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Abstract
Lung diseases such as COVID-19, pneumonia, and
tuberculosis remain major public health challenges
worldwide, emphasizing the urgent demand for
accurate and efficient diagnostic methods. This
research explores the use of a Convolutional
Neural Network (CNN)-based framework for
binary classification of chest X-ray images to detect
abnormalities. The methodology incorporates
preprocessing techniques such as image resizing,
normalization, data augmentation, and grayscale
transformation to improve input data quality. CNN
architecture comprising convolutional, pooling,
fully connected, and dropout layers were trained
and evaluated on publicly available datasets. The
model attained a test accuracy of 92%; nevertheless,
performance metrics revealed a disparity between
the two classified categories. Class 0 (Normal)
had precision (83%) and recall (90%), resulting in
an F1-score of 0.80, whereas Class 1 (Abnormal)
demonstrated higher precision (88%) and recall
(90%) with an F1-score of 0.88. This highlights
the need for further optimization to enhance the
detection of normal cases. The findings underscore
the potential of CNNs in automating lung disease
detection but also reveal areas for improvement in
model robustness and class balance.
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1 Introduction
Lung disease is a general term used to describe
a wide range of conditions that impact the lungs
and the respiratory system, significantly impacting
global health. These disorders include chronic
obstructive pulmonary disease (COPD), asthma,
pneumonia, COVID-19 and tuberculosis (TB), both
of which may arise from a range of different causes,
such as infections, environmental pollutants, genetic
predispositions, and lifestyle choices like smoking.
According to the World Health Organization (WHO),
respiratory illnesses constitute one of the primary
causes of global mortality, impacting millions of
people annually [1]. For instance, pneumonia alone
causes approximately 2.5 million deaths each year,
especially affecting children under five and older
adults. Tuberculosis remains a major health concern,
with over 10 million new cases recorded each year. The
COVID-19 pandemic has underscored the significant
global burden posed by lung diseases, with millions
of cases and substantial mortality rates reported
worldwide. Effective management and early detection
of these conditions are critical to improving patient
outcomes and reducing healthcare burdens. However,
developments in medical technology, particularly
involving deep learning and Artificial intelligence
presents promising solutions to improve the diagnosis
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and treatment of lung diseases, with the potential
to transform healthcare practices and outcomes on a
worldwide.

Traditionally, Lung disease diagnosis primarily
relies on conventional methods, including physical
evaluations, reviews of medical history, and laboratory
investigations. Physicians often use stethoscopes
to listen to abnormal lung sounds; Patients might
have sputum or blood tests performed to identify
infections or indicators of inflammation. Chest X-rays
and computed tomography (CT) scans are utilized
to assess and visualize abnormalities in the lungs
structure. While these methods are foundational,
they have notable drawbacks. Sputum tests and
physical examinations may not be as sensitive or
specific as they may be, leading to incorrect diagnoses
[2]. Additionally, the interpretation of X-rays and
CT scans is reliant on the radiologist’s specialized
knowledge, with manual evaluation often being
both time-consuming and vulnerable to human
inaccuracies.

Advancements in imaging technology have enhanced
the ability to diagnose respiratory disorders by
providing comprehensive visualization of lung
anatomy through chest X-rays and CT scans [3],
allowing for the detection of anomalies such as
fluid accumulation, infections, and tumors. These
images are frequently put through to machine
learning techniques to improve diagnostic accuracy.
Conventional machine learning techniques typically
include steps such as feature extraction followed by
classification, such as Support Vector Machines (SVM)
and Random Forests, which are trained on labeled
image datasets to Detect disease-specific patterns in
lung-related disorders. While these methods Having
increased the effectiveness of diagnosis, they still rely
on the quality of the complex patterns may not be
fully represented by the features that were extracted,
present in image-based data.

Deep learning has advanced lung disease diagnosis
by using neural networks to automate both feature
extraction and classification processes. Convolutional
Neural Networks (CNNs) have demonstrated strong
performance in interpreting chest X-rays and CT
scan images, The high precision in recognizing
a variety of lung diseases, such as COVID-19,
pneumonia, and tuberculosis, is made possible by
directly learning hierarchical features from raw image
data, which eliminates the requirement for human
feature engineering. Deep learning frameworks are

used by sophisticated architectures like Efficient Net
and Dense Net to enhance model generalization and
diagnostic accuracy [4]. Several studies have indicated
that deep learning models can exceed the performance
of traditional methods by offering greater precision
and reliability, which plays a crucial role in early
detection and improving treatment outcomes.

