include the semi-major axis, semi-minor
axis, and orientation, which respectively indicate the
directional distribution and spatial extent of VCS [24].
The orientation represents the rotation angle of the
semi-major axis measured clockwise from due north.
This analytical model can be implemented using the
Spatial Statistics Tools module in ArcGIS 10.7. The key
parameters are calculated as follows:

The coordinates of the SDE centroid were computed
as:

SDEx =

√√√√ i=1∑
n

(
xi −X

)2
/n

SDEy =

√√√√ i=1∑
n

(
yi − Y

)2
/n

(3)

where SDEx and SDEy denote the coordinates of the
centroid of the SDE; (xi,yi) represents the spatial
coordinates of the i-th geographic unit; i indicates the
VCS quantity of the i-th unit (expressed in g C m−2
a−1); x̄, ȳ is the mean center of the geographic units; n
signifies the total number of geographic units.

The standard deviations for the semi-major and
semi-minor axes of the SDE are calculated as follows:

σx =
√

2

√∑n
i=1 (xi cos θ − yi sin θ)2

n

σy =
√

2

√∑n
i=1 (xi sin θ − yi cos θ)2

n

(4)

where σx and σy represent the standard deviations
along the X-axis and Y-axis, respectively.

The centroid coordinates of VCS are calculated using
the following principal formula (5):

X =

∑n
i=1Ni × xi∑n

i=1Ni
, Y =

∑n
i=1Ni × yi∑n

i=1Ni
(5)

where X and Y denote the coordinates of the VCS
centroid; Ni represents the VCS quantity of the i-th
geographic unit (in g C m−2 a−1); (xi, yi) indicates
the centroid coordinates of the i-th sub-administrative
region; n is the total number of geographic units.

The spatial shift of the VCS centroid over time reflects
the dynamics of spatial redistribution. Migration
distance and direction were calculated to trace
centroid movement trajectories [25]. The migration
distance and directional angle are calculated as follows
(Equation 6 and equation 7):

Dt =

√
(xt1 − xt2)2 + (yt1 − yt2)2 (6)

θt = t = arctan
yt2 − yt1
xt2 − xt1

(7)

where xti, yti denotes the coordinates of the VCS
centroid for year ti.

2.3.3 Spatial Correlation Analysis
Global Spatial Autocorrelation In studying VCS
within the CCEC, global spatial autocorrelation
analysis is employed to assess the spatial distribution
patterns of VCS [26]. This method quantifies the
spatial dependence of VCS, revealing overall regional
clustering or dispersion patterns. The Moran’s I index
is typically used for this purpose, calculated as follows:

I =

∑n
i

∑n
j 6=1Wij (xi − x)

s2
∑n

i

∑n
j 6=1wij

(8)

where I denotes the global spatial autocorrelation
index; S represents the standard deviation of VCS
values; wij is the spatial weight matrix, reflecting
the adjacency relationships between geographic units
within the study area; n indicates the total number
of geographic units; xi and xj represent the VCS
quantities of units i and j, respectively (in g C m−2
a−1); x̄ is the mean x value across all units. The
spatial weight wij = 1 indicates that region i and
region j share a common boundary, signifying an
adjacency relationship; otherwise, wij = 0. A positive
value of Moran’s I suggests that VCS exhibit a spatially
clustered pattern; a negative value indicates a spatially
dispersed pattern; and a value close to zero implies
that the distribution of VCS is approximately random
(not statistically significant).
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Local Spatial Autocorrelation Local spatial
autocorrelation analysis focuses on the distribution
characteristics of attribute values across heterogeneous
space. This method quantifies the local spatial
association of VCS between each geographic unit and
its neighboring areas. The Local Moran’s I statistic is
commonly employed, calculated as follows:

Ii = zi

n∑
j 6=i

WijZj (9)

where Ii represents the local spatial autocorrelation
index for geographical unit i; zi and zj are the
standardized values of VCS quantities for units i and j,
respectively; wij denotes the spatial weight matrix. A
positive Ii value indicates localized clustering of VCS,
while a negative value signifies spatial dispersion.

