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Abstract
The Generalized Intersection over Union (GIoU)
and the Manhattan distance between axis-aligned
boxes represented either as corner coordinates or
their center and size, are extended to accept a
range of bounding boxes as ground truth, producing
the metrics RIoU, R1 and Rt1, respectively. In
the context of Table Detection it is shown that
this box relaxation procedure allows training object
detectionmodelswith partial or inexact annotations.
For the Table Structure Recognition task, several
code improvements to Microsoft’s open-source
Table Transformer increase all GriTS metrics on
PubTables-1M, with the overall accuracy increasing
from 0.8326 to 0.8433. Then box relaxation is
applied to take advantage in the object detection
loss function of the discretizing nature of the
post-inference table cellmatrix extraction procedure.
This further reduces the error of the GriTS metrics
AccCon, GriTSCon, GriTSLoc and GriTSTop on the
PubTables-1M tables without spanning cells by
1.8%, 13.2%, 10.6% and 14.9%, respectively.
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1 Introduction
With typical hard loss functions inconsistent or
missing annotations have a detrimental effect onmodel
performance [17, 22]. In object detection, missing
annotations have previously been addressed through
hard-example mining, by ignoring negatives that do
not significantly overlap with positive instances [3]
or with softer strategies such as reducing gradient
magnitude as a function of overlap with positive
examples [18]. Missing ground-truth bounding
boxes have been the subject of Weakly-Supervised
Object Detection (WSOD), where only image-level
annotations are available [20], or of Semi-Supervised
Object Detection (SSOD), which can also take into
account clean bounding-box annotations [15].

Herein a generic approach is taken by constructing
loss functions which treat all labels as exact but
relax the ground-truth boxes so they represent
a full range of boxes simultaneously, of which
image-level annotations like those in WSOD, clean
bounding-box annotations like in SSOD or noisy
bounding-box priors are only special cases. The
proposed method complements existing robust object
detection algorithms, e.g. by allowing a strong
prior [7] to be applied not only to one noisy bounding
box, but to a full range of boxes which is likely to
contain the ground truth.

As a practical demonstration these extended
loss functions are integrated into the DEtection
TRansformer (DETR) [2] and applied via the TAble
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TRansformer (TATR) [11] to Table Detection (TD)
and Table Structure Recognition (TSR). Specifically, it
is shown that:
• A TD model can be successfully trained to detect

multiple tables in images even when only one
table per image is annotated with a bounding box;

• A small amount of box relaxation in TD has
little impact on the COCO metrics [6], while
significantly reducing the cardinality error;

• The TSR performance on tables without spanning
cells can be improved by incorporating an
approximation of the post-inference extraction
step of the table cell matrix into the loss function,
in the form of box relaxation.

For the TSR task, state-of-the-art Grid Table Similarity
metrics (GriTS) [13] are achieved twice: first by
improving the code of the open-source TATR
implementation, and second by relaxing the
ground-truth boxes under constraints imposed
by the matrix cell-extraction step.
On the subset of complex tables of the PubTables-1M
dataset, i.e. those containing spanning cells, a prevalent
class of annotation errors is identified, opening theway
for future improvements.

1.1 Paper Organization
The remainder of the paper is organized as follows:
• Section 2 surveys common loss and metric

functions for object detection;
• Sections 3 to 5 generalize existing object

detection loss functions to accommodate relaxed
ground-truth boxes, each consisting of a range of
boxes;

• Section 6 discusses how to incorporate
non-injective post-inference steps as relaxed boxes
during training, and how to apply the technique
to TSR;

• Section 7 shows that a TD model can be trained
by annotating the bounding box of only one
table in each image, or by slightly relaxing the
ground-truth boxes. Each of these approaches
either preserves or reduces the COCO object
cardinality error, respectively. Furthermore,
box relaxation is shown to improve the TSR
performance of TATR on simple tables;

• Section 8 highlights possible extensions of the
method;

• Section 9 summarizes the results and concludes
the paper.

2 Related Work
Generalized Intersection over Union (GIoU) [10] is
a popular loss function and evaluation metric for
object detection. It improves upon its scale-invariant
predecessor, Intersection over Union (IoU), by
addressing the gradient-vanishing problem in the
non-overlapping case.
Many variations of (G)IoU have recently been
developed, including:
• Bounded IoU (BIoU) considers the upper bound

of IoU obtained when the three coordinates other
than either the center X or Y coordinate, or the
width or height of the predicted box, match the
target box exactly [16];

• Distance-IoU (DIoU) incorporates the distance
between the predicted and target box centers,
normalized by the diagonal of the smallest
enclosing box and squared [23];

• Complete IoU (CIoU) builds upon Distance-IoU
(DIoU) by incorporating a suitably scaled squared
difference between the arctangents of the aspect
ratios of the predicted and target boxes [23];

• Gaussian Guided IoU (GGIoU) combines IoU
with a Gaussian penalty that encourages the
predicted and target box centers to be close [4];

• Alpha-IoU (α-IoU) applies a power
transformation to IoU and related loss
functions [5];

• Minimum Point Distance IoU (MPDIoU) uses
the Euclidean distance between the top-left and
bottom-right corners of the boxes [8];

• Corner-Point and Foreground-Area IoU (CFIoU)
considers the distance between corresponding
corner points. If the box centers coincide, it also
considers the fraction of the minimum enclosing
region covered by the target box; otherwise, it uses
the area difference normalized by the minimum
enclosing region [1];

• 3D-GIoU extends GIoU to three dimensions [21];
• Marginalized GIoU (MGIoU) is applied to

convex shapes by computing the average
one-dimensional GIoU across projections of both
shapes onto the union of their normals [24].
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A more traditional loss and metric function
for bounding-box detection is the scale- and
representation-dependent Lp loss (0 ≤ p ≤ ∞)
applied to axis-aligned bounding boxes.
DETR, which uses the Hungarian matching algorithm
as an alternative to anchor-based unordered set
detection [19], relies on both GIoU and L1 losses as
follows:
• For each set of object predictions from the DETR

decoder, an optimal bipartite matching with the
ground-truth objects is computed. The pairwise
matching cost is a linear function of:

– L1 loss between predicted and target boxes
in center–size format,

– GIoU between predicted and target boxes,
and

– the predicted probability of the target class.
• The final loss function is then computed as a

linear function of the L1 loss, GIoU, and class
cross-entropy.

Both GIoU and the L1 loss are generalized next so that
the ground truth consists of a range of boxes bounded
by an optional hole border [14] and/or an optional
outer border.