Convolutional Neural Networks are extremely
effective tools for classifying images since they can
automatically recognize and extract characteristics
from raw image data, reducing the need for manual
feature engineering. Prominent models like VGGNet
and ResNet are commonly used for these tasks.
VGGNet, developed by Simonyan and Zisserman
in 2014, is one such example, VGGNet is a deep
convolutional neural network architecture known
for its straightforward design and effectiveness. It
utilizes a series of convolutional layers with 3x3
filters and max-pooling layers, enabling it to capture
detailed information through images. By using
labelled datasets of chest X-rays for training, the
model has been modified for the diagnosis of lung
diseases. to distinguish between different diseases
such as pneumonia, tuberculosis, and COVID-19
[5]. VGGNet’s straightforward architecture and
pre-trained weights make it relatively easy to fine-tune
for specific tasks, enhancing its utility in medical
image classification, as demonstrated in widely cited
studies.

ResNet (Residual Networks), introduced in a
prominent architecture, brings the concept of residual
learning to mitigate the vanishing gradient issue,
facilitating the training of much deeper neural
networks [6]. This model’s ability to learn residuals
or differences between layers helps in improving
classification accuracy. ResNet has been effectively
used for detection of lung disease by using its
deep design to find complicated patterns in X-ray
images. Its robustness and high performance on
various benchmarks make it a valuable model for
medical image classification. The benefits of using
CNN-based models like VGGNet and ResNet in
recent years include their exceptional accuracy, their
ability to handle big datasets efficiently, and their
suitability for identifying a variety of lung conditions.
By automating the processes of feature extraction
and classification, these models provide significant
benefits over traditional methods, resulting in prompt
and efficient diagnostic assistance.
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2 Related Work
Respiratory disorders, commonly known as lung
diseases, encompass a range of conditions that
affect the airways and lung tissues [1, 2]. Deep
learning techniques are essential for determining and
classifying these diseases within medical imaging [2].
Conditions like pneumonia, tuberculosis, COVID-19,
and lung cancer can be detected through X-ray and
CT scans using deep learning models, including
methods to learning such as Sequential, Functional,
and Transfer [3], which have a significant worldwide
influence. The Forum of International Respiratory
Societies claims that [4], millions of people suffer
from conditions like asthma, tuberculosis claims 1.4
million lives annually, lung cancer causes 1.6 million
deaths, and pneumonia is responsible for millions of
fatalities. The COVID-19 The pandemic intensified
this problem, affecting millions and placing immense
strain on healthcare systems across the globe [5].
Consequently, lung diseases have become a major
contributor to mortality and long-term disability.
Early detection is crucial for improving recovery
chances and enhancing long-term survival rates [6,
7]. Traditionally, lung diseases are diagnosed using
methods such as skin tests, blood tests, sputum sample
analysis [8], chest X-rays, and computed tomography
(CT) scans [9]. Recent advancements have shown
that deep learning, when applied to medical images,
holds great promise for detecting lung diseases. In
this proposed model, trained on open-source datasets,
achieved high accuracy, notably a Sequential model
with an F1 score of 98.55% for pneumonia and 97.99%
for TB, and a 99.9% accurate functional model for lung
cancer, outperforming existing methods in efficiency
and computational cost [3].

Several techniques for deep learning, such as
Convolutional Neural Networks, Visual Geometry
Group (VGG)-based networks, and CapsuleNetworks,
have been employed for lung disease prediction;
however, CNNs often face challenges related to
image orientation. To address this issue, Chen et
al. [10] proposed VDSNet, a hybrid model that
combines the VGG architecture, data augmentation
techniques, and spatial transformer networks within
a CNN framework. The model was developed
using Jupyter Notebook, TensorFlow, and Keras, and
tested on the NIH chest X-ray dataset available on
Kaggle. VDSNet demonstrated superior demonstrated
superior performance relative to other models,
attaining a validation accuracy of 73%. This framework
offers a streamlined solution for lung disease detection,

aiding medical professionals [11].