2.3.4 Geodetector
Geodetector is a statistical method designed to identify
spatial heterogeneity in geographical elements and
reveal their driving factors. Its core principle
involves partitioning the study area into subregions
and assessing spatial heterogeneity by comparing
the global variance to the sum of variances within
subregions. This method quantifies the influence
of both natural factors (rain, temperature, altitude,
gradient) and anthropogenic factors (population
density, per capita GDP) on the spatial differentiation
of VCS [27]. We employ the determining power
metric q to measure the impact of each factor on the
spatiotemporal evolution of VCS eco-efficiency within
the CCEC. The q statistic is calculated as follows:

q = 1− 1

nσ2

m∑
h=1

nh · σ2h (10)

where the q-statistic ranges within [0,1], with higher
values indicating stronger explanatory power of
variable Zi over the spatiotemporal evolution of VCS
eco-efficiency. A value of q = 0 denotes that Zi fails to
explain the spatial distribution of VCS eco-efficiency,
while q = 1 signifies that Zi fully determines its spatial
distribution. Here, h = 1, 2, . . . ,m represents the
strata partitioning for either independent variable Z or
dependent variable Y ; n denotes the total number of
samples across the study area; σ2 is the global variance;
nh indicates the sample count within stratum h; and
σ2h denotes the variance of dependent variable Y in
stratum h.

The interaction detector assesses the strength and
direction of bivariate interactions by comparing the
q-values of individual variables with those after
spatial overlay. It further evaluates whether such
interactions alter the explanatory power of single
variables regarding the spatial heterogeneity of
the dependent variable. Specifically, this method
compares the q-statistics of variables Zi, Zj , and
their interaction term (q(Zi), q(Zj), q(Zi ∩ Zj)) to
determine interaction types: Nonlinear Weakening:
When q(Zi ∩ Zj) < min(q(Zi), q(Zj)); Single-Factor
Nonlinear Weakening: When min(q(Zi), q(Zj)) <
q(Zi ∩Zj) < max(q(Zi), q(Zj)); Bilinear Enhancement:
When max(q(Zi), q(Zj)) < q(Zi ∩ Zj); Independence:
When q(Zi ∩ Zj) = q(Zi) + q(Zj); Nonlinear
Enhancement: When q(Zi ∩ Zj) > q(Zi) + q(Zj).

3 Research Results
3.1 Spatiotemporal Patterns
3.1.1 Temporal Dynamics
As shown in Figure 2, the VCS of the CCEC exhibited
a long-term fluctuating upward trend between 2002
and 2022. In terms of temporal sequence, the early
stage (2002–2011) was characterized by relatively low
VCS levels with pronounced fluctuations; during the
middle stage (2011–2015), VCS entered a period of
rapid growth, with values rising steadily over time;
and in the late stage (2015–2022), although interannual
oscillations persisted, the overall level remainedwithin
a high-value range.

Figure 2. Temporal Variation of VCS in the CCEC.

The peak value occurred in 2019 (2258.90 g Cm−2 a−1),
with secondary peaks in 2015 (2247.49 g C m−2 a−1)
and 2021 (2257.93 g C m−2 a−1), forming a “clustered
high-value peak.” This pattern reflects the synergistic
enhancement of biomass accumulation and vegetation
community optimization—such as the succession
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from coniferous to mixed forests—under the coupling
of long-term ecological policy interventions (e.g.,
the CCEC Ecological Barrier Construction Project)
and favorable climatic conditions (e.g., the strong
East Asian Summer Monsoon in 2019 that brought
abundant precipitation [28]). In contrast, VCS in
2006 experienced a sudden drop, falling by 207.00 g C
m−2 a−1 (11.07%) compared with 2005 and remaining
173.89 g Cm−2 a−1 lower than in 2007, representing an
abrupt single-year trough. Historical climate records
confirm that the CCEC suffered a once-in-a-century
extreme heat and drought event in 2006 [29, 30],
during which the mean temperature in Chongqing
was 2.1◦C above normal and precipitationwas reduced
by about 30%. Such extreme conditions suppressed
photosynthesis, exacerbated evapotranspiration, and
increased wildfire risks, collectively imposing a
“cliff-edge shock” on the VCS system.