3 Relaxed Intersection over Union (RIoU)
Definition 1 (RIoU: Relaxed Intersection over Union).
Let C be one of the following sets: the full set of closed
convex sets in Rd, the set of d-dimensional boxes, or the
set of d-dimensional axis-aligned boxes. Given

• a predicted shape B ∈ C,
• an optional shape H ∈ C, referred to as the hole

border, and
• an optional shape O ∈ C, referred to as the outer

border,
let

RIoU(B,H,O) =
|B ∩H|
|H|

· |O|
|O ∪B|

− 1

+
|B ∪H|
|E(B,H)|

/2 +
|O ∪B|
|E(O,B)|

/2

(1)

whereE(P,Q) denotes the convex hull in C of shapesP,Q ∈
C and | · | denotes the volume of a shape.

The definition of RIoU is extended to empty or
unspecified borders according to the following
principles:

• An unspecified hole border is treated as H ⊆ B;
• An unspecified outer border is treated as B ⊆ O;
• If hole border H is specified, the relation H ⊆ B

is required to maximize RIoU(B,H, ·);
• If outer border O is specified, the relation B ⊆ O

is required to maximize RIoU(B, ·, O);
RIoU is consequently endowed with the following
conventions:
• If H is unspecified then |B ∩ H|/|H| = |B ∪
H|/|E(H,B)| = 1;

• If O is unspecified then |O|/|O ∪ B| = |O ∪
B|/|E(O,B)| = 1;

• If |H| = 0 then |B ∩H|/|H| = 1 if H ⊆ B and 0
otherwise;

• If |O ∪B| = 0, then |O|/|O ∪B| = 1 if B ⊆ O and
0 otherwise;

• If |E(P,Q)| = 0, then |P ∪Q|/E(P,Q) = 1 if P ⊆
Q or Q ⊆ P and 0 otherwise.

A few properties follow immediately:
• It always holds that −1 ≤ RIoU ≤ 1;
• If H = O, then RIoU equals GIoU;
• With both borders specified, RIoU(B,H,O) =

1 ⇐⇒ H ⊆ B ⊆ O;
• With only H specified, −½ ≤ RIoU(B,H, _) ≤ 1 ;
• With only O specified, −½ ≤ RIoU(B, _, O) ≤ 1 ;
• With both borders unspecified, RIoU(B, _, _) = 1.

Figure 1 shows examples of RIoU in the common case
where C is the set of axis-aligned rectangles in 2D.

4 Relaxed Lp Distance Between Axis-Aligned
Boxes (Rp)

Let an axis-aligned box in Rd be represented by the
coordinates of its lower-bound corner l = l1, . . . , ld
and its upper-bound corner u = u1, . . . , ud, where
li ≤ ui, i = 1..d. An axis-aligned box can be partially
specified, i.e. any subset of the coordinates of l or umay
be left unspecified.
Definition 2 (Rp: Relaxed Lp distance of axis-aligned
boxes). Given
• an arbitrary axis-aligned box B = (lb, ub), referred to

as the predicted box,
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(a) RIoU(B,H,O) for rectangles B relative to hole and
outer borders H ⊆ O. The maximum value of 1 is reached

if and only if H ⊆ B ⊆ O.

(b) RIoU(B,H, _) for rectangles B relative to hole border
H . The maximum value of 1 is reached iff H ⊆ B.

(c) RIoU(B,H, _) for rectangles B relative to outer border
O. The maximum value of 1 is reached if and only if

B ⊆ O.
Figure 1. RIoU(B, ·, ·) for axis-aligned boxes in 2D. Penalty
areas are hatched. Legends display numerical RIoU values
and the rectangle color palette follows a piecewise-linear

scale from blue (−1) through red (0) to green (1).

• a partially specified axis-aligned box H = (lh, uh),
referred to as the hole border, and

• a partially specified axis-aligned box O = (lo, uo),
referred to as the outer border,

let
Rp(B,H,O) = min

H⊆J⊆O
Lp(B, J), (2)

where 0 ≤ p ≤ ∞, Lp is the distance induced by the p-norm
in the R2d Cartesian coordinate space, and J = (lj , uj)
represents any axis-aligned box which includes H and is
itself included in O, i.e. loi ≤ lji ≤ lhi and uhi ≤ u

j
i ≤ uoi for

i = 1..d.

The axis-aligned boxes J in Definition 2 are said to be
compatiblewith the hole borderH and the outer border
O.

By convention, whenever loi , lhi , uhi , or uoi are
unspecified in Definition 2 the corresponding
inequalities are removed. Moreover, if H = O, then
Rp reduces to the standard Lp distance between
axis-aligned boxes represented by their lower-bound
and upper-bound corners.

The computation of Rp is given in Algorithm 1.

Algorithm 1: Rp: Relaxed Lp distance of
axis-aligned boxes

Input: B = (lb, ub), H = (lh, uh), O = (lo, uo)
for i = 1 to d do
if loi is unspecified then
loi ← −∞

end if
if uoi is unspecified then
uoi ←∞

end if
if lhi is unspecified then
lhi ← uoi

end if
if uhi is unspecified then
uhi ← loi

end if
lxi ← min(max(lbi , l

o
i ), l

h
i ) {Clamp lbi }

uxi ← min(max(ubi , u
h
i ), u

o
i ) {Clamp ubi }

end for
X ← (lx, ux) {Nearest compatible neighbor}
return ||B −X||p {Optimal distance}

Proof of Algorithm 1. The correctness follows because
each dimension can be clamped in independently.
Thus, the optimal compatible box can be constructed
dimension by dimension.

Some 2D examples of R1 are shown in Figure 2.

5 Relaxed L1 Distance in Center-Size Format
(Rt

1)
InDETR, the distance between axis-aligned boxes is not
computed directly from the lower- and upper-bound
corner coordinates. Instead, it is measured between
their box centers and sizes.
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(a) Expression 1− 2R1(B,H,O)/maxB R1 for rectangles
B relative to hole and outer borders H ⊆ O. R1 reaches its

minimum value 0 if and only if H ⊆ B ⊆ O.

(b) Expression 1− 2R1(B,H, _)/maxB R1 for rectangles B
relative to hole border H . R1 reaches its minimum value 0

if and only if H ⊆ B.

(c) Expression 1− 2R1(B, _, O)/maxB R1 for rectangles B
relative to outer border O. R1 reaches its minimum value 0

if and only if B ⊆ O.
Figure 2. Expression 1− 2R1(B, ·, ·)/maxB R1(B, ·, ·) for
axis-aligned boxes in 2D. Penalty areas are hatched. The
color palette and the boxes B, hole borders H and outer

borders O are as in Figure 1.

A simple two-step algorithm can be used to find the
nearest compatible L1 neighbor in the center–size
format. For each dimension:
1. Clamp the size of the interval between the

minimum and maximum size of any box
compatible with the target relaxed box. The center
location does not affect this step;

2. Move the center of the interval by the smallest
amount necessary – while keeping its size fixed
as determined in the previous step – so that it

becomes compatible with the target relaxed box.
A formal treatment of a broader class of linearly
transformed boxes is provided inAppendix B, ofwhich
the center–size representation is a special case which
is illustrated in Appendix C.