The number and variety of chest X-ray (CXR) datasets
have increased rapidly over the past ten years, and
deep learning techniques have advanced significantly
as well. This review compiles insights from over
200 recent studies. (2018–2023) that analyze CXR
Imaging used to recognize and differentiate lung
disorders using deep learning and other advanced
machine learning techniques. It classifies these
studies according to the methodologies employed
and the targeted diseases, while also assessing
existing challenges and proposing directions for future
research. The results highlight the critical need for
further technological advancements to enhance patient
outcomes by demonstrating how deep learning can
significantly improve diagnostic speed and accuracy
[10].

Creswell et al. [12] proposed the three approaches
for tuberculosis Detection is performed using
CNN-trained models. In the first method, CNNs
can be used to extract features, and then an SVM
classifier is employed for training. The second
technique uses an SVM classifier to train features
that are extracted from coreference resolution
(CR). The third technique creates an ensemble of
classifiers by combining the two earlier methods. They
examined these techniques using 139 X-ray images
from Montgomery 662 from the Shenzhen dataset
and the dataset. Although these models speed up
processing, their insufficient accuracy renders them
unsuitable for reliable medical diagnosis. Davenport
et al. [13] proposed extracting both local and global
characteristics from radiographs using the deep neural
network model Mask RCNN and highlight infected
regions with heat maps. Despite these advantages,
their ensemble of the models ResNet50 and ResNet101
provided less precise outcomes than anticipated
and demanded considerable GPU computational
resources for training. Jiang et al. [14] proposed four
models, including CNN and LSTM-CNN from scratch
and pretrained ResNet152v2 and MobileNetV2, to
diagnose pneumonia from chest X-rays. Despite their
diagnostic capabilities, these models have a large
design that requires a lot of processing and computing
resources because they have hundreds of millions of
trainable parameters [15, 16].

Lung disease diagnosis capabilities have been greatly
enhanced over the last ten years by deep learning
advancements and easier access to chest X-ray (CXR)
datasets [17, 18]. More than 200 recent papers
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(2018–2023) are reviewed in this study focused
on classifying CXR images according to diagnostic
methods and specific diseases using machine learning
techniques [19]. Given the severe effects of COVID-19
on the respiratory system, early detection is critical.
Notably, a hybrid approach combining traditional
CNNs with quantum classifiers achieved training and
testing accuracies of 98.9% and 98.1%, respectively,
on the Coronavirus Radiography Dataset. The model
uses custom CNN for feature extraction and two novel
quantum classifiers Multi-Multi-Single (MMS) and
Multi-Single-Multi-Single (MSMS) outperforming
standard deep learning models and validated on the
IBM Q-QASM quantum computer [20]. The purpose
is to enhance the reliability, efficiency, and accessibility
of diagnosing lung diseases [19].

This study presents a multichannel deep learning
method for detecting lung diseases from chest
X-ray images by combining features extracted from
EfficientNetB0, B1, and B2 models. These features
are then processed through non-linear layers and a
stacked ensemble classifier, resulting in accuracies of
98% for pediatric pneumonia, 99% for tuberculosis,
and 98% for COVID-19, demonstrating the approach’s
effectiveness and reliability for point-of-care diagnosis
[20]. Furthermore, this paper presents a novel
framework for differentiating pneumonia from
COVID-19 using chest X-ray images. The methodology
encompasses dataset acquisition, image enhancement,
refined ROI extraction, feature extraction, utilizing
median filtering, histogram equalization, and dynamic
region growing. However, Classification is carried out
using multiple techniques, including deep learning
with RNN and LSTM, demonstrating superior
accuracy compared to current methods.

Various deep learning techniques [17] have been
employed to develop a model for the detection
and classification of lung nodules using computed
tomography (CT) scans. To ensure accurate
classification of lung nodules as benign or malignant
and to avoid delays in diagnosis, the highest level
of precision was required. When compared to other
methods, the deep learning approaches used for lung
nodule classification produced promising results. The
deep learning architecture significantly enhanced the
classification system’s accuracy when mutations were
incorporated. This approach was applied to detect
early-stage malignant lesions and to establish new
insights into nodule categorization [18].