3.1.2 Spatial Variation
Based on ArcGIS 10.7, the spatial distribution
of Vegetation Carbon Sinks (VCS) in the
Chengdu-Chongqing Economic Circle (CCEC)
at the county scale was obtained for 2002, 2007, 2012,
2017, and 2022 (as shown in Figure 3). The results
show that the high-value areas of VCS exhibited a
distinct “three-belt agglomeration” pattern, with

persistent clustering in the Southwestern Sichuan
Mountains, the Southeastern Chongqing Mountains,
the Southeastern Sichuan Mountains, and the
mountainous areas surrounding the Sichuan Basin.
Among these, the Southwestern Sichuan Mountains
belong to the eastern margin of the Hengduan
Mountain system, the Southeastern Chongqing
Mountains form part of the Wuling Mountain region
in southeastern Chongqing, while the Southeastern
Sichuan Mountains and the peripheral ranges of the
Sichuan Basin are situated along the basin’s margins.
These regions are predominantly characterized by
mountainous and hilly landforms, high natural
vegetation cover, and strong ecosystem integrity, all
of which contribute to their outstanding baseline
carbon sink capacity [31]. By contrast, low-value areas
were consistently concentrated in two main types
of regions. The first comprises plains and shallow
hills within the Sichuan Basin, most notably the core
area of the Chengdu Plain and the western valley
zone of Chongqing, where rapid urbanization and
extensive agricultural development have encroached
upon natural ecosystems. Vegetation in these areas is
dominated by plantations and croplands, resulting
in a low baseline for carbon sequestration [32]. The
second type includes the relatively gentle terrain in
northeastern Sichuan, such as parts of Nanchong

Figure 3. Spatial variation of VCS in the CCEC.
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Table 1. Results of SDE and Centroid Shift.

Year Semi-major axis (km) Semi-minor axis (km) Center X/◦ Center Y/◦ Azimuth (◦)

2002 235.217 150.862 105.371 29.967 75.456
2007 236.983 151.908 105.413 29.977 75.596
2012 229.086 150.149 105.407 29.999 73.826
2017 226.569 151.037 105.410 29.998 74.632
2022 224.616 150.545 105.390 30.000 74.181

and Dazhou, where a long history of agricultural
exploitation has left little natural vegetation and thus
weakened carbon sink capacity.

3.1.3 SDE and Centroid Shift
Based onArcGIS 10.7, a SDE and centroid shift analysis
of VCS in the CCEC was conducted (Table 1 and
Figure 4). Overall, from 2002 to 2022, the SDE of
VCS consistently maintained a northeast–southwest
orientation, with azimuth values falling within the
range of 73◦–76◦.

During this period, the centroid coordinates of
VCS ranged between 105.371◦E–105.413◦E and
29.967◦N–30.000◦N, with the centroid consistently
located in Anyue County, Sichuan Province. This area
lies within the hilly transitional zone in the central
part of the CCEC, corresponding to the topographic
gradient from the northeastern Sichuan Basin to the
southwestern mountainous areas, and aligning with
the baseline spatial framework of low VCS values
in the basin and high VCS values in the mountains.
As shown in Figure 4(c), the centroid migration
trajectory followed a fluctuating but convergent
path—moving northeast → northwest → southeast
→ northwest—and in the long term, shifted slightly
toward the interior of the Sichuan Basin. This indicates
an “inward convergence and reshaping” effect of
increasing VCS within the basin on the overall spatial
pattern [33].

The semi-major axis contracted steadily from 235.217
km in 2002 to 224.616 km in 2022, while the semi-minor
axis decreased slightly from 150.862 km to 150.545
km, suggesting a continuous reduction in spatial
dispersion and a tendency toward centripetal
agglomeration. Meanwhile, the azimuth rotated
from 75.456◦ in 2002 to 74.181◦ in 2022, reflecting
asymmetric growth between the Southwestern
Sichuan Mountains (the southwestern end of the
high-value zone) and the Southeastern Chongqing
Mountains (the southeastern end of the high-value
zone). In the Southwestern Sichuan region, dominated
by primary forests, VCS growth relied primarily

Figure 4. Standard Deviational Ellipse and centroid shift of
VCS in the CCEC.

on natural succession, resulting in relatively slow
increases but sustained high levels. By contrast, in
the Southeastern Chongqing region, policy measures
designating the area as an “Ecological Protection and
Development Zone” accelerated the efficiency gains
of plantation forests, leading the ellipse’s major axis
to first adjust slightly southeastward. Later, with
reinforced ecological protection in the Southwestern
Sichuan region, such as the implementation of natural
forest conservation in Liangshan Prefecture, the ellipse
stabilized again.

3.1.4 Spatial Correlation Analysis
Global Spatial Autocorrelation To further examine
the spatial association and evolutionary characteristics
of VCS in the CCEC, we employed the Global Moran’s
I index. The results are presented in Table 2.
It can be observed that the Global Moran’s I of
VCS in the CCEC exhibited a fluctuating trend of
“initial increase, subsequent decline, and then a
slight rebound.” With z-scores ranging between
121.35 and 97.72 and p-values consistently equal to
0.00, the null hypothesis of “spatial randomness”
can be rejected at the 1% significance level for all
years, indicating that VCS in the CCEC displayed
significant positive spatial autocorrelation at the grid
scale. Since global spatial autocorrelation cannot
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Figure 5. Local Moran’s I of VCS in the CCEC.

capture regional heterogeneity, we further applied
local spatial autocorrelation analysis to investigate
localized variations in VCS across the CCEC.

Table 2. Global Moran’s I Index of VCS in the CCEC.

Year Moran’s I Z-score (standard deviation) p-value

2002 0.730765 121.354154 0.00
2007 0.76415 126.806458 0.00
2012 0.615729 102.191398 0.00
2017 0.588778 97.724444 0.00
2022 0.601567 99.915879 0.00

Local Spatial Autocorrelation To reveal the local
spatial characteristics of VCS at the county scale, we
calculated the Local Moran’s I index for the years
2002, 2007, 2012, 2017, and 2022 using ArcGIS 10.7 (as
shown in Figure 5). In the maps, red (HH) represents
“high-value VCS grids adjacent to other high-value
VCS grids,” blue (LL) represents “low-value VCS
grids adjacent to other low-value VCS grids,” yellow
(HL) denotes “high-value VCS grids surrounded by
low-value VCS grids,” green (LH) denotes “low-value
VCS grids surrounded by high-value VCS grids,” while
gray areas indicate statistically insignificant spatial
associations.

From the perspective of spatial distribution, the
local spatial association of VCS in the CCEC was

overwhelmingly dominated by positive correlations
(HH and LL), while negative correlations (HL and
LH) accounted for a small proportion and were
scattered. HH clusters were persistently concentrated
in the Southeastern Chongqing Mountains (e.g., the
Qianjiang–Xiushan area), the Southeastern Sichuan
Mountains (e.g., the Yibin–Luzhou region), and the
Southwestern Sichuan Mountains (e.g., Liangshan
Prefecture). LL clusterswere consistently concentrated
within the plains and shallow hills of the Sichuan Basin
interior, particularly in the core of the Chengdu Plain
and the western valley zone of Chongqing. HL and LH
outliers were sporadically distributed in transitional
zones between mountainous and basin areas, such as
the peripheral mountain edges of the basin and the
hilly–mountainous junctions of northeastern Sichuan.
In terms of temporal dynamics, the number of HH
clusters increased steadily, LL clusters first expanded
and then contracted, while HL and LH clusters
declined initially and subsequently stabilized.

3.2 Driving Factors analysis
3.2.1 Single-Factor Detection
Based on the spatial differentiation characteristics
of the topography–climate framework and human
activity intensity in the CCEC, six driving factors
were selected. These factors were categorized
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into two dimensions: natural background variables
(rain, temperature, gradient, and altitude) and
anthropogenic interventions (population density
and per capita GDP). Five temporal cross-sections
(2002, 2007, 2012, 2017, and 2022) were chosen,
and the Geodetector was applied to assess the
explanatory power of each driving factor on the spatial
differentiation of VCS in theCCEC, aswell as to explore
the interaction mechanisms among these factors.

Figure 6. Single-factor detection of VCS in the CCEC.

According to the single-factor detection results (as
shown in Figure 6), the p-values of all factors
were 0.000 during the study period, passing the 1%
significance test. This indicates that rain (RAIN),
temperature (TEM), gradient (GRA), altitude (ALT),
population density (PD), and per capita GDP (DPC)
consistently exerted significant influences on VCS
levels and demonstrated strong explanatory power for
their spatial differentiation. More specifically, natural
factors as a whole had stronger explanatory power
(q-values) for VCS differentiation than anthropogenic
factors [34]. Among them, ALT was the dominant and
core factor, with mean q-values consistently exceeding
0.76. High-elevation regions such as the Southwestern
Sichuan Mountains and the Southeastern Chongqing
Mountains are characterized by extensive primary
forest cover and strong carbon sink capacity, whereas
the low-elevation Sichuan Basin has experienced
urbanization and agricultural expansion, leading to
fragmented vegetation and weak baseline carbon
sinks. Altitude, therefore, directly shapes the spatial
framework of “mountainous high VCS–basin low
VCS” through its vertical topographic gradient. TEM
(q = 0.59–0.76) further reinforced this differentiation
by regulating the length of the growing season and
photosynthetic efficiency, resulting in higher VCS in
mountainous areas (longer growing seasons, stronger

carbon sequestration) and lower VCS in the basin
(shorter growing seasons, dominance of artificial
vegetation). GRA (q = 0.49–0.76) intensified
differentiation by reflecting the spatial dichotomy
between steep zones under ecological protection (e.g.,
reforestation programs) and flat zones under intensive
human development (e.g., urban expansion). RAIN
(q = 0.17–0.28) exerted the weakest explanatory effect,
consistent with the generally favorable hydrothermal
balance across the region.

Among anthropogenic factors, PD (q = 0.52–0.63)
captured the phased dynamics of human–land
interactions, reflecting the early stage of ecological
space encroachment by urbanization followed by
a later stage of ecological restoration projects that
enhanced carbon sink capacity. By contrast, DPC
(q = 0.03–0.13) demonstrated relatively limited
explanatory power, indicating that the feedback
mechanism of ecological product value realization
is still underdeveloped and its role in driving VCS
differentiation remains weak.

3.2.2 Interaction Detection
The interaction detection results show that
combinations of multiple driving factors had stronger
explanatory power for the spatial differentiation of
VCS than single factors [35]. Based on the Geodetector
interaction results (as shown in Figure 7), the
multi-factor synergistic effects underlying VCS spatial
heterogeneity in the CCEC can be further elucidated.
In terms of interaction types, the interactions among
driving factors across all years were overwhelmingly
dominated by “bi-factor enhancement” and “nonlinear
enhancement,” with no evidence of “linear weakening”
or “nonlinear weakening.” This indicates that both
natural background and anthropogenic intervention
factors exerted a “synergistic amplification” effect on
VCS differentiation, whereby the explanatory power
of individual factors was significantly strengthened
through their interactions.

Regarding different interaction combinations and
mechanisms, natural–natural factor interactions (e.g.,
TEM with RAIN, GRA with ALT) formed the core
driving cluster. In 2002, the q-value for TEM∩RAIN
reached 0.93, reflecting the coupled regulation of
vegetation carbon sequestration by hydrothermal
conditions-temperature determining the length of
the growing season and precipitation ensuring water
availability. This amplified the contrast between
mountainous high-altitude zones with favorable
hydrothermal balance and strong forest carbon
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Figure 7. Heatmap of interactive factor detection of VCS in
the CCEC.

sinks, and basin low-altitude zones with mismatched
conditions and constrained carbon sinks. In 2007, the
q-value for GRA∩RAIN also reached 0.93, highlighting
how the coupling of slope (affecting soil erosion
risk) and precipitation (influencing runoff intensity)
reinforced the spatial dichotomy between steep-slope
ecological conservation areas (high VCS) and gently
sloping zones under human exploitation (low VCS).

Interactions between natural and anthropogenic
factors (e.g., ALT with PD, TEM with DPC) revealed
stage-specific “human–environment interaction”
characteristics. After 2012, the q-value for ALT∩PD
stabilized above 0.75, indicating a synergistic
effect in which high-altitude mountains (where
ALT constrained development intensity) were
preserved through ecological protection, while
densely populated low-altitude basins (with high
PD) underwent ecological restoration projects such as
urban greening. This reinforced the spatial contrast
of “mountain carbon sequestration–basin carbon

enhancement” as human–environment interactions
intensified. The q-value for DPC∩TEM increased to
0.57 by 2022, suggesting that economic development
began to exert a “counter-regulatory” effect on
temperature-driven differentiation of carbon sinks
through measures such as temperature-controlled
agricultural facilities and urban green space cooling.
Although weaker than natural–natural interactions,
this reflects a potential pathway for realizing the value
of ecological products.

From a temporal perspective, during 2002–2007,
natural–natural interactions consistently exhibited
higher q-values than natural–human interactions,
confirming that topography and climate formed
the fundamental baseline for VCS differentiation.
Between 2012 and 2022, however, the q-values
of natural–human interactions increased steadily
(e.g., PD∩ALT remaining above 0.75; DPC∩TEM
rising from 0.50 to 0.57), reflecting the shift under
CCEC’s eco-cooperation policies from passive human
adaptation to active regulation of natural systems.
The synergistic effects of ecological restoration and
economic development thus became increasingly
prominent.

In summary, the spatial differentiation of VCS in the
CCEC is the outcome of a coupled natural–human
system rather than the effect of a single factor. Natural
factors remain the dominant drivers, with elevation
and temperature exerting the strongest influences,
while the explanatory power of multiple-factor
interactions surpasses that of individual factors. This
further demonstrates that changes in the spatial
pattern of VCS are primarily shaped by natural
conditions but are jointly reinforced by multiple
interacting drivers.

4 Discussion
This study examined the spatiotemporal evolution
of VCS and their driving mechanisms in the CCEC
from 2002 to 2022 at the county scale. Compared with
conventional grid-based studies, county-level analysis
alignsmore closelywith the administrative boundaries
that frame ecological governance, thereby bridging
the gap between macro-level spatial patterns and
micro-level policy implementation. This perspective
offers new insights for improving the spatial targeting
of ecological policies. By systematically analyzing the
shifts in VCS centroids, spatial clustering dynamics,
and changes in Standard Deviational Ellipses, the
results show that VCS exhibited an overall upward
but fluctuating trend between 2002 and 2022, with an
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anomalously low value in 2006. The sharp decline in
that year was attributable to extreme heat events in
Sichuan and Chongqing, which significantly reduced
vegetation carbon sequestration [36]. Spatially, VCS
displayed a “high on the western, southern, and
eastern margins, low in the middle” distribution
pattern. This differs in certain respects from previous
studies on different geomorphic units [37, 38], though
most studies consistently report a gradual decline
in VCS from mountainous high-value areas toward
the basin low-value zones. The present findings
further suggest that, under ecological engineering
policies, restoration effects in low-VCS regions are
beginning to emerge [39, 40]. Meanwhile, the VCS
centroid remained located near Anyue County in
Sichuan throughout the 20-year period, indicating
that although increases in carbon sinks diffused
outward, the core contribution areas were still strongly
constrained by topography and natural background
conditions. This underscores the foundational role of
mountainous regions in shaping regional carbon sink
patterns [41, 42].

Compared with grid-scale analyses, county-level
investigation not only better reflects the realities
of policy management but also enhances the
understanding of how ecological policies interact
with spatial responses within administrative units.
The results indicate pronounced heterogeneity in
carbon sink capacity across counties, with spatial
differentiation exhibiting persistent evolutionary
features. For instance, some plateau and mountainous
counties maintained consistently high carbon sink
capacities over the long term [43, 44], while plain
counties with high levels of urbanization exhibited a
fluctuating trajectory of initial suppression followed
by recovery [45, 46]. Such spatial heterogeneity is
difficult to detect using grid-based units and even
harder to translate into differentiated policy responses.
Consequently, spatiotemporal pattern recognition at
the county scale is essential for revealing the alignment
between policy interventions and geographic contexts,
thereby enhancing the precision of carbon sink
management.