6 Training for Post-Inference Processing
Object detection is often followed by post-processing
steps exhibiting constant regions, e.g. by partially
discretizing the predicted bounding boxes. This
effectively creates equivalence classes of image
annotations.
If a subset of the ground-truth boxes in a training
example can be relaxed simultaneously without
any compatible combination of boxes leaving the
equivalence class, then the training objective can
be adapted to target not only the original example,
but a larger subset of its equivalence class. This
procedure can improve performance by providing
better alignment of the training objective, while also
offering several practical advantages:
• Box relaxation within the equivalence class

only needs to be applied to ground-truth
examples. Since these are already curated, their
post-processing can be simpler than that of
predicted boxes.

• Ground-truth boxes for which the objective
function is not demonstrably constant in a local
region can still be included in the training set,
albeit without relaxation.

• There is no need to design a new loss or bipartite
matching cost function for every post-processing
algorithm. The same loss functions developed
previously can be applied without modification.

6.1 TSR with Relaxed Boxes under GriTS
Equivalence

It is next shown how the box relaxation procedure can
be applied to table structure recognition (TSR).
A set of metrics sharing a common framework has
been proposed to evaluate the performance of table cell
content, location, and topology recognition: GriTSCon,
GriTSLoc, and GriTSTop. The metric AccCon has also
been derived as the case where GriTSCon = 1.
GriTSCon relies for cell-partial correctness on the
normalized length of the longest contiguous junk-free
matching subsequence. GriTSLoc and GriTSTop rely
instead on the intersection area divided by the area of
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the minimal box enclosing both predicted and target
boxes (according to the open-source implementation,
which differs from the “IoU” designation in [13]).
These metrics rely on an approximate matrix similarity
algorithm applied to table cell matrices, which
represent strongly discretized versions of the target
and predicted boxes.
Box relaxation under table cell matrix equivalence is
formulated as a constrained optimization problem in
which the hole and outer borders serve as optimization
variables. The optimization objective is defined as the
sum of the differences between the perimeters of the
outer and hole borders. The constraints which ensure
table cell matrix equivalence fall into three categories:
• Bound constraints, e.g. the hole border of each

object must contain the center of the original box;
• Linear constraints, e.g. a row underlying a header

must have substantial vertical overlap with the
header;

• Non-linear constraints, e.g. on the amount of area
overlap between spanning cells and simple cells.

The resulting relaxed boxes for a PubTables-1M
training example is shown in Figure 3.
Additional details of the constrained optimization
problem are provided in Appendix D.

7 Experimental Results
The experiments were performed on an NVIDIA
GeForce RTX 3070 with an Intel i9-9900K CPU and
a Gen-4 ThinkPad Laptop. The source code is publicly
available at https://github.com/aioaneid/table-transformer.
7.1 Table Detection (TD) with Box Relaxation
The TATR model for TD was trained using the
following procedures:
[A] Using the full PubTables-1M training dataset for

table detection;
[B] Restricting the training data to images containing

only a single table;
[C] Including all images, but in multi-table images

keeping only one randomly selected table;
[D] Including all images, but in multi-table images

keeping the bounding box of a single randomly
selected table, while relaxing the bounding boxes
of the others so their outer borders cover the
full image and hole borders are absent. This is

equivalent to counting objects by category, i.e.
either table or table rotated;

[E] Including all images, and relaxing each bounding
box by shrinking and expanding each dimension
by 2 pixels around the box center to obtain
the hole and outer borders, respectively. The
tight-annotation crop of TATR was configured to
crop around the outer border;

[F] Including all images, and symmetrically relaxing
each bounding box in both dimensions by 4 pixels,
or less if required to maintain symmetry, while
keeping the box center fixed. The tight-annotation
crop of TATR was configured to crop around
the midline between the hole and outer borders,
which coincides with the original bounding box;

[G] Same as Model [F], but with 8 pixels of relaxation
instead of 4.

As shown in Table 1, the cardinality error – measured
as the average absolute error in the number of
predicted objects – is highest when only one table is
annotated in multi-table images (Models [B] and [C]).
With box relaxation, however, the remaining tables
can be counted by object category (table or table rotated)
(Model [D]), restoring the cardinality error to the level
observed with standard training (Model [A]).
A small amount of relaxation either has negligible
impact on the COCO metrics (Model [E]), or slightly
reduces themwhile also reducing the object cardinality
error (Models [F] and [G]). In these experiments,
the cardinality error consistently decreased with
increasing box relaxation.

Table 1. The best – across all 20 training epochs –
Cardinality Error, COCO Average Precision (AP) and

COCO Average Recall (AR) for each TD model described
in Section 7.1. In each column, the best and worst results

are shown in bold and italic, respectively.

Model Card. AP AR Training DatasetError

Model [A] 0.0018 0.9800 0.9900 Full PubTables-1M
training dataset

Model [B] 0.1050 0.8700 0.8870 Only images containing
a single table

Model [C] 0.0186 0.9770 0.9880 All images, but in each image
keeping 1 randomly selected table

Model [D] 0.0018 0.9730 0.9880 All images, 1 random table/image
and counting the other tables

Model [E] 0.0018 0.9800 0.9900 All images with all tables
shrunk and expanded by 2 pixels

Model [F] 0.0016 0.9790 0.9900 All images with all tables
shrunk and expanded by 4 pixels

Model [G] 0.0014 0.9760 0.9850 All images with all tables
shrunk and expanded by 8 pixels
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(a) Relaxed column header. The hole border is a short vertical segment.

(b) Relaxed last row, which can extend indefinitely downward.

(c) Relaxed first column, which can extend indefinitely to the left.

(d) Relaxed second column, allowing some overlap with nearby columns.
Figure 3. Subset of hole and outer border pairs for a training TSR image [9]. Hole border penalty areas are diagonally

hatched in crimson, while outer border penalty areas are back-diagonally hatched in navy blue.

Figure 4 shows a validation image where the standard
model (Model [A]) detects a spurious table, while
the model trained with 8 pixels of box relaxation
(Model [G]) correctly identifies all tables.

Another validation example, shown in Figure 5,
illustrates a case where both the standard model
(Model [A]) and the 8-pixel relaxation model
(Model [G]) detect a spurious table, but at different
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(a) Table detection by the standard model (Model [A]).

(b) Table detection by the model trained with 8 pixels of
box relaxation (Model [G]).

Figure 4. A validation image excerpt in which the standard
model [25] (Model [A]) finds a spurious table (a), while

the model trained with 8 pixels of box relaxation
(Model [G]) correctly identifies all tables (b).

locations.