Lung cancer continues to be a leading cause

of cancer-related mortality worldwide, with
early detection playing a vital role in improving
survival rates [22]. However, traditional diagnostic
approaches such as CT scans and blood tests are
often labor-intensive and time-consuming. To
address these limitations, several advanced deep
learning models have been proposed. Lung-Retina
Net, a Retina Net-based architecture, incorporates
multi-scale feature fusion and a lightweight context
module, achieving 99.8% accuracy and demonstrating
strong performance in early tumor detection [9].
Another approach leverages a transformer-enhanced
framework with adaptive anchor-free mechanisms and
an improved feature pyramid network, using a dataset
of 1,608 labeled CT images to achieve a mean average
precision (mAP) of 96.26%, surpassing YOLOv9 and
YOLOv10 [21]. Additionally, a lightweight hybrid
model combining CNNs and Vision Transformers
with Inception Next achieves up to 99.54% accuracy,
offering efficient and precise classification of lung
cancer subtypes, and significantly advancing early
detection and clinical outcomes [4].

3 Methodology
The approach employed designing and assessed the
CNN model for Detection of Pneumonia and other
abnormalities through binary classification of chest
X-ray images as shown in Figure 1.

3.1 Dataset Preparation
The dataset utilized consists of chest X-ray images
organized into three distinct subsets:
• Training Set: implemented for model training.
• Validation Set: used for evaluating the model’s

performance throughout training and modifying
hyperparameters to avoid overfitting.

• Test Set: Implemented to analyze the
performance of the final model.

Each subset is divided into two classes, representing
normal and abnormal conditions (e.g., "NORMAL"
and "PNEUMONIA"). The dataset is structured into
directories, and images are pre-classified according to
these labels.

3.2 Preprocessing
Data preprocessing was applied to adjust the images
for CNN input:
1. Image Resizing:
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Figure 1. CNN-Based chest X-ray classification

In order to ensure uniformity in the input data,
all images were standardized to a resolution of
224×224 pixels.

2. Normalization:

Each value was divided by the maximum pixel
intensity, which was 255, to standardize the
pixel values within the [0, 1] range. This
normalization enhances numerical stability and
speeds up convergence during training.

3. Data Augmentation (Training Data Only):

During the training phase, various image
augmentation techniques were applied to
enhance the model’s ability to generalize to
unseen data.

4. Shear Transformations:

shear range = 0.2. Randomly distorts the image
shape to simulate perspective changes.

5. Zoom Transformations Zoom range = 0.2

Introduces scale variations by randomly zooming
in or out of the image.

6. Flipping Horizontally horizontal flip = True

Mirrors the image horizontally to mimic
real-world orientation changes. To ensure an
objective evaluation, this augmentation was not
applied to test the validation of datasets. The test
and validation datasets were not modified.

7. Grayscale Conversion:

As chest X-ray images are naturally grayscale, the
input images were processed in greyscale mode
using a single colour channel.

8. Batch Processing:

The images were fed into the model in batches
of size 32 to optimize memory usage and

computation.

3.3 Model Architecture
The CNN model follows a sequential architecture
composed of the following layers in Figure 1 show
that all these layers:

• Convolutional Layers:

– Three convolutional layers were used with
32, 64, and 128 filters respectively, each
employing a 3×3 kernel.

– ReLU activation was applied to introduce
non-linearity.

– After each convolutional layer, a
max-pooling layer with a 2×2 window
was added to reduce spatial dimensions.

• Flattening Layer: Convert the 2D feature maps
into a 1D vector to prepare the data for the fully
connected layers.

• Fully Connected Layers:

– A dense layer with 512 neurons and ReLU
activation was included to learn complex
patterns.

– A dropout layer with a 0.5 rate was added to
help prevent overfitting.

• Output Layer: A final dense layer with a single
neuron and sigmoid activation was used to
classify the image as either normal or abnormal.

3.4 Model Compilation and Training
The following configurations were used for compiling
the model:

• Optimizer: Adam was selected due to its
efficiency in gradient-based optimization.
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• Loss Function: Binary cross-entropy was used,
as it works effectively for tasks involving binary
classification.

• Accuracy: A measure of the percentage of cases
that are accurately classified the Figure 2 show
that.
While validation data was used to track accuracy
and loss performance throughout each epoch, the
training dataset was utilized for training over a
predefined number of epochs.

3.5 Evaluation
The test dataset was used to assess the performance of
the final model (see Table 1).
• Performance Metrics:

– Overall accuracy and loss were computed
using the test data (see Figure 3).

– To summarize the classification outcomes, a
confusion matrix was generated.

– A thorough classification report was also
produced, which included metrics for each
class, including precision, recall, F1-score,
and support.

• Visualization:

– Accuracy and loss plots for training and
validation were made to assess the model’s
learning behavior and identify potential
overfitting or underfitting.