In terms of driving mechanisms, the Geodetector
model demonstrated stronger spatial adaptability
and explanatory capacity than traditional linear
approaches. This study found that natural factors such
as elevation and slope consistently exhibited strong
explanatory power for VCS patterns, with elevation
remaining the dominant factor (q > 0.76). This reflects
the strong constraint of natural background conditions

on vegetation growth and carbon sequestration
potential [47, 48], while also showing both similarities
and differences with dominant drivers reported in
other study areas [49]. Furthermore, the interaction
detection results revealed widespread “nonlinear
enhancement” or “bi-factor enhancement” effects
between natural and anthropogenic factors, such
as temperature with per capita GDP and elevation
with population density. This indicates that regional
VCS patterns are not shaped by single factors but
rather emerge from the compounded effects of human
activities superimposed on natural baselines [50]. The
findings also highlight the necessity of employing the
Geodetector: on one hand, it avoids biases introduced
by linear assumptions; on the other, by identifying
interaction mechanisms, it helps uncover the true
logic of carbon sink distribution under the coupled
dynamics of the human–environment system [51].

In conclusion, by integrating county-scale empirical
analysis with the Geodetector approach, this study not
only deepens the understanding of the spatiotemporal
dynamics of VCS in the CCEC but also expands
the methodological paradigm for investigating
carbon sink drivers. These findings provide practical
references for regional ecological governance,
precision-based carbon sink enhancement, and the
design of “differentiated dual-carbon pathways.”
Nonetheless, limitations remain: the analysis
was constrained by data availability, preventing
the inclusion of certain socioeconomic variables;
and while the Geodetector effectively identifies
mechanisms of spatial differentiation, it cannot reveal
causal relationships between variables. Future studies
could incorporate panel econometric models or causal
inference approaches, alongside high-resolution land
use and ecological policy datasets, to further advance
the dynamic identification of carbon sink evolution
mechanisms and their policy feedback processes.

5 Conclusion
(1) From 2002 to 2022, county-level VCS in the CCEC
exhibited a fluctuating but overall increasing trend.
The centroid of VCS remained stably located near
Anyue County in the central Sichuan hilly region,
while the spatial distribution revealed a structural
pattern of “mountainous high-value clusters and
plain low-value diffusion.” The Standard Deviational
Ellipse indicated that the spatial dispersion of VCS
gradually converged, showing an overall tendency
toward centripetal agglomeration. Meanwhile,
spatial autocorrelation analysis confirmed significant
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clustering of VCS distribution, with local spatial
structures evolving from “strong aggregation” toward
“weaker convergence.”

(2) The driving mechanisms of VCS identified
at the county scale demonstrated that natural
factors remain the dominant forces, with elevation,
temperature, and slope exerting particularly strong
explanatory power in shaping spatial differentiation.
These factors collectively established a spatial
framework dominated by the mountain–plain
gradient. In addition, the Geodetector identified
widespread “nonlinear enhancement” interactions
between natural and anthropogenic factors. Notably,
combinations such as “ALT∩PD” and “TEM∩DPC”
amplified the heterogeneity of VCS spatial patterns,
underscoring the complex driving characteristics of
human–environment coupling.

(3) By integrating county-level perspectives with
the Geodetector model, this study provides an
innovative approach for identifying both the
spatial patterns and underlying mechanisms of
VCS from an “administrative unit perspective.”
This integration offers new empirical support for
regionally differentiated ecological governance
and the implementation of dual-carbon strategies.
Nevertheless, limitations remain, including the
omission of certain socioeconomic variables and the
inability to explicitly identify causal relationships.
Future research should incorporate multi-source
remote sensing data and policy databases to
expand the dimensionality of driving factors and
explanatory mechanisms, thereby enhancing the
dynamic understanding of carbon sink evolution and
strengthening policy responsiveness.
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