These results confirm that box relaxation enables
the training of object detection models using
partial or relaxed annotations, without introducing
performance-damaging contradictions in the training
dataset.

(a) The standard model (Model [A]) duplicates the first
table.

(b) The model trained with 8 pixels of box relaxation
(Model [G]) duplicates the second table.

Figure 5. Excerpt from a validation image showing TD
inferences of the standard model and the model trained

with 8-pixel box relaxation [26].

7.2 Table Structure Recognition (TSR) with Box
Relaxation

A stronger baseline than TATR v1.1 was established
first by fixing the following issues in the open-source
implementation:
• In some cases, disjoint boxes were incorrectly

considered to have a non-zero intersection area;
• The row and column alignment code

unintentionally altered shared data structures;
• Multiple overlapping predicted headers were

incorrectly aligned;
• The state of the random number generator was

lost when training was resumed.
As shown in Table 2, the resulting baseline significantly
outperforms previously reported metrics.
As an object-detection model, the TATR TSR model
benefits from the same advantages described in
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Section 7.1. Training with missing annotations is
feasible provided that objects are counted according to
TSR categories: table, table column, table row, table column
header, table projected row header, and table spanning cell.
Partial annotations are also supported. For example,
a zero-area table column hole border can be created
with a single click inside a column (not shown).

Box relaxation can further improve TSR performance
via the constrained box relaxation technique described
in Section 6.1. In order to not interfere with TATR
v1.1’s tight annotation cropping, the table outer border
was fixed to the original bounding box. Training
with constrained box relaxation led to substantial
improvements in the GriTS metrics for the category of
simple tables, as shown in Table 2.

Table 2. GriTS performance of TATR v1.0, v1.1, v1.1 with
bug fixes, and v1.1 with bug fixes plus constrained table

relaxation. In each row, the best result within its category is
shown in bold. One epoch corresponds to all 758,849

PubTables-1M TSR training images. For comparison, the
original TATR v1.1 model was previously trained for 30

epochs of 720,000 images each.
All tables

Metric TATR v1.0 TATR v1.1 Bug fixes Box relaxation
AccCon 0.8243 0.8326 0.8433 0.8458
GriTSCon 0.9850 0.9855 0.9862 0.9866
GriTSLoc 0.9786 0.9797 0.9806 0.9811
GriTSTop 0.9849 0.9851 0.9858 0.9861
Epochs 20 28.5 28 28

Simple tables (no spanning cells)

Metric TATR v1.1 Bug fixes Box relaxation
AccCon 0.9551 0.9661 0.9667
GriTSCon 0.9936 0.9947 0.9954
GriTSLoc 0.9922 0.9934 0.9941
GriTSTop 0.9943 0.9953 0.9960
Epochs 28.5 28 28

Complex tables (with spanning cells)

Metric TATR v1.1 Bug fixes Box relaxation
AccCon 0.7186 0.7324 0.7363
GriTSCon 0.9777 0.9786 0.9789
GriTSLoc 0.9680 0.9693 0.9697
GriTSTop 0.9761 0.9774 0.9773
Epochs 28.5 28 28

A comparison on a simple image between the baseline
model and the constrained box relaxation model is
shown in Figure 6.

While constrained box relaxation consistently
improved performance across epochs and GriTS
metrics for simple tables, no clear pattern emerged for
complex tables (Figure 10). Investigation revealed
that approximately 1.4% of the complex tables contain
a spanning cell deemed invalid by the cell-matrix
extraction procedure.

Such a validation example is shown in Figure 7.
In the PubTables-1M annotation, the spanning cell
at the beginning of the second row (Figure 7(a))
violates TATR’s assumption of a tree structure of
spanning cells within a header, causing it to be
treated as invalid and dropped. Consequently, the
text “Analysis without 12-gene risk score” is split into
two simple cells (Figure 7(b)). The header is also
incorrectly annotated as three rows instead of one,
and a spurious vertical spanning cell encompasses
the text “(0.84-2.16)”. The baseline model (TATR
v1.1 with bug fixes) also made multiple errors
(Figure 8) but matched the PubTables-1M annotation
somewhat closely, achieving GriTSCon = 0.9821,
GriTSLoc = 0.9770, and GriTSTop = 0.9821 on
this image alone. By contrast, the constrained box
relaxation model made a single mistake by missing
a spanning cell (Figure 9), which by comparison to
the PubTables-1M annotation results in lower metric
values of GriTSCon = 0.9059, GriTSLoc = 0.7048
and GriTSTop = 0.8815. This example highlights
the need for curated complex-table annotations in
PubTables-1M for accurate benchmarking.

To enable comparison with previously published
results, PubTables-1M tables containing provably
invalid spanning cells were not excluded. Given that
these PubTables-1M annotations violate some of the
constraints in Equation (6), they represent infeasible
solutions to the numerical optimization problem. For
this reason they were included in the training dataset
without any relaxation.

7.3 Model Training Performance
Since the loss function is modified only slightly and
the model size remains unchanged, box relaxation has
a marginal impact on training time per epoch. Indeed,
in the experiments presented here, box relaxation
increased the training time by about 1%. The inference
procedure, on the other hand, remains unaffected.

The preparation of the training dataset with relaxed
boxes must also be considered. This step is
easily parallelizable, as there are no cross-image
dependencies. While faster and more sophisticated
numerical optimization tools exist, the TSR results
reported here were obtained using a Python
implementation of Algorithm 3, which takes
approximately 10 seconds per image on a single laptop
CPU core.
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(a) The baseline model detects a spurious table projected row header.

(b) The table cell matrix of the baseline model corresponding to (a).

(c) The model trained on relaxed boxes does not find any spurious objects.

(d) The table cell matrix of the model trained on relaxed boxes corresponding to (c), without errors.
Figure 6. Comparison of baseline and model trained with relaxed boxes on a simple table from PubTables-1M [27].
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(a) The box annotations as they appear in the
PubTables-1M validation dataset. The header, which in

reality consists of only the top row, is incorrectly annotated
in PubTables-1M as spanning the top three rows. Of the
three spanning cell annotations (green, back diagonal

hatch pattern), only the top-right one is correct.

(b) The table cell matrix corresponding to the
PubTables-1M box annotations of (a). The spanning cell
holding together the text in the second row is deemed
invalid by the TATR cell-matrix extraction procedure, so

the row’s text gets split in two cells.
Figure 7. A table image with an incorrect annotation in the
PubTables-1M validation set [28]. The column header is
colored dark orange with a dot hatch pattern, and the

projected row headers are colored dark turquoise with a
diagonal hatch pattern.

8 Future Directions
As noted in Section 7.2, the TATR cell-matrix extraction
procedure detects invalid spanning cell annotations
in approximately 1.4% of the PubTables-1M complex
tables. Because other complex tables may contain
additional types of errors, curating the entire subset
of complex tables would be a valuable step toward
improving both the training and benchmarking of TSR
models.

(a) Box annotations inferred by the baseline model (TATR
v1.1 with bug fixes). The header, which in reality consists
only of the top row, is incorrectly inferred to span the top
two rows. Of the three spanning cell annotations (green

with back-diagonal hatch), only the top-right one is correct.

(b) The cell matrix produced by the baseline model,
corresponding to (a).

Figure 8. The same table image as in Figure 7, processed
with the baseline model (TATR v1.1 with bug fixes). The
column header is shown in dark orange and with a dotted

hatch. The projected row headers are shown in dark
turquoise with a diagonal hatch.

The splitting of the common expression “Hazard Ratio”
into separate simple cells (Figure 7(b)) suggests that
integrating even basic text-understanding techniques
could further enhance performance.

The box relaxation technique presented here could also
be applied to more general object detection datasets,
particularly as a method for handling noisy or partial
annotations.

In cases with missing box annotations, the current
requirement to count objects by category can be
relaxed, allowing all unannotated objects to be counted
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(a) Box annotations inferred by the constrained box
relaxation model. The column header, projected row

headers, rows, and columns are correctly identified, with
only minor boundary shifts which do not influence the cell
matrix extraction. However, the horizontal spanning cell in

the top-right corner is not detected.

(b) The cell matrix corresponding to (a). The only error is
the missing top-right spanning cell, causing the text

“Hazard” to appear in its own simple cell.
Figure 9. The same table image as in Figures 7 and 8,

processed with the model trained with constrained box
relaxation. The column header is shown in dark orange

with a dotted hatch. The projected row headers are shown
in dark turquoise with a diagonal hatch.

together, regardless of their category.
Extending the method beyond axis-aligned boxes to
structured convex shapes, using a technique similar to
that of MGIoU [24], would significantly broaden its
applicability.
Finally, Appendix C shows that the L1 distance in
center–size format implicitly prioritizes box size, and
it proposes the center–half-size format to mitigate this
imbalance for object detection with the L1 distance.
A promising direction for future work is to assess

(a) GriTS Content

(b) GriTS Topology
Figure 10. GriTS metrics for simple and complex tables,
comparing the constrained box relaxation TSR model to

TATR v1.1 with bug fixes. The first five epochs are omitted.
The previously published TATR v1.1 model is shown for

the best epoch reported in Figure 7 of [12].

the impact of this modification, as well as other
use–case-specific linear transformations informed by
Appendix B, on DETR and related models.

9 Conclusion
This work demonstrates that box relaxation lowers
the barrier to image annotation for training object
detection models by requiring bounding boxes for
only a subset of objects in each image and by allowing
approximate bounding boxes, all without introducing
contradictions into the loss function. Furthermore,
discretized post-training steps can be leveraged during
training as relaxed ground-truth boxes.
Taken together, these results establish box relaxation
as an effective tool for reducing dataset annotation
requirements. Moreover, in computer vision pipelines
with non-injective or discretizing post-inference
steps, it can enhance end-to-end performance, as
demonstrated for TSR.
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A Appendix
B Relaxed L1 Distance of Transformed

Axis-Aligned Boxes (Rt
1)

An algorithm is derived for computing the relaxed
L1 distance between axis-aligned boxes whose
coordinates are transformed via function pairs fp,qi :

R2 7→ R, from which the center–size format will follow
as a special case.
A transformed axis-aligned box in Rd is represented as
a vector b̃ = (l̃, ũ) ∈ R2d, where l̃i = fsi (li, ui) and
ũi = f ti (li, ui) for i = 1..d.
For a partially specified axis-aligned box, if l̃i or ũi is
missing, both values are treated as missing. That is,
for any dimension i, either both l̃i and ũi are specified,
or neither is.
Definition 3 (Rtp: Relaxed Lp distance of transformed
axis-aligned boxes). Given
• an arbitrary predicted box B = (lb, ub) and its

transformed version B̃ = (l̃b, ũb), where l̃bi =
f si (l

b
i , u

b
i) and ũbi = f ti (l

b
i , u

b
i) for i = 1..d, referred

to as the transformed predicted box,
• a partially specified outer border O = (lo, uo) and

its transformed version Õ = (l̃o, ũo), where l̃oi =
f si (l

o
i , u

o
i ) and ũoi = f ti (l

o
i , u

o
i ) for i = 1..d, referred to

as the transformed outer border, and
• a partially specified hole border H = (lh, uh) and

its transformed version H̃ = (l̃h, ũh), where l̃hi =
fsi (l

h
i , u

h
i ) and ũhi = f ti (l

h
i , u

h
i ) for i = 1..d, referred

to as the transformed hole border,
Rtp is defined as

Rtp(B̃, H̃, Õ) = min
H⊆I⊆O

Lp(B̃, Ĩ) (3)

where 0 ≤ p ≤ ∞ and Lp denotes the distance induced by
the p-norm in R2d.

It is shown below that for p = 1, the simultaneous
distanceminimization of fs and f t can, for a large class
of functions, be simplified to a sequential minimization
performed in a specific order. To that end, several
auxiliary lemmas are established first.
Lemma 1. Let D ⊆ E be two arbitrary sets, and let fs,t :
E 7→ R be functions such that f t(D) (i.e. the image of D
under f t) is a closed interval and, ∀X,Y ∈ D, ∃X ′ ∈ D
s.t. f t(X ′) = f t(X) and |fs(X ′) − fs(Y )| ≤ |f t(X) −
f t(Y )|.

Then for any B ∈ E s.t. minI∈D L1(B̃, Ĩ) exists, it holds
that

min
I∈D

L1(B̃, Ĩ) = q+ min
J∈Ds.t.|f t(B)−f t(J)|=q

|fs(B)−fs(J)|,

(4)
where q = minI∈D |f t(B)− f t(I)|.
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Lemma 1 essentially states that if fs can change in
absolute value no faster than f t, then the nearest L1

neighbour of B under the transformation (fs, f t) can
be found by first minimizing the absolute difference
to f t(D) and then, constrained by that, minimizing the
absolute difference to fs.