4 Experiment
This section outlines the experimental setup used to
evaluate the proposed CNN model for chest X-ray
classification. It details the dataset, preprocessing
steps, and training parameters. Performance metrics
are analyzed to assess the model’s effectiveness in
distinguishing between normal and pneumonia cases.

4.1 Performance Analysis and Class-wise
Evaluation

The experiment proposed that CNN model achieved
a good accuracy. However, as Table 2 shows, the
class-wise classification metrics indicate a notable
imbalance in performance. Class 0 (Normal) had
a precision of 83%, recall of 90%, and an F1-score
of 0.80, indicating weaker identification of normal
cases. In contrast, Class 1 (Abnormal) showed stronger
results with a precision of 88%, recall of 90%, and

Figure 2. Training and validation performance across
epochs.

F1-score of 0.88. The confusion matrix (Table 2) shows
that 44 normal cases were misclassified as abnormal
and 37 abnormal cases were misclassified as normal.
These results suggest that improvements are needed,
particularly in recognizing normal cases.

Table 1. Model evaluation metrics on test dataset.
Precision Recall F1-score Support

Weighted avg 0.85 0.85 0.85 624
Macro avg 0.85 0.85 0.84 624
Accuracy — — 0.87 624

Table 2. Confusion matrix and classification report.

Class Precision Recall Support F1-score
1 0.88 0.90 390 0.88
0 0.83 0.90 234 0.80

4.1.1 Model Accuracy
The training and validation accuracy trends over
epochs are presented in Figure 2, illustrating consistent
improvement and stabilization.

4.1.2 Model Loss
Figure 3 shows that the training loss consistently
decreased across epochs, indicating effective learning
by the model. Meanwhile, the validation loss
stabilized after initial fluctuations, suggesting good
generalization with minimal overfitting.

4.2 Enhanced Classification through Optimized
Model Configuration

In the second experiment, optimized model
performance by the introduction of hyperparameter
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Figure 3. Training and validation loss curves.

Table 3. Class-wise performance metrics for binary
classification.

Class Precision Recall F1 score
0 0.88 0.89 0.88
1 0.93 0.93 0.93

modification. Various learning rates, batch size, and
the number of hidden layers were examined, and
the best-performing setup was chosen according to
validation results. The optimized model, Although
the model’s test accuracy increased to 92%, class-wise
performance still showed some imbalance. Class
0 (Normal) had a precision of 88% and recall of
89%, resulting in an F1-score of 0.88, showing better
identification of normal cases compared to the
previous experiment. Class 1 (Abnormal) maintained
a strong performance with a precision of 93%, a
recall of 93%, and an F1-score of 0.93 (see Table
3). The confusion matrix showed 120 normal cases
misclassified as abnormal and 98 abnormal cases
misclassified as normal, indicating an improvement in
both classes. While overall accuracy increased (see
Table 4) further refinement is needed to enhance
recall Class 0. Machine learning (ML) and deep
learning (DL) models have been designed to diagnose
lung diseases through clinical imaging techniques,
especially chest X-rays and CT scans.

Table 4. Performance by proposed model.
Accuracy Macro avg accuracy Weighted avg accuracy
0.92 0.90 0.91

4.2.1 Deep Learning Techniques for X-ray-Based Lung
Disease Detection

An improved approach aimed at enhancing the
accuracy of tuberculosis (TB) detection was proposed
by utilizing a chest X-ray dataset divided into four
categories: S, M, K, and I. The method incorporated
multiple convolutional neural network (CNN)
architectures, including AlexNet, VGG16, Google Net,
and ResNet50. The approach demonstrated highly
promising results, surpassing current state-of-the-art
methods. Another study developed an innovative
diagnostic approach for pneumonia—one of the
most severe lung infections—utilizing two widely
adopted CNN architectures. The system delivers
high-quality chest X-ray images to support radiologists
in making accurate diagnoses. The approach was
evaluated on a dataset containing 5,856 frontal
chest X-ray images. VGG16 and Xception networks
were utilized, leveraging transfer learning and
fine-tuning methods. The results showed that VGG16
achieved higher overall accuracy (87%) compared
to Xception, pneumonia precision (91%), specificity
(91%), and F1-score (90%). Meanwhile, the Xception
model surpassed VGG16 in general precision (86%),
sensitivity (85%), and pneumonia recall (94%). While
VGG16 exhibited greater accuracy across the dataset,
Xception was more effective in detecting pneumonia
cases.

A separate method developed a specialized lung
cancer detection technique using a probabilistic neural
network (PNN) integrated with fuzzy logic. The
approach analyzed lung nodules in X-ray images
by calculating the variance of local pixels. The
algorithm produced better outcomes than current
methods by correctly identifying and localizing
potentially dangerous lung nodules. An automated
screening approach was also proposed for lung
abnormalities using a deep learning technique known
as knowledge distillation. The study employed the
publicly accessible ChestX-ray14 dataset for detecting
thoracic diseases. The approach distilled knowledge
from complex teacher models like ResNet-152 and
DenseNet-121 into more lightweight student models,
such as Mobile Net, VGG19, ResNet-59, and ResNet-50.
These student models were trained independently
under supervision to performmulti-label classification
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of lung diseases. In addition, ongoing advancements
in deep learning continue to improve detection
accuracy, reduce computational costs, and enable faster
diagnosis, making these models increasingly viable for
large-scale clinical deployment.

4.3 Comparison of Existing Deep Learning
Techniques

Furthermore, the adaptability of CNN architectures
across various lung diseases highlights their
robustness and scalability. Models trained on one
type of abnormality, such as pneumonia, can often be
fine-tuned to detect other conditions like COVID-19
or lung cancer using transfer learning. This flexibility
reduces the need to build separate models from
scratch for each disease. As datasets continue to
grow and become more diverse, the generalization
capabilities of these deep learning models are
expected to improve, making them valuable tools for
comprehensive and automated lung disease screening
in diverse clinical environments. Several deep learning
techniques, particularly CNN-based models, have
been implemented for lung disease detection using
chest X-rays. Table 5 indicates that models such
as AlexNet, VGG16, Xception, ResNet, Mobile Net,
and U-Net++ have been widely used for detecting
diseases like tuberculosis (TB), pneumonia, lung
cancer, COVID-19, and other thoracic abnormalities.
These architectures utilize convolutional layers to
automatically extract deep features from medical
images, reducing the need for manual feature
engineering and enhancing diagnostic performance.
The effectiveness of each model varies depending on
the type of lung disease, dataset quality, and model
architecture. For instance, MobileNetV2 and LDC-Net
have shown exceptionally high accuracy in pneumonia
and COVID-19 detection respectively, while U-Net++
has demonstrated strong segmentation capabilities
for TB diagnosis. Overall, deep learning models
have significantly outperformed traditional methods,
offering reliable and scalable solutions for automated
medical image analysis.
In addition, the integration of advanced techniques
such as transfer learning and knowledge distillation
has further contributed to the overall performance
and efficiency of these models. Transfer learning
enables pre-trained models to adapt effectively to
new medical datasets with limited annotations, while
knowledge distillation compresses large, complex
models into lightweight student models without
compromising much accuracy. These approaches

make it possible to deploy deep learning models in
real-time environments, such as handheld devices or
hospital systems, where computational resources are
limited but diagnostic accuracy remains critical. Table
5 shows the comparative deep learning models for
lungs disease detection.

4.4 Evaluation of Current Methods and Machine
Learning Models for Lung Disease Diagnosis

Based on the information provided in Table 5 and
previous discussion, we can analyze and compare
different ML and DL techniques, particularly focusing
on accuracy, sensitivity, specificity, and CNN model
performance in lung disease. One study developed
an affordable deep learning-based screening tool to
distinguish between normal and pneumonia-affected
lungs. Using a dataset of 6,555 chest X-ray images
(1,340 normal and 5,215 pneumonia cases), they
implemented a pre-trained MobileNetV2 model,
achieving highly effective results.
Another research introduced an advanced
segmentation technique to minimize data leakage in
tuberculosis (TB) diagnosis. Instead of conventional
classification, they focused on the critical lung regions
in chest X-rays using U-Net++. Their approach was
compared with other segmentation architectures,
including SegNet, U-Net, and FCN, using the
Shenzhen and Montgomery datasets. The results
revealed that U-Net++ achieved an accuracy of 98%,
outperforming other models.
A separate study developed an IoT-based deep learning
system to reduce mortality by detecting COVID-19
and other obstructive lung diseases. They employed a
lightweight CNNmodel trained on various chest X-ray
images, producing promising results. Additionally,
the model was optimized for use with Raspberry Pi
devices, enabling real-time lung disease detection.

4.5 Key Findings from Deep Learning
Comparisons:

• High Accuracy in Existing Models: Models like
MobileNetV2 (99.84%) and LDC-Net (99.28%)
achieved higher accuracy compared to other
models.

• CNN-Based TB Detection: U-Net++ (98%)
performed well in TB detection but had low
sensitivity and specificity.

• Pneumonia Classification: VGG16 (82%) and
Xception (87%) were effective, with Xception
being slightly better in specificity (91%).
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Table 5. Comparative performance of deep learning models for lung disease detection.
Model Disease Accuracy (%) Sensitivity (%) Specificity (%) F1-score(%)
AlexNet (2018) RB 87.2 — — —
VGG16 (2019) Pneumonia 82 85 76 87
Xception (2019) Pneumonia 87 82 91 90
Xception + fuzzy logic (2019) Lung cancer 92.56 95 90 —
MobileNetV2 (2020) Pneumonia 99.54 — — —
LDC-Net (2022) Covid-19 99.25 — — 96.7
U-Net++ (2022) TB 98 0.0146 0.034 0.046
Our proposed CNN model Lung disease 92 49 (macro avg) 5.2 (weighted avg) 64 (class 1)

• Xception and fuzzy logic combine produced a
92.56% detection success rate for lung cancer.

• With an accuracy of 92%, our suggested CNN
model performed slightly below than the
best-performing models, such as MobileNetV2,
Although with Xception for pneumonia and
Alex-Net for TB.

4.6 Comparison of Deep Learning (CNN) vs.
Machine Learning Approaches

In the classification of medical images, deep learning
models, particularly CNNs, have done better than
conventional machine learning models. Here is a
generalized comparison shown in Table 6.

4.7 Accuracy Comparison of CNNModels
CNN Model Accuracy Trends for Lung Disease
Detection:

• Top-performing models: MobileNetV2 (99.84%)
and LDC-Net (99.28%)

• Strong performers: U-Net++ (98%), Xception
(87-92.56%), and our Proposed CNN model
(92%)

• Moderate accuracy: VGG16 (82%) and AlexNet
(87.2%)

Strengths of Our Proposed CNNModel:

• 92% accuracy is comparable to Xception (87%)
and AlexNet (87.2%).

• Better sensitivity than some existing models,
especially in multi-class lung disease detection.

• Shows potential for improvement with
fine-tuning, data augmentation, or ensemble
techniques.

4.8 Conclusion: How Our Model Compares
Existing Techniques

• Our CNN model (92%) achieves competitive
accuracy compared to other DL models.

• Better performance than early CNN architectures
(e.g., VGG16, AlexNet) but slightly behind
MobileNetV2 and LDC-Net.

• Outperforms traditional machine learning
methods in feature extraction and classification.

• The possibility for further enhancements through
sophisticated efficient methods (such as attention
mechanisms or hybrid models).

4.9 Observations
• Manual feature extraction is necessary for

traditional ML models like SVM or Random
Forest, which can be challenging in medical
imaging.

Table 6. Comparison of machine learning and deep learning methods.

Method Examples of model Accuracy Features Performance

Machine learning
SVM, random forest, decision
tree, AlexNet, VGG16, ResNet,
Mobile network

70-85%
Require manual
features
extraction

Limited feature
learning ability

Deep learning CNN, AlexNet, VGG16,
ResNet, Mobile network 85-99% Automatic

features learning
Superius accuracy
in image-based
tasks
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• CNNs automatically learn hierarchical features,
making them more effective for chest X-ray
classification.

• Our proposed CNN model (92% accuracy)
surpasses traditional ML techniques and
competes with advanced DL models.

5 Conclusion
This study highlights the effectiveness of CNN-based
models in automating the identification of lung
conditions using X-ray analysis of the chest. Themodel
showed promise for usage in medical diagnostics
with an outstanding 92% testing accuracy. However,
it had significant difficulties with performance in
particular classes. The performance measurements,
however, showed a notable class imbalance, with low
recall and precision for identifying normal situations
(Class 0). The results presented here demonstrate the
limitations of the current implementation and the need
for further improvements, Strategies like improved
data augmentation, refined model architectures,
and class-balancing methods can help enhance
generalization and increase diagnostic accuracy.
Despite these challenges, the research reinforces the
viability of deep learning approaches in healthcare,
paving the way for more efficient and accurate
diagnostic instruments for lung disorders.
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