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Abstract
Shale gas, as a typical low-quality marginal
hydrocarbon resource, faces persistently high
drilling costs, which have become one of the
main bottlenecks restricting its large-scale
development. The Southern Sichuan region of
China holds enormous shale gas reserves and
is a strategically important area for achieving
cost-effective large-scale development. However, as
production capacity construction intensifies and the
volume of investment and cost data is increasing,
traditional data processing methods can no longer
meet the timeliness and accuracy requirements
for handling massive data. Accurate prediction
of oil and gas drilling costs will help in making
scientific decisions and evaluations. In this study,
based on the costs and engineering parameters
of settled wells in the Southern Sichuan Block N
shale gas field, we established a Back-Propagation
(BP) neural network model incorporating principal
component analysis (PCA) to achieve accurate
prediction of single-well drilling costs. Results
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show that: (1) PCA can effectively extract useful
information from the shale gas drilling cost
influence factors. Specifically, the number of
fracturing stages, drilling duration, well depth, total
proppant volume, horizontal section length, etc., are
identified as key parameters affecting single-well
drilling cost. (2) Using Matlab programming and
a graphical user interface (GUI), we developed
an integrated shale gas single-well cost prediction
software system that combines data import, model
training, cost prediction, and results export. The
BP neural network model’s predictions achieved an
average relative error of only -0.73%, demonstrating
convenience, practicality, and high accuracy.
This system can provide a basis for investment
decision-making in the Southern Sichuan shale gas
block and has value for commercial application.

Keywords: shale gas, principal component analysis,
drilling cost prediction, BP neural network, software system.

1 Introduction
Shale gas is a typical unconventional natural gas
resource characterized by low quality and low
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permeability [1], and its economically effective
development has long faced the dual challenges of
complex geological conditions and high engineering
costs [2] Drilling costs account for a significant
proportion of the total investment in shale gas
development and are influenced by a web of complex
factors, making cost variability high. Effective
prediction and control of drilling costs have become
a critical bottleneck for achieving scalable and
cost-effective shale gas development. The Southern
Sichuan region in China is rich in shale gas reserves
with tremendous exploration and development
potential, making it a key strategic area for ensuring
national energy security and advancing the transition
to clean energy [3, 4]. As production capacity
construction tasks in this region increase, so do
drilling activity and the volume of investment and
settlement analysis data. Traditional data processing
methods (such as analogy methods, factor analysis,
incremental calculation, and ratio methods) cannot
satisfy the requirements for timeliness, logic, and
accuracy when dealing with such large datasets.
Therefore, exploring an intelligent method capable of
precise and efficient single-well drilling cost prediction
is of great practical significance for reducing the
overall development cost of the Southern Sichuan
shale gas field and improving project economic
efficiency.

Many experts at home and abroad have conducted
extensive research and practical work on oil and
gas drilling cost prediction, proposing numerous
forecasting methods [5]. For example, Zhang et
al. [6] applied grey theory to predict drilling costs;
Fattahi et al. [7] applied support vector machine
regression to drilling cost prediction; Ewees et
al. [8] used a modified GM(1,1) model to achieve
high-precision cost prediction for an oilfield; Yang
et al. [9] utilized systematic clustering to categorize
drilling cost components and built a total cost
regression model via stepwise regression, and Xinhua
et al. [10] applied learning curve methods to shale
gas cost prediction. However, shale gas drilling
costs are subject to a multitude of factors and
more complex geological and engineering conditions,
resulting in cost data that exhibit greater randomness,
variability, and uncertainty [11–13]. The above
statistical models have considerable limitations when
applied to shale gas drilling cost prediction, and
simple physical models require assumptions of
normally distributed errors, which greatly affect result
stability. In recent years, the rapid development of

artificial intelligence—exemplified by artificial neural
networks—has demonstrated clear advantages in
handling fuzzy, random, and non-linear data, and
is especially suitable for complex, poorly-understood
systems [14–16]. Such approaches have been widely
used in the petroleum and natural gas engineering
field, providing a new solution for shale gas drilling
cost prediction.
Based on this, the present paper focuses on Block
N in the Southern Sichuan shale gas region. Using
a large sample of completed wells’ data, we built a
single-well drilling cost prediction model based on
engineering parameters via a BP neural network. We
also integrated the BP neural network with a user
interface, turning complex code commands into simple
operations. The result is a shale gas single-well cost
prediction software system that integrates data import,
automated training, cost prediction, and result export,
which achieves accurate predictions while meeting
research needs. This provides a basis for investment
decision-making in the Southern Sichuan shale gas
block and possesses commercial promotion value.

2 Geological Setting
The Southern Sichuan region is a core area for shale gas
exploration and development in China, blessed with
rich resource endowment and enormous development
potential (Figure 1) [17–19]. In particular, Block N
is the main battleground for shale gas development
in Southern Sichuan, with a favorable shale gas
area of 840 km2 and resources of about 6.922×1011
m3. This provides a solid resource foundation
for large-scale, cost-effective shale gas development.
However, the region’s geological structure is complex
and engineering challenges are significant, leading to
persistently high single-well drilling costs. Therefore,
in the process of converting resource potential into
high-efficiency production capacity, precise prediction
and control of drilling costs is a key step to achieve
economically effective development of shale gas in this
area.

3 Analysis of Factors Influencing Single-Well
Drilling Cost

3.1 Factors Influencing Drilling Cost
In recent years, oil companies have placed greater
emphasis on cost control, striving for cost advantages
in fierce market competition to ensure long-term
development. Shale gas drilling costs are influenced
by a multitude of complex factors including geological
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Figure 1. Distribution of main shale gas development areas in Southern Sichuan.

conditions, engineering techniques, operational
practices, and market conditions. Accurately
identifying and quantifying the key engineering
parameters that affect the drilling cost of a single shale
gas well is a prerequisite for building a high-precision
predictive model and achieving scientific cost
management. Therefore, prior to constructing our
prediction model, we conducted a systematic study
and selection of potential cost-influencing parameters.

At present, extensive empirical and theoretical research
on drilling cost drivers has been carried out by
domestic and foreign scholars, providing an important
basis for constructing the parameter set in this study.

For example, Krishna et al. [20] established a
power-law equation relating comprehensive drilling
unit cost (or drilling engineering unit cost) C to
drilling rig monthly rate I . Hossain et al. [21]
argued that well type, drilling duration, footage, and
formation structure all affect drilling costs. Xinhua
et al. [10] found through studies in the Sichuan shale
gas blocks that the key factors influencing drilling cost
are drilling duration and horizontal section length,

while the factors influencing completion cost include
fracturing stage length, fracturing fluid volume, and
proppant volume. Yang et al. [9] indicated that drilling
cost is affected by both macro and micro factors—the
former includes commodity prices, inflation rate,
international oil prices, and policy, while the latter
includes well structure, geological factors, drilling
technology, well depth, and drilling duration.

Foreign scholars have also developed models based
on historical drilling data. For example, Augustine et
al. [22] analyzed U.S. oil and gas well costs to create
a depth-dependent drilling cost index and compared
them to geothermal wells. Mistré et al. [11] established
an exponential function model relating well depth and
total cost. Kaiser [23] and Elkatatny [24] suggested
that aside from well depth, geological factors have a
strong influence on cost, as the geological environment
determines drilling rate, the number of casing strings,
and the frequency of drill string failures. Lukawski
et al. [25] using data from U.S. oil and gas wells
(1976–2009), developed a Cost Evaluation Index (CEI)
with 9 sub-indicators to assess drilling costs.

48



Journal of Geo-Energy and Environment

Drawing on extensive research and analysis of financial
reports, we identified 10 engineering parameters as the
major potential factors influencing shale gas drilling
costs: well depth, horizontal section length, number of
fracturing stages, drilling duration, final drilled true
vertical depth, curve length (build section length),
fracturing scale, fracturing stage length, average pump
pressure, and total proppant volume. To construct
a cost prediction model suitable for the Southern
Sichuan Block N, we used actual data from completed
wells in this block as the basis. These ten parameters
were taken as the initial inputs for the model, and
we next performed principal component analysis to
extract the key parameters that reflect the cost structure
and engineering characteristics of this region.

3.2 Principal Component Analysis
A standard BP neural network algorithm typically
requires many training iterations and the initially
selected predictive parameters may be interrelated.
If all are directly used as input variables for the
prediction model, it not only increases the model’s
complexity but may also lead to overfitting and
decreased prediction stability. To address this issue,
we applied principal component analysis (PCA)
for dimensionality reduction and key information
extraction from the input factors, which can effectively
mitigate the problems mentioned. PCA is a
multivariate statistical method that transforms a set of
correlated variables into a few comprehensive indices
(principal components) [26, 27]. This yields a smaller
number of new variables than the original factors,
yet those principal components can explain most of
the variance in single-well cost, thereby reducing the
complexity of the model while retaining the majority
of the information [28, 29].

Using SPSS 25.0 statistical software, we performed
PCA on the initial factors. The resulting principal
components’ contribution rates and eigenvalues are
shown in Table 1. The eigenvalues of the first three
principal components are all greater than 1, and
their cumulative variance contribution reaches 70.62%,
indicating that these three principal components
effectively represent the majority of information from
the original parameters. Therefore, we selected the
first three principal components as the factors for
single-well cost evaluation. By analyzing the loading
matrix of the principal components, we calculated
the mean vector coefficient (weight) of each original
parameter, as shown in Table 2. The magnitude of
the absolute value of each coefficient directly reflects

that parameter’s explanatory power on the overall cost
variation. The analysis results indicate that the number
of fracturing stages, drilling duration, and well depth
have the most significant impact on single-well cost,
followed by total proppant volume and horizontal
section length, among others. At the same time, we
obtained a linear regression model for drilling cost
prediction (equation 1):

Y = 0.838X1 + 0.830X2 + 0.789X3 + 0.711X4

+ 0.684X5 + 0.604X6 + 0.538X7 + 0.429X8

+ 0.377X9 − 0.123X10

(1)

where X1. . .X10 correspond to the ten original
influencing factors in the order listed above. This
provides the basis for selecting the engineering
parameters as inputs to the BP neural network model,
avoiding the difficulty of choosing input neurons, and
thereby enabling accurate prediction of single-well
drilling costs.

Table 1. Eigenvalues and contribution rates of principal
components for single-well cost evaluation.

Principal
Component

Contribution
Rate /%

Cumulative
Contribution /% Eigenvalue

F1 39.833 39.833 3.983
F2 19.178 59.011 1.918
F3 11.605 70.616 1.161
F4 9.541 80.157 0.954
F5 6.526 86.683 0.653
F6 5.658 92.341 0.566
F7 4.523 96.864 0.452
F8 1.881 98.745 0.188
F9 1.253 99.998 0.125
F10 8.808E-15 100.000 8.808E-16

Table 2. Principal component vector coefficients (weights)
of original cost-influencing parameters.

Cost Influence Parameter Average Vector
Coefficient

Number of fracturing stages (X1) 0.838
Drilling duration (X2) 0.830

Well depth (X3) 0.789
Total proppant volume (X4) 0.711

Horizontal section length (X5) 0.684
Final drilled vertical depth (X6) 0.604

Curve section length (X7) 0.538
Average pump pressure (X8) 0.429
Fracturing stage length (X9) 0.377

Fracturing fluid volume (X10) – “frac scale” –0.123
Note: Positive/negative signs of coefficients indicate the
direction of influence on cost. Magnitude reflects the
strength of influence.
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Table 3. Single-well engineering parameters and costs for Southern Sichuan Block N (partial data).

Well Depth/m Horizontal/m Frac Stages
/count

Drilling
Days/d Proppant/t Cost/×104 RMB

N1 4070 1400 18 53 1939 5110
N2 4035 1350 14 40 1385 5003
N3 4500 1500 18 49 2020 5182
N4 4600 1500 23 42 2684 5636
N5 4570 1800 23 34 2665 5939
N6 4522 1510 18 60 1673 4706
N7 4980 1500 22 100 2001 5615
N8 4360 1500 22 90 2194 5425
N9 4230 1500 22 80 2484 5491
N10 4800 1500 22 73 2367 5495

4 Construction of Single-Well Drilling Cost
Prediction Model Based on BP Neural
Network

A BP neural network is a multilayer feed-forward
network trained by error back-propagation. The
core idea of the BP algorithm is to use gradient
search techniques to minimize the mean squared error
between the network’s actual output and the desired
output [30, 31]. Typically, one or more hidden layers
of neurons are added between the input and output
layers; signals propagate forward through each hidden
layer, and errors propagate backward through weight
connections during training [32]. Therefore, the key to
establishing a BP neural network model for single-well
drilling cost prediction lies in determining its topology,
i.e. the number of input layers, output layers, and
hidden layers (and neurons in each).

4.1 Data and Preprocessing
From the PCA results, we identified the relative
importance of engineering factors on single-well cost:
the number of fracturing stages, drilling duration,
and well depth have the most significant impacts,
followed by total proppant volume and horizontal
section length. Accordingly, we selected these five
parameters (X1 ∼ X5 in Table 2) as the input layer
neurons of the network.

We took a sample of 250 completed wells in the
Southern Sichuan Block N (with their costs and
engineering parameters) as the dataset for model
development (see Table 3 for partial data). Because the
various engineering factors in the prediction system
have different units, scales, and trends, it was necessary
to normalize the sample data for consistency. We
applied an effect coefficient method to standardize
and unify the trends of the data, i.e. perform min-max

normalization. Using Equation (2), each input factor
was rescaled to a [0,1] range, and then Equation (3)
was used in the output layer to convert the predicted
value back to the original scale.

x̄i =
xi − xmin

xmax − xmin
(2)

xi = x̄i(xmax − xmin) + xmin (3)

where xi is the normalized value, xi is the original
input data, and xmin and xmax are the minimum
and maximum values of that factor in the sample,
respectively.

4.2 Model Structure
According to Kolmogorov’s theorem, a three-layer
BP neural network (with one hidden layer) can
approximate any continuous function with sufficient
training [33, 34]. Therefore, we adopted a three-layer
BP network for single-well drilling cost prediction. The
constructed network topology is 5–10–1, meaning it
has 5 input layer neurons (corresponding to the five
selected parameters: number of frac stages, drilling
duration, well depth, total proppant, horizontal
length), 1 output neuron (the target output, i.e.
the predicted single-well cost), and 10 hidden layer
neurons. The number of hidden neurons (10)
was determined using an empirical formula and
by analyzing the minimum mean squared error
of the network. Specifically, we employed the
empirical Equation (4) and trial-and-error to choose
an appropriate hidden layer size:

m =
√
n + l + a (4)

where m is the number of hidden layer nodes, n is the
number of input layer nodes, l is the number of output
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Table 4. Comparison of prediction results for 10 sample wells (partial validation data).

Sample Depth/m Horiz./m Stages Days Proppant/t Actual Cost
/×104 RMB

LR Pred
/×104 RMB

BP Pred
/×104 RMB LR Error /% BP Error /%

1 4880 2000 27 98 2899 6594 7515 6696 13.98 1.55
2 5060 1500 21 118 2430 6094 8341 5756 36.88 -5.54
3 4780 1500 21 106 2335 5456 7536 5224 38.13 -4.25
4 4800 1500 22 127 2119 5605 7275 5496 29.79 -1.95
5 5350 1800 24 119 2544 5845 7897 5790 35.10 -0.94
6 5380 1900 27 122 2728 6241 8704 6295 39.48 0.87
7 5200 1800 24 96 2490 5756 7589 5680 31.84 -1.32
8 4460 1500 20 77 1583 4681 5841 4621 24.77 -1.29
9 4206 1506 11 57 657 3559 4459 3817 25.31 7.25
10 4115 1500 21 74 1684 4781 5197 4699 8.69 -1.72

Average value 28.39 -0.73

layer nodes, and a is an integer between 1 and 10.
Using this formula (with n = 5, l = 1) and verifying
via mean squared error analysis, we set m = 10m as
the optimal hidden layer size in our model.
We randomly selected 200 sets of data out of the 250
well samples as the modeling dataset, of which 70%
were used as training samples and 30% as validation
(testing) samples. This yielded the BP neural network
model for single-well drilling cost prediction. The
remaining 50 wells’ data were reserved for final model
validation. Figure 2 shows the structure of the BP
neural network model established in this study.

Figure 2. Structure of the BP neural network model
developed in this paper.