Proof of Lemma 1. For an arbitrary B ∈ E, let
J = J(B) ∈ D be the point that minimizes the
absolute difference to f t(B), i.e. |f t(B) − f t(J)| =
minI∈D |f t(B) − f t(I)|. For any K ∈ D, according
to the lemma hypothesis ∃J ′ = J ′(J(B),K) ∈ D s.t.
f t(J ′) = f t(J) and |fs(J ′)− fs(K)| ≤ |f t(J)− f t(K)|.
It will be shown next that L1(B̃, J̃ ′) ≤ L1(B̃, K̃).
By definition of J , the closest point to f t(B) in the
closed interval f t(D) is f t(J). Since K ∈ D hence
f t(K) ∈ f t(D), it follows that either f t(J) = f t(B), or
f t(K) ≤ f t(J) ≤ f t(B), or f t(B) ≤ f t(J) ≤ f t(K). In
all cases, |f t(B)−f t(J)| = |f t(B)−f t(K)|− |f t(K)−
f t(J)|.
HenceL1(B̃, J̃ ′) = |fs(B)−f s(J ′)|+|f t(B)−f t(J ′)| =
|fs(B)− fs(J ′)|+ |f t(B)− f t(J)| = |f s(B)− fs(K) +
fs(K)−fs(J ′)|+ |f t(B)−f t(K)|− |f t(K)−f t(J)|. It
follows that L1(B̃, J̃ ′) ≤ |fs(B) − fs(K)| + |fs(K) −
fs(J ′)|+ |f t(B)−f t(K)|− |f t(K)−f t(J)| ≤ |fs(B)−
f s(K)|+ |f t(B)− f t(K)| = L1(B̃, K̃).
Since K ∈ D was arbitrary, substituting I = I(B) =
argminI∈D |f t(B)−f t(I)| forK shows that the overall
minimum is achieved not only at I , but also at J ′ =
J ′(J(B), I(B)). The latter satisfies f t(J ′) = f t(J),
concluding the proof.

Lemma 2. Letαs,t, βs,t ∈ R satisfy |αs| ≤ |αt| and |βs| ≤
|βt|. Then, for any a, b ∈ R, ∃v = v(a, b), w = w(a, b) ∈
R s.t. min(0, a) ≤ v ≤ max(0, a), min(0, b) ≤ w ≤
max(0, b), αtv + βtw = αta + βtb, and |αsv + βsw| ≤
|αta+ βtb|.

Proof of Lemma 2. If αtaβtb ≥ 0, then |αsa + βsb| ≤
|αsa|+ |βsb| = |αs| · |a|+ |βs| · |b| ≤ |αt| · |a|+ |βt| · |b| =
|αta+ βtb|, so the lemma holds with v = a and w = b.
Otherwise let αtaβtb < 0. If |βtb| ≥ |αta|, choose
v = 0 and w = αt

βt a + b, which satisfies min(0, b) ≤
w ≤ max(0, b). Finally let |βtb| < |αta| and choose
v = a+ βt

αt b, which satisfies min(0, a) ≤ v ≤ max(0, a)
andw = 0, thus concluding the constructive proof.

Finally, it is shown that, for a large class of linear
function pairs, clamping to the image of one function
first yields a correct nearest compatible neighbor.

Lemma 3. Let fs,t : R → R be two real-valued linear
functions defined by fs(x, y) = αsx + βsy, f t(x, y) =
αtx + βty, with αs,t, βs,t ∈ R. If |αs| ≤ |αt| and |βs| ≤
|βt|, then fs,t satisfy the conditions of Lemma 1 for any cross
product of closed intervalsD = [lo, lh]×[uh, uo] ⊆ R2 = E.

Proof of Lemma 3. Let X = (lx, ux) and Y = (ly, uy) be
points in D as in Lemma 1. Apply Lemma 2 with a =
lx−ly, b = ux−uy, to obtain v = v(X,Y ),w = w(X,Y ).
Define X ′ = (lx

′
, ux

′
), lx′ = ly + v, ux′ = uy + w.

It will be shown next that the four conditions of
Lemma 1 are satisfied by X , Y , and X ′:
• f t(D) is a closed interval;
• X ′ ∈ D;
• f t(X ′) = f t(X);
• |fs(X ′)− fs(Y )| ≤ |f t(X)− f t(Y )|.

The first condition follows from the linearity of
f t: f t(D) = [min(f t(S)),max(f t(S))] where S =
{f t(lo, uh), f t(lo, uo), f t(lh, uh), f t(lh, uo)}.
The second condition is satisfied because lo ≤
min(lx, ly) = ly + min(0, lx − ly) ≤ lx

′ ≤ ly +
max(0, lx − ly) = max(lx, ly) ≤ lh and similarly
uh ≤ min(ux, uy) = uy + min(0, ux − uy) ≤ ux

′ ≤
uy +max(0, ux − uy) = max(ux, uy) ≤ uo.
The third condition can be proved as follows: f t(X ′) =
αtlx

′
+βtux

′
= αt(ly+v)+βt(uy+w) = (αtly+βtuy)+

(αtv + βtw) = (αtly + βtuy) + (αta + βtb) = (αtly +
βtuy)+αt(lx− ly)+βt(ux−uy) = αtlx+βtux = f t(X).
Finally the fourth condition follows from |fs(X ′) −
fs(Y )| = |αslx′+βsux′−(αsly+βsuy)| = |αs(lx′−ly)+
βs(ux

′−uy)| = |αsv+βsw| ≤ |αta+βtb| = |αt(lx−ly)+
βt(ux−uy)| = |(αtlx+βtux)−(αtly+βtuy)| = |f t(X)−
f t(Y )|, which concludes the constructive proof.

The complete algorithm for the general case of
Lemma 3 is given in Algorithm 2. The algorithm for
the center–size format, as used in DETR, is obtained
as the special case with αs = βs = ½ and αt = −1,
βt = 1.

Proof of Algorithm 2. The dimensions are independent
of each other, so it is sufficient to prove correctness
in the 1-dimensional case. To simplify notation, the
dimension index i is dropped.
If the outer border is missing, it is set equal to
the full range of the respective dimension, i.e., no
localization information is provided from the outer
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Algorithm 2: Rt1: L1 with transformed coordinates
Input: B̃ = (l̃b, ũb), Õ = (l̃o, ũo), H̃ = (l̃h, ũh),
αs1..d, β

s
1..d, α

t
1..d, β

t
1..d;

|αsi | ≤ |βsi |, 0 < |αti| ≤ |βti |, αsiβti 6= βsi α
t
i, i = 1..d

for i = 1..d do
δi ← αsiβ

t
i − βsi αti; γi ← αsiα

t
i − βsi βti

if δiαti > 0 then
if δiβti > 0 then
l̃ti ← αti(−βsi ũoi + βti l̃

o
i ) + βti(α

s
i ũ
h
i − αti l̃hi );

ũti ← αti(−βsi ũhi + βti l̃
h
i ) + βti(α

s
i ũ
o
i − αti l̃oi )

else
l̃ti ← αti(−βsi ũoi + βti l̃

o
i ) + βti(α

s
i ũ
o
i − αti l̃oi );

ũti ← αti(−βsi ũhi + βti l̃
h
i ) + βti(α

s
i ũ
h
i − αti l̃hi )

end if
else
if δiβti > 0 then
l̃ti ← αti(−βsi ũhi + βti l̃

h
i ) + βti(α

s
i ũ
h
i − αti l̃hi );

ũti ← αti(−βsi ũoi + βti l̃
o
i ) + βti(α

s
i ũ
o
i − αti l̃oi )

else
l̃ti ← αti(−βsi ũhi + βti l̃

h
i ) + βti(α

s
i ũ
o
i − αti l̃oi );

ũti ← αti(−βsi ũoi + βti l̃
o
i ) + βti(α

s
i ũ
h
i − αti l̃hi )

end if
end if
ũi ← min(max(δiũ

b
i , l̃

t
i), ũ

t
i) {Clamp δiũbi}

if αti > 0 then
if βti > 0 then
l̃si ← max(ũiβ

s
i α

t
i + δiα

t
i(β

t
i l̃
o
i −

βsi ũ
o
i ), ũiα

s
iβ

t
i − δiβti(−αti l̃oi + αsi ũ

o
i ))

ũsi ← min(ũiβ
s
i α

t
i + δiα

t
i(β

t
i l̃
h
i −

βsi ũ
h
i ), ũiα

s
iβ

t
i − δiβti(−αti l̃hi + αsi ũ

h
i ))

else
l̃si ← max(ũiβ

s
i α

t
i + δiα

t
i(β

t
i l̃
o
i −

βsi ũ
o
i ), ũiα

s
iβ

t
i − δiβti(−αti l̃hi + αsi ũ

h
i ))

ũsi ← min(ũiβ
s
i α

t
i + δiα

t
i(β

t
i l̃
h
i −

βsi ũ
h
i ), ũiα

s
iβ

t
i − δiβti(−αti l̃oi + αsi ũ

o
i ))

end if
else
if βti > 0 then
l̃si ← max(ũiβ

s
i α

t
i + δαti(β

t
i l̃
h
i −

βsi ũ
h
i ), ũiα

s
iβ

t
i − βtiδ(−αti l̃oi + αsi ũ

o
i ))

ũsi ← min(ũiβ
s
i α

t
i + δαti(β

t
i l̃
o
i −

βsi ũ
o
i ), ũiα

s
iβ

t
i − βtiδ(−αti l̃hi + αsi ũ

h
i ))

else
l̃si ← max(ũiβ

s
i α

t
i + δαti(β

t
i l̃
h
i −

βsi ũ
h
i ), ũiα

s
iβ

t
i − βtiδ(−αti l̃hi + αsi ũ

h
i ))

ũsi ← min(ũiβ
s
i α

t
i + δαti(β

t
i l̃
o
i −

βsi ũ
o
i ), ũiα

s
iβ

t
i − βtiδ(−αti l̃oi + αsi ũ

o
i ))

end if
end if
l̃i ← min(max(αtiβ

t
iδl̃

b
i , l̃

s
i ), ũ

s
i ) {Clamp δiαtiβti l̃bi }

end for
X̃ ← (l̃/(δαtβt), ũ/δ) {Nearest neighbor}
return ||B̃ − X̃||1 {Optimal distance}

border. Similarly, a missing hole border interval is
removed by setting lh = uo and uh = lo. In this
way, both hole border constraints lo ≤ l ≤ lh and
uh ≤ u ≤ uo become equivalent to lo ≤ l ≤ uo = lh

and uh = lo ≤ u ≤ uo, respectively.
By Lemma 3, it is valid to first clamp ũb to its
valid range. Multiplying by the non-zero constant
δ, δũb can then be clamped to the interval [l̃t, ũt],
where l̃t = minlo≤l≤lh,uh≤u≤uo δ(α

tl + βtu) and ũt =
maxlo≤l≤lh,uh≤u≤uo δ(α

tl + βtu).
In this formulation, lo, uo, lh, uh are not directly
provided, but l̃o,h = αslo,h + βsuo,h and ũo,h = αtlo,h +
βtuo,h are given instead. Solving this system gives
δlo,h = −βsũo,h + βt l̃o,h and δuo,h = αsũo,h − αt l̃o,h.
Observe that δ(αtl + βtu) = αt(δl) + βt(δu). When
δαt > 0 and δβt > 0, the minimum becomes l̃t =
αt(δlo) + βt(δuh) and the maximum ũt = αt(δlh) +
βt(δuo), exactly as computed by the algorithm. The
other cases are analogous.
Once δũb is clamped to obtain ũ, that can be enforced
as the constraint δ(αtl + βtu) = ũ, which is equivalent
to δβtu = ũ−δαtl. Then δαtβt(αsl+βsu) = δαsαtβtl+
βsαt(ũ − δαtl) = βsαtũ + δαt(δl). If αt > 0, the
condition lo ≤ l ≤ lh becomes βsαtũ + δαt(−βsũo +
βt l̃o) = βsαtũ + δαt(δlo) ≤ δαtβt(αsl + βsu) ≤
βsαtũ+δαt(δlh) = βsαtũ+δαt(−βsũh+βt l̃h). The case
αt < 0 is treated similarly. By writing δαtl = ũ− δβtu
the condition uh ≤ u ≤ uo yields an analogous
interval constraint. The algorithm clamps δαtβt l̃b to
the intersection of these two intervals, which concludes
the correctness proof.

C Center–size Representation
Figure A1 shows 2D examples of Rt1(·, ·, ·,½,½,−1, 1).

A comparison of the nearest compatible neighbours in
lower- and upper-bound corner coordinates (R1) and
the center–size format (Rt1(·, ·, ·,½,½,−1, 1)) is shown
in Figure A2.
Interestingly, Figure A2 can be interpreted outside the
context of box relaxation by considering the predicted
boxes and their nearest neighbors to be target boxes
and predicted boxes, respectively. More precisely, for
each (target) box B, among the two nearest-neighbor
(predicted) boxes, the L1 distance in center–size
format is smaller for the predicted box that better
preserves the size.
Section Appendix B can aid in designing alternative
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(a) Expression 1−
2Rt

1(B̃, H̃, Õ,½,½,−1, 1)/maxB R
t
1(B̃, H̃, Õ,½,½,−1, 1)

for rectangles B relative to hole and outer borders H ⊆ O.
Rt

1 reaches its minimum value 0 if and only if H ⊆ B ⊆ O.

(b) Expression
1− 2Rt

1(B̃, H̃, _,½,½,−1, 1)/maxB R
t
1(B̃, H̃, _,½,½,−1, 1)

for rectangles B relative to hole border H . Rt
1 reaches its

minimum value 0 if and only if H ⊆ B.

