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Abstract

Real-time detection of violent behavior through
surveillance technologies is increasingly important
for public safety. This study tackles the challenge
of automatically distinguishing violent from
non-violent activities in continuous video
streams.  Traditional surveillance depends on
human monitoring, which is time-consuming and
error-prone, highlighting the need for intelligent
systems that detect abnormal behaviors accurately
with low computational cost. A key difficulty lies
in the ambiguity of defining violent actions and
the reliance on large annotated datasets, which are
costly to produce. Many existing approaches also
demand high computational resources, limiting
real-time deployment on resource-constrained
devices. To overcome these issues, the present work
employs the lightweight MobileNet deep learning
architecture for violence detection in surveillance
videos. MobileNet is well-suited for embedded
devices such as Raspberry Pi and Jetson Nano while
maintaining competitive accuracy. In Python-based
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simulations on the Hockey Fight dataset, MobileNet
is compared with AlexNet, VGG-16, and GoogleNet.
Results show that MobileNet achieved 96.66%
accuracy with a loss of 0.1329, outperforming
the other models in both accuracy and efficiency.
These findings demonstrate MobileNet’s superior
balance of precision, computational cost, and
real-time feasibility, offering a robust framework for
intelligent surveillance in public safety monitoring,
crowd management, and anomaly detection.

Keywords: real-time violence detection, CCTV
surveillance video, convolutional neural networks,

VGG-16, GoogLeNet, AlexNet, MobileNet.

1 Introduction

Urban safety concerns have intensified in recent
years as incidents of crime and terrorism in
public spaces have grown more visible and widely
reported. This reality has accelerated the need for
intelligent video surveillance capable of automatically
identifying violent behaviors without constant human
oversight. Consequently, activity understanding from
video—especially violence activity recognition—has
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become a prominent topic across both academic
research and industrial deployments. Modern action
detection and recognition support a wide range of
downstream systems, including security surveillance,
human-machine interaction, autonomous navigation,
and numerous industrial applications. A commonly
held assumption in this domain is that violence is
rare in otherwise normal footage, which naturally
motivates anomaly-detection formulations of the
task [27, 28]. Yet, detecting violent activity remains
difficult: it inherits the well-known challenges of
anomaly detection and adds the computational
burdens associated with parsing high-dimensional,
continuous video streams. Human Action Recognition
(HAR) in the wild is complicated by many visual
and contextual factors. Variability in human body
proportions and poses, changes in object appearance
and background clutter, diverse illumination
conditions, occlusions among people or scene
elements, and rapid viewpoint shifts collectively
degrade recognition reliability [22, 23]. In practical
surveillance footage, additional nuisances—camera
motion, motion blur, scale changes, crowd density,
and partial visibility—further elevate the complexity.
Within this landscape, our study points to three
core obstacles that any violence recognition system
must address. First, “violent objects” or “violent
primitives” cannot be exhaustively enumerated
or hand-crafted; the semantic boundaries of what
constitutes violence are fuzzy and context dependent.
Systems must therefore reason under uncertainty and
tolerate ambiguous or weak labels. Second, large,
carefully annotated video corpora are scarce because
frame- or segment-level labeling is time-consuming,
expensive, and requires domain expertise [31].
Third, many operational surveillance models still
rely heavily on handcrafted visual features, which
demand substantial problem-specific knowledge and
manual tuning; such engineered representations
often generalize poorly and impose considerable
development overhead [3].

Within computer vision and machine learning,
HAR is an essential research area whose primary
goal is to automatically recognize and categorize
the actions depicted in video sequences [21]. The
problem is intrinsically challenging because it
requires modeling spatial appearance and temporal
dynamics simultaneously. Typical obstacles include
occlusion, intra-class variation in human shape
or attire, cluttered or dynamic backgrