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Abstract
Malaria remains a significant global health challenge,
causing hundreds of thousands of deaths annually,
particularly in tropical and subtropical regions. This
study proposes an advanced automated approach for
malaria detection through the classification of red
blood cell images using machine learning and deep
learning techniques. Three distinct models: Logistic
Regression (LR), Support Vector Machine (SVM),
and Inception-V3 were implemented and rigorously
evaluated on a dataset comprising 27,558 cell images.
The LR model achieved an accuracy of 65.38%,
while SVM demonstrated improved classification
performance with an accuracy of 84%. The deep
learning-based Inception-V3 model outperformed
both, achieving a classification accuracy of 94.52%
after five training epochs, demonstrating its superior
capability to extract intricate features from medical
images. These results highlight the effectiveness
of deep learning architectures in malaria diagnosis
and pave the way for scalable, automated solutions,
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particularly in resource-limited settings.
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1 Introduction
Malaria is a life-threatening infectious disease caused
by Plasmodium parasites, transmitted through the
bites of infected female Anopheles mosquitoes.
This disease remains a critical challenge in global
healthcare [1]. Plasmodium parasites are the cause
of malaria. Humans can be infected by five different
malaria parasites. These are Plasmodium falciparum,
P. vivax, P. ovale, P. malariae, and P. knowlesi. Malaria
signs typically appear 4 to 10 weeks after infection
has occurred. In some cases, symptoms can take
several months to appear. Some common signs of
malaria disease include moderate to severe shivering,
high fever, muscle pain, intense sweating, headache,
vomiting, bloody feces, abdominal pain, diarrhea,
nausea, and convulsions [2]. With millions of
cases reported annually, particularly in tropical and
subtropical regions, timely and accurate identification
of malaria parasites in blood cells is paramount for
effective treatment and control [3]. According to the
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World Malaria Report (2021), an estimated 241 million
malaria cases in 2020, were slightly higher compared
to 227 million in 2019. It was estimated that Malaria
killed 627,000 individuals in 2020. Children under the
age of five are in the most dangerous position. In 2020,
80 % of children worldwide died from malaria [4].
Studies indicate that malaria primarily affects young
children under the age of five [5]. Untreated malaria
patients may develop long-term pneumonia, anemia,
yellow fever, respiratory or brain disorders (Cerebral
Malaria) [6]. However, traditional microscopic
examinations for accurate diagnosis take longer. The
accuracy of malaria diagnosis depends on factors
such as test costs, the sensitivity of the technique,
attention to detail, the time required for the test, and
the expertise of the person conducting it [7].
Therefore, there is a need for an advanced automated
artificial intelligence-based model that can early and
accurately detect malaria from human red blood cells.
Malaria diagnosis through microscopic examination
involves identifying Plasmodium parasites in stained
blood films. This method, although highly specific
and sensitive when performed by skilled technicians,
is not always feasible in regions with limited access to
trained personnel and adequate laboratory facilities.
The variability in the quality of microscopy and the
subjective nature of the examination can also lead
to inconsistent results [8]. Machine learning and
Deep learning models have been trained to classify
malaria-infected blood cells with high accuracy like
the use ofML techniques ormodel in image processing
research [9, 10]. These models have been trained on a
large dataset of microscopy images of blood cells, and
can accurately classify the images as infected or not
infected with the Plasmodium parasite [11].

2 Literature Review
Sawant et al. [8] utilized the ResNet-50, a deep
CNN model with 50 layers that leverages residual
learning. The authors implemented a custom
ResNet-50 architecture which was designed to classify
RBC images as infected or uninfected. ResNet-50
has been particularly effective in image recognition
tasks due to its capability to mitigate the vanishing
gradient problem, allowing for the training of very
deep networks. The paper builds on prior work by
incorporating transfer learning, which improves the
model’s performance on limited datasets. Transfer
learning allows the use of pre-trained models
that can be fine-tuned to specific tasks, such as
malaria detection. Additionally, the use of data

augmentation techniques, such as image rotation and
flipping, enhances the generalizability of the model
by increasing the diversity of training data. Using the
custom ResNet-50 architecture the authors achieved
an impressive test accuracy of 97.8%, with precision
98.6%, recall of 97.2%, and F1 score of 97.8%.

Hoque et al. [12] leverages deep learning techniques
such as ResNet50 MobileNet-v2 and Inception-V3.
These models are widely recognized for their
effectiveness in image processing and have been
applied to malaria detection to achieve superior
performance. The authors proposed a custom CNN
architecture specifically designed for classifying
infected and uninfected red blood cells. The
architecture consists of five convolutional layers, five
max-pooling layers, and two fully connected
layers, optimized to handle the complexities
of malaria detection. The model achieve high
accuracy by leveraging advanced pre-processing
techniques, including bilateral filter and image
augmentation, making it well-suited for real-world
clinical applications. The authors achieved 100%
accuracy, with a precision of 100% and F1-score
of 100% using the proposed CNN model. This
model perform very well as compared to RestNet-50,
Inception-v3, and MobileNet-v2.

Muhammad et al. [13] explores different deep learning
architectures for malaria cell classification, including
ResNet50, VGG16, and DenseNet, which have proven
to be effective in detecting patterns and anomalies in
medical images. These architectures utilize multiple
layers to extract features such as shape, texture,
and color from red blood cell images, ultimately
distinguishing between infected and uninfected cells.
The authors applies data augmentation techniques
such as image rotation, scaling, and flipping to
artificially expand the dataset and to improve the
generalization of the model. The authors evaluated
the performance of these models based on accuracy,
precision, and F1-score. The study shows that deep
learning models, especially ResNet50 and DenseNet
achieve high accuracy in distinguishing between
infected and uninfected cells.

Delgado-Ortet et al. [14] presents a novel three-stage
deep learning pipeline to automate the detection
of malaria using a combination of segmentation
and classification techniques applied to red blood
cell (RBC) images. The authors designed a
Segmentation Neural Network (SNN) for red blood
cell segmentation, which labels pixels in blood smear
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images to distinguish RBCs from other elements
like white blood cells (WBCs) and platelets. The
authors used a Convolutional Neural Network (CNN)
for classifying segmented RBCs into two categories
infected and uninfected. The study used data
augmentation techniques such as cropping, rotation,
and reflection to increase the diversity of training data.
This helps in reducing overfitting and increases the
ability to generalize new images. Using this approach
the authors achieved 93.72% accuracy.

Deep Learning techniques particularly convolutional
Neural Networks (CNN) have shown promising
results in automating the detection of malaria from
microscopic images of red blood cells (RBCs). Kakkar
et al. [15] explored three CNN models for malaria
detection. Basic CNN built from scratch using the
Tensorflow and Keras libraries, this model has a simple
architecture with convolutional and pooling layers.
VGG-19 Frozen CNN, This is based on the VGG-19
architecture, known for its depth (19 layers). The
weights are frozen (not updated during training) to
leverage pre-trained knowledge. VGG-19 Fine-Tuned
CNN, the VGG-19 is fine-tuned by updating the
weights during training, allowing the model to adapt
to the specific malaria dataset. The study provides a
thorough comparison of three different CNN models,
giving insights into how fine-tuning and pre-training
affect performance. The testing accuracy achieved
by basic CNN was 94%, frozen CNN was 92%, and
fine-tuned CNN was 96%. Which is greater than
basic CNN and frozen CNN. This result demonstrates
the effectiveness of fine-tuning in improving model
performance.

Irmak [16] introduced a novel CNN architecture
specifically designed for malaria detection using thin
blood smear images. The model consists of 20
weighted layers, including convolutional, ReLU, and
max pooling layers designed to classify images as
infected or uninfected. The model is trained and tested
using a publicly available dataset containing 27,558
thin blood cell images. The dataset is split into training
(60%), validation (20%,) and test (20%) sets, and a
5-fold cross-validation process is employed to ensure
the model’s robustness. The model was evaluated
based on accuracy, sensitivity, specificity, and precision.
The proposed model achieves an overall accuracy of
95.28%, with high 95% sensitivity and 95.5% specificity,
showing its effectiveness in detectingmalaria from thin
blood cell images.

Maqsood et al. [17] evaluated the effectiveness of

various existing deep learning models including
VGG, ResNet, DenseNet, Inception, Xception, and
SqueezeNet for malaria detection from microscopic
blood smear images, and proposes an efficient
deep learning method for the classification of
infected and uninfected malaria cells. The proposed
method used bilateral filtering to improve image
quality and image augmentation techniques for better
generalization of the model. The authors presents
a custom Convolutional Neural Network (CNN)
model containing 5 convolutional and pooling layers.
The proposed model outperforms all observed deep
learning models, achieving an accuracy of 96.82%with
a precision of 96.82% and an F1 score of 96.82%.

Hemachandran et al. [18] presented a performance
analysis of three deep learning models CNN,
MobileNetV2, and RestNet50. These models were
trained and tested using a dataset sourced from the
National of Health (NIH) which includes 27,558
images of infected and uninfected cells. Each model’s
performance was evaluated using key metrics such as
accuracy, precision, recall, F1-score, and the area under
the receiver operating characteristic (ROC) curve. The
describes the CNN model, which simplifies feature
extraction through multiple convolution layers and
activation functions like ReLU, MobileNetV2 reduces
the number of parameters, making it efficient while
retaining high classification accuracy and ResNet50
is known for solving the vanishing gradient problem
through residual learning. MobileNetV2 achieved
the highest accuracy of 97.06% and the highest
AUC (96.73%) indicating its strong performance in
distinguishing between infected and uninfected cells.

Pinkaew et al. [19] introduced an automated
system for classifying Plasmodium falciparum and
Plasmodium vivax from digitized images of thick
blood films. The system employs a Support Vector
Machine (SVM) for classification, using statistical
features extracted from segmented sub-images of
blood smears. These features include mean, standard
deviation, kurtosis, skewness, and entropy, calculated
across multiple color channels such as green (G),
intensity (I), saturation (S), and value (V). These
statistical measures capture themorphological textural
difference between the two malaria species. The SVM
classifier was trained and tested using sub-images
from two malaria species. Two kernel types, Radial
Basis Function (RBF) and Linear were evaluated.
A training accuracy of 90% for P.falciparum and
93.33% for P.vivax and a testing accuracy of 85.71%
for P.falciparum and 78.72% for P.vivax has been
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achieved. This demonstrates the classifier’s ability to
differentiate between the two species with reasonable
accuracy.
Widodo et al. [20] focuses on the detection of malaria
in blood smear images using texture analysis and
machine learning. The authors employ the Support
Vector Machine (SVM) classifier, which is trained to
differentiate between normal blood cells and those
infected by Plasmodium falciparum. The research
emphasizes texture-based feature extraction to capture
critical patterns associated with malaria-infected cells.
The study integrates segmentation techniques using
the active contour method to isolate red blood
cells from blood smear images. Texture features
are extracted using methods like the Gray-level
Co-occurrence Matrix (GLCM) and Gray-level Run
Length Matrix (GLRLM). These features are then
used to train the SVM classifier, which adopts a
one-versus-all multiclass strategy to identify different
phases of the malaria parasite including trophozoite,
schizont, and gametocyte. The performance of
the SVM classifier is evaluated using metrics such
as accuracy, sensitivity, and specificity. Receiver
Operating Characteristics (ROC) are also used to
measure the classifier’s ability to distinguish between
infected and uninfected cells across the different stages
of malaria infection. The SVM model achieved a high
accuracy of 93% for normal cells, 92.5% for trophozoite,
98.3% for schizont, and 100% for gametocyte.

3 Research Methodology
This Section discussed the implementation of a
Support Vector Machine (SVM), Logistic Regression
Model, and Inception-V3 for the classification of
malaria cell images as infected and uninfected.

3.1 Dataset
The dataset is collected from the National Institutes of
Health (NIH) [21] for this research and also available
on Kaggle [22]. There are 27,558 cell images in total.
It is divided into two categories: 13,779 parasitized
and 13,779 uninfected cells. The sample infected and
uninfected images can be seen in Figures 1 and 2.
Infected images are those cells affected by malaria and
uninfected are those cells which are not affected by
malaria.

3.2 Preprocessing
Pre-processing refers to the transformations applied
to our data before feeding it to the algorithm. Data

preprocessing is a technique that is used to convert
the raw data into a clean data set [23]. In this
study, we apply some pre-processing techniques to
our dataset such as image resizing, color grading, and
normalization. The images are resized to 64× 64. The
pixel values of the images are scaled to a range of
between 0 and 1 and converted to grayscale.

3.3 Logistic Regression
Logistic Regression, a fundamental statistical model
for binary classification tasks, is widely used in
research for its simplicity and interpretability. It
predicts the probability of an observation belonging to
a specific class using the logistic function, defined as

σ(z) =
1

1 + e−z
(1)

where z is a linear combination of the input features.
This probability is then used to assign observations
to one of two categories, making Logistic Regression
particularly suitable for tasks like disease detection.
For this research, Logistic Regression was
implemented to classify red blood cell images
into two categories: infected and uninfected. The
dataset, sourced from the National Institutes of Health
(NIH) and Kaggle [21, 22], contained 27,558 cell
images evenly distributed between the two classes.
Preprocessing began with loading images from
the infected and uninfected folders. The images
were resized to 64 × 64 pixels for uniformity and
flattened into one-dimensional arrays for easier
computation. The pixel values were normalized using
a standard scaler to ensure the data had a mean of
0 and a standard deviation of 1, a critical step to
improve the performance and convergence speed
of the model. After preprocessing, the dataset was
split into training (80%) and testing (20%) subsets
using a stratified sampling technique to maintain
the class distribution [24]. The Logistic Regression
model was trained on the preprocessed training
dataset with a maximum iteration count of 1000 to
ensure convergence [25]. After training, the model’s
performance was evaluated on the test set. The
accuracy of the model was computed to be 65.38%,
indicating its moderate effectiveness in classifying the
images. Logistic Regression, due to its computational
efficiency and robustness, proved to be an appropriate
choice for this classification task. By leveraging these
techniques, the research effectively demonstrated
the application of Logistic Regression in automating
malaria detection. The workflow, encompassing
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Figure 1. Samples of infected cells from Dataset.

Figure 2. Samples of uninfected cells from Dataset.

image preprocessing, normalization, and logistic
modeling, underscores the model’s practical utility
in medical image classification tasks. This work
highlights the significance of preprocessing in
enhancing model performance and showcases Logistic
Regression as a reliable tool for binary classification in
healthcare-related research.

3.4 Support Vector Machine
SVM is a supervised machine learning algorithm
widely used for classification and regression tasks.
Proposed by Cortes and Vapnik, SVM operates
by finding the optimal hyperplane that separates
data points belonging to different classes in a
high-dimensional space [26].

The strength of SVM lies in its ability to handle both
linear and non-linear classification problems. For
non-linear cases, it uses kernel functions such as
radial basis functions (RBF) and polynomial kernels
to transform data into a higher-dimensional space
where a linear hyperplane can effectively separate the
classes [27].

This makes SVM particularly robust for datasets
with complex patterns. In this study, SVM was
employed to classify malaria-infected and uninfected
red blood cell (RBC) images. Before feeding the
data into the SVM classifier, significant preprocessing
and feature extraction were performed. The raw
dataset of cell images, collected from the National
Institutes of Health (NIH) and Kaggle repositories,
was resized to 64 × 64 pixels, converted to grayscale,

and normalized to scale pixel values between 0 and
1. This preprocessing ensures that the input data is
clean and uniform, facilitating better performance of
the SVM classifier. Feature extraction was performed
using the Histogram of Oriented Gradients (HOG)
technique, which captures the structural and textural
details of the images. The HOG method is highly
effective for identifying gradient orientation patterns,
which are crucial for distinguishing infected cells from
uninfected ones. Dalal and Triggs first introduced
the HOG technique for human detection tasks,
demonstrating its robustness in object recognition [28].

The extracted HOG features were used to train the
SVM classifier with a linear kernel, as it effectively
handles the separability of our dataset. The dataset
was split into training and testing sets, with 80% used
for training and 20% for testing. After training, the
SVMmodel achieved a high accuracy in classifying the
malaria-infected and uninfected cells. This highlights
the efficacy of combining preprocessing, HOG feature
extraction, and SVM for medical image analysis.
Studies have shown that machine learning algorithms
like SVM can significantly improve diagnostic accuracy
in medical imaging [29].

Additionally, the trained SVM model was further
validated through a detection pipeline. For new cell
images, preprocessing and HOG feature extraction
were applied, followed by classification using the
trained SVM model. The results demonstrated the
reliability of the model in detecting malaria-infected
cells, making it a promising tool for automated
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diagnostic systems. This approach alignswith findings
from previous research, which emphasize the use of
pre-trained models and feature extraction techniques
for enhanced malaria detection [30].
Overall, the use of SVM for malaria detection provides
a balance between simplicity and accuracy. By
leveraging preprocessing, robust feature extraction,
and a well-optimized linear kernel, SVM effectively
distinguishes between infected and uninfected cells,
contributing to the growing body ofwork in automated
medical diagnostics.

3.5 Inception-V3
InceptionV3, introduced by Szegedy et al. [31], is
a deep convolutional neural network architecture
known for its efficiency in computation and exceptional
performance in image classification tasks. Its design
incorporates advanced techniques like inception
modules, factorized convolutions, and auxiliary
classifiers, enabling multiscale feature extraction while
reducing computational complexity. In this research,
InceptionV3 was employed to classify red blood
cell images into infected and uninfected categories,
leveraging its ability to capture subtle patterns critical
in medical imaging. The dataset was augmented
using ImageDataGenerator from Keras, applying
transformations such as rescaling, zooming, shearing,
and horizontal flipping to enhance diversity and
prevent overfitting. Transfer learning was used to
retain the pre-trained InceptionV3 base for feature
extraction, while custom top layers were added,
including a GlobalAveragePooling2D layer, a Dense
layer with 1024 neurons and ReLU activation, and
a single output neuron with sigmoid activation
for binary classification. The model was trained
and evaluated using three optimizers, SGD, Adam,
and RMSprop each configured with learning rates
tailored to their respective characteristics [32, 33].
Performance was measured by training the model
on the augmented dataset and validating it on
a reserved validation set, followed by testing on
unseen data. Results demonstrated the efficacy of
optimizer selection in achieving high accuracy for
malaria detection. The InceptionV3 architecture’s
multi-scale feature extraction and gradient flow
improvement significantly contributes to the model’s
robust performance highlighting its suitability for
complex medical image analysis tasks.
Figure 3 represents three distinct approaches for
malaria detection: Inception-V3, Logistic Regression
(LR), and Support Vector Machine (SVM), each

Figure 3. Framework of Used Models.

applied separately to classify images. The dataset
is initially split into 80% training and 20% testing
subsets, followed by pre-processing where training
images are resized to 150×150 pixels and normalized
to [0,1] while testing images are resized to 64×64 pixels
with color grading. In the Inception-V3 approach, data
augmentation techniques, such as horizontal flipping,
zooming, and shearing are applied to training images
before passing them through Inception-V3 for feature
extraction. These extracted features are then used
for classification. The Logistic Regression approach
flattens the images into 1D vectors, normalizes them,
and trains them for classification. In the SVM
approach, features are extracted using the Histogram
of Oriented Gradients (HOG) technique, followed by
feature scaling with StandardScaler to standardize the
values before training an SVM classifier. Finally, each
model independently classifies malaria-infected and
uninfected images, allowing a comparative analysis
of deep learning and traditional machine learning
techniques for malaria detection.

4 Results and Discussion
4.1 Data Sample Collection
At the initial stage of data preparation, the dataset is
divided into three parts, consisting of training data,
validation data, and test data. The training data
is used to train the model [34, 35]. The validation
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data is applied during the learning process to assess
performance and fine-tune the model. Finally, the test
data is used in the evaluation phase to measure the
model’s overall performance and ability to generalize.

Table 1. Data splitting for Inception-V3.
No Data Split Parasitized data Uninfected data
1 Train Data 9645 9645
2 Data Validation 2067 2067
3 Test Data 2067 2067

In the context of this study, different data-splitting
strategies are employed based on the specific model
being trained. For the Inception-V3, the dataset is
divided into three subsets (70% for training, 15%
for validation, and 15% for testing). Validation data
plays a critical role in tuning hyper-parameters and
monitoring performance during the training process,
while the test data, unseen during training, ensures
unbiased evaluation of the ensemble model. This
distribution is detailed in Table 1.

Table 2. Data splitting for SVM & Logistic Regression.
No Data Split Parasitized data Uninfected data
1 Train Data 11,023 11,023
2 Test Data 2,756 2,756

For Support Vector Machine (SVM) and Logistic
Regression (LR) models, the dataset is split differently.
For these models, the data is divided into 80% for
training and 20% for testing, as validation data is
not explicitly required. This simpler data division
facilitates the direct evaluation of these individual
models. The distribution for these scenarios is detailed
in Table 2.

4.2 Results
The Support Vector Machine (SVM) model was
trained using a linear kernel on HOG (Histogram
of Oriented Gradients) features extracted from
preprocessed gray-scale images. The data, comprising
"infected" and "uninfected" cell images, was split
into 80% training and 20% testing subsets. The
preprocessing pipeline included gray-scale conversion,
resizing to 64×64 pixels, and normalization to ensure
uniformity across samples. HOG feature extraction
played a crucial role in capturing texture and structural
details from the images, enabling the SVM model
to effectively differentiate between the two classes.
The SVM model achieved an accuracy of 84% on
the test dataset, highlighting its effectiveness in
identifying malaria-infected cells. However, this

result also underscores the potential for further
improvement through advanced techniques, such as
feature selection, hyper-parameter optimization, or the
use of non-linear kernels. The results are summarized
in Table 3.

Table 3. Accuracy of SVM & Logistic Regression.
Models Accuracy
SVM 84%

Logistic Regression 65.38%

The Logistic Regression (LR) model was trained
on flattened and standardized grayscale images,
with data split into 80% training and 20% testing
subsets. The training process involved the use
of a maximum iteration limit of 1000 to ensure
convergence. The model achieved an accuracy of
65.38%. The detailed preprocessing pipeline and
robust classification capability of Logistic Regression
contributed to this performance. However, Logistic
Regression may face challenges in capturing complex
non-linear patterns, which could be addressed through
feature engineering or advanced algorithms. The
results are summarized in Table 3.
Inception-V3 model leveraged the
ImageDataGenerator for preprocessing and
augmentation. Trained for 1, 3, and 5 epochs,
the model showed increasing accuracy with more
training epochs, achieving 93.99%, 94.46%, and 94.52%
accuracy, respectively. This highlights its superior
ability to learn intricate patterns in the data compared
to the other models. The accuracy of Inception-V3 is
shown in Table 4.

Table 4. Accuracy of Inception-V3.
Models 1 Epoch 3 Epochs 5 Epochs

Inception-V3 93.99% 94.46% 94.52%

4.3 Comparison
The SVM model, using HOG features and a linear
kernel, achieved an accuracy of 84%, showcasing
its ability to extract texture and structural details
effectively. Logistic Regression, trained on flattened
grayscale images, attained an accuracy of 65.38%,
highlighting its simplicity but limited capability
in handling complex patterns. In contrast,
the Inception-V3 model demonstrated superior
performance, with accuracy improving from 93.99%
(1 epoch) to 94.52% (5 epochs), thanks to its deep
architecture and robust feature extraction. While SVM
and LR are simpler and computationally efficient,
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Table 5. Comparison of SVM, Logistic Regression, and Inception-V3 Models.

Model Features Used Accuracy

SVM HOG features 84%
Logistic Regression Flattened grayscale images 65.38%

Inception-V3 Full image 93.99%(1 epoch),94.46%(3 epochs),94.52% (5 epochs)

Inception-V3 excels in learning intricate patterns but at
a higher computational cost. The results are detailed
in Table 5.

5 Conclusion
This research sheds light on the advancements
in malaria detection through the integration of
machine learning and deep learning techniques.
The study emphasizes the potential of automation
in enhancing diagnostic accuracy and efficiency,
addressing critical challenges in healthcare delivery
within resource-limited settings. Logistic Regression
achieved a baseline accuracy of 65.38%, showcasing
the limitations of linear models for image-based
classification. Support Vector Machines improved
performance, attaining 84% accuracy by leveraging
kernel-based techniques for feature separation.
Inception-V3 excelled with a remarkable 94.52%
accuracy, demonstrating the efficacy of deep learning
in extracting intricate features from medical images.
Although focused on malaria detection, the insights
from this research extend to other medical imaging
applications. Automated diagnostic systems,
equipped with robust models like Inception-V3, have
the potential to revolutionize disease management by
reducing the dependency on manual assessments and
mitigating diagnostic errors. This study provides a
comparative analysis of machine learning and deep
learning techniques, highlighting their respective
strengths and limitations. By presenting a scalable
solution for malaria detection, the research paves
the way for further innovations in medical imaging.
Future research should explore the integration
of ensemble learning techniques to further boost
diagnostic accuracy. Additionally, optimizing
models for real-time processing and deployment in
low-resource environments remains a critical avenue
for development. The findings call for increased
collaboration between machine learning practitioners
and healthcare professionals to co-design systems that
align technological capabilities with medical needs.
Continued investments in research and development
are imperative to bridge the gap between technological

advancements and their practical implementation in
global health initiatives.
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