(c) Expression
1− 2Rt

1(B̃, _, Õ,½,½,−1, 1)/maxB R
t
1(B̃, _, Õ,½,½,−1, 1)

for rectangles B relative to outer border O. Rt
1 reaches its

minimum value 0 if and only if B ⊆ O.
Figure A1. Expression

1− 2Rt
1(B̃, ·, ·,½,½,−1, 1)/maxB R

t
1(B̃, ·, ·,½,½,−1, 1) for

axis-aligned boxes in 2D. A tilde on an axis-aligned box
variable denotes its representation in the center–size

format. Penalty areas are hatched. The color palette and
the boxes B, hole border H , and outer border O are as in

Figures 1 and 2.

linear transformations with different preferences. For
instance, to achieve a better balance between box

(a) Nearest compatible neighbor according to R1(B,H,O)
from Figure A1(b), computed using Algorithm 1. Lower-

and upper-bound corners are preserved as much as
possible.

(b) Nearest compatible neighbor according to
Rt

1(B̃, H̃, Õ,½,½,−1, 1) from Figure A1(c), computed
using Algorithm 2. Box sizes are preserved as much as

possible, whereas centers play a secondary role.
Figure A2. Comparison of R1(B,H,O) and

Rt
1(B̃, H̃, Õ,½,½,−1, 1) for rectangles B relative to hole
border H and outer border O. The nearest compatible

neighbour depends on the representation of the
axis-aligned boxes. A tilde on a box variable indicates the
center–size representation. Penalty areas are hatched. The
color palette and the boxes B, hole border H , and outer

border O are as in Figures 1, 2 and A1.

center and size, the size should be considered halved,
resulting in the center–half-size format. This ensures
that |αs| = |αt| = ½ and |βs| = |βt| = ½, so
that Lemma 3 remains equally valid if f s and f t in
Definition 3 are swapped.

D Constrained Box Relaxation for Table
Structure Recognition (TSR)

Given the image box, text spans, and original
ground-truth boxes in Equation (5), where the two
dimensions are denoted by i = 0..1, these represent
a known feasible interior point for the non-linear
optimization problem in Equation (6), with L(box)
denoting the perimeter of an axis-aligned box.
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Algorithm 3: TsrRelax: Relax target table object
boxes under GriTS equivalence
Th ← T ; Ch

j ← Cj , j = 1..nc; Rh
j ← Rj , j = 1..nr ;

Kh
j ← Kj , j = 1..nk; Ph

j ← Pj , j = 1..np; Sh
j ← Sj , j = 1..ns;

{Hole borders equal to input boxes}
T o ← T ; Co

j ← Cj , j = 1..nc; Ro
j ← Rj , j = 1..nr ;

Ko
j ← Kj , j = 1..nk; P o

j ← Pj , j = 1..np; So
j ← Sj , j = 1..ns;

{Outer borders equal to input boxes}
while not converged do

for b ∈ [1024, 512, 256, 128, 64, 32, 16, 8, 4, 2, 1] do
Generate a random permutation of size
8× (1 + nc + nr + nk + np + ns) of all relaxed corner
coordinates;
for each relaxed corner coordinate in the random
permutation order: do
α← uniform random number in [0, b);
if this is a lower bound of a hole border, or an upper
bound of an outer border then

Add α to the current relaxed corner coordinate;
else

Subtract α from the current relaxed corner
coordinate.

end if
If any constraint is violated, revert the last update ±α.

end for
end for

end while
return Th, T o

Image: I = (lz0, l
z
1, u

z
0, u

z
1);

lzi ≤ uzi , i = 0..1

Text spans: Aj = (laj,0, l
a
j,1, u

a
j,0, u

a
j,1) ⊆ I;

laj,i ≤ uaj,i, j = 1..na, i = 0..1

Table (T.): T = (lt0, l
t
1, u

t
0, u

t
1) ⊆ I;

lzi ≤ lti ≤ uti ≤ uzi , i = 0..1

Optional T. col. header: Kj = (lkj,0, l
k
j,1, u

k
j,0, u

k
j,1) ⊆ T ;

lkj,i ≤ ukj,i, j = 1..nk,

nk ∈ {0, 1}, i = 0..1,

T. proj. row headers: Pj = (lpj,0, l
p
j,1, u

p
j,0, u

p
j,1) ⊆ T ;

lpj,i ≤ u
p
j,i, j = 1..np, i = 0..1

T. spanning cells: Sj = (lsj,0, l
s
j,1, u

s
j,0, u

s
j,1) ⊆ T ;

lsj,i ≤ usj,i, j = 1..ns, i = 0..1

T. columns: Cj = (lcj,0, l
c
j,1, u

c
j,0, u

c
j,1) ⊆ T ;

lcj,i ≤ ucj,i, j = 1..nc, i = 0..1

T. columns intersecting T. proj. row headers
or T. spanning cells are sorted left-to-right.

T. rows: Rj = (lrj,0, l
r
j,1, u

r
j,0, u

r
j,1) ⊆ T ;

lrj,i ≤ urj,i, j = 1..nr, i = 0..1

T. rows intersecting T. proj. row headers
or T. spanning cells are sorted top-to-bottom.

(5)

This optimization problem is applied independently
to each training example, making it straightforward
to parallelize. In this work, the randomized approach
presented in Algorithm 3 was used to relax the object
boxes for TSR.

maximize
Th,T o;

Ch
j ,Co

j ,j=1..nc;

Rh
j ,R

o
j ,j=1..nr;

Kh
j ,Ko

j ,j=1..nk;

Ph
j ,P o

j ,j=1..np;

Sh
j ,So

j ,j=1..ns

L(T o)− L(Th)

+

nc∑
j=1

[L(Co
j )− L(Ch

j )]

+

nr∑
j=1

[L(Ro
j )− L(Rh

j )]

+

nk∑
j=1

[L(Ko
j )− L(Kh

j )]

+

np∑
j=1

[L(P o
j )− L(Ph

j )]

+

ns∑
j=1

[L(So
j )− L(Sh

j )] (6a)

subject to

center(T ) ∈ Th ⊆ T ⊆ T o ⊆ I
∧ center(Cj) ∈ Ch

j ⊆ Cj ⊆ Co
j ⊆ I, j = 1..nc

∧ center(Rj) ∈ Rh
j ⊆ Rj ⊆ Ro

j ⊆ I, j = 1..nr

∧ center(Kj) ∈ Kh
j ⊆ Kj ⊆ Ko

j ⊆ I, j = 1..nk

∧ center(Pj) ∈ Ph
j ⊆ Pj ⊆ P o

j ⊆ I, j = 1..np

∧ center(Sj) ∈ Sh
j ⊆ Sj ⊆ So

j ⊆ I, j = 1..ns;

(6b)
2|Aj ∩ T | < |Aj | =⇒ 2|Aj ∩ T o| < |Aj |, j = 1..na;

(6c)
2|Aj ∩ T | ≥ |Aj | =⇒ 2|Aj ∩ Th| ≥ |Aj |, j = 1..na;

(6d)
Other constraints are omitted for brevity.

(6e)
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