4.3 Implementation of the BP Neural Network
Model

We implemented the BP neural network model in
MATLAB and conducted training. Using MATLAB’s
Neural Network Toolbox, we created the network with

the newff function and trained it with a momentum
BP algorithm via the traingdm() function, which
achieves fast convergence and high training accuracy.
Before training the model, the network weights and
biases were initialized [35, 36]. The training utilized
the traincgf (conjugate gradient with Fletcher-Reeves
updates) function for the hidden layer (or a similar
trainsig sigmoid training function as mentioned) and
the purelin linear transfer function for the output layer.
Based on engineering experience, the main network
parameters were set as follows: the learning rate was
0.1, the target minimum mean squared error was
1×10−4, and the maximum number of training epochs
was 1000.

Figure 3. GUI interface of the BP neural network-based cost
prediction program.

To facilitate easier use of the model, we designed
a GUI (graphical user interface). MATLAB’s
GUI functionality allows one to call program
functions and design user interfaces in a simple and
convenient manner. Developing a visual interface
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as a multi-functional human–computer interaction
platform is the most direct, effective, and rapid means
to elevate the program to an application level. The
GUI design consists of two parts: interface layout
design and program function implementation [37].
We created interface elements such as buttons and text
boxes, and for each control wewrote callback functions
in the code and set appropriate properties. For the
single-well drilling cost prediction functionality in this
project, the platform interface was designed as shown
in Figure 3. As shown in Figure 3, the user can input
the required engineering parameters and click the
“Start Training” button to initiate machine learning;
once training is complete, the results - including the
single-well prediction outcome and the corresponding
investment cost - are displayed as numerical values in
the output fields on the interface.

5 Model Verification
We used the trained BP neural network model to
predict the drilling costs of the remaining 50 wells (the
validation dataset). For comparison, we also applied a
conventional linear regression model (the one derived
in section 2.2) to predict the costs of these wells. The
prediction results of both models, along with their
errors, are shown in Table 4 and Figure 4. The linear
regression model’s relative errors ranged from 8.69%

to 41.33%, with an average error of 28.39%, whereas
the BP neural network model’s relative errors ranged
from –8.80% to 11.99%, with an average of only –0.73%.
The prediction accuracy of the BP neural network is
therefore far higher than that of the linear regression
model, and its predicted costs are in close agreement
with the actual single-well costs. These results indicate
that the single-well drilling cost prediction model
established in this paper is highly reliable for the shale
gas block in question and can be applied for wider use.

6 Conclusions
(1) Based on a sample of data from over 200 completed
wells in the Southern Sichuan Block N shale gas
field, we determined through principal component
analysis the relative significance of engineering
factors affecting shale gas single-well drilling cost.
Among these factors, the number of fracturing stages,
drilling duration, and well depth have the most
pronounced impact on single-well cost, followed by
total proppant volume, horizontal section length, etc.
PCA effectively extracted useful information from
the shale gas drilling cost indicators, significantly
reducing the dimensionality of inputs and simplifying
the prediction model’s input vector.
(2) Using the sample of 200+ wells’ costs and
parameters, we established a BP neural network

Figure 4. Comparison of actual vs. predicted single-well cost results for the linear regression model and BP neural
network model.
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model for single-well cost prediction. The model
was programmed in MATLAB, and in combination
with the software’s GUI tools, a visual interface
was designed. We developed an integrated
shale gas single-well cost prediction software
system that incorporates data import, model
training, cost prediction, and result export all in one
platform, providing a user-friendly human–computer
interaction.

(3) The shale gas single-well cost prediction model
based on the BP neural network was validated with
real-world data, showing an average relative error of
only –0.73%. This accuracy is far superior to that
of a linear regression model (which had an average
error of 28.39%), and the BP model’s predictions
closely matched the actual costs. The significantly
improved prediction precision offers strong support
for decision-making and evaluation by investors and
corporate managers.

(4) The BP neural network-based cost prediction
system for single wells is convenient, practical, and
accurate, and thus has value for commercial promotion.
With continued advancements in artificial intelligence
algorithms, this system can be readily expanded
with new functions. In combination with fuzzy
mathematics, the algorithms can be continuously
improved to achieve better integration with MATLAB
and even higher prediction accuracy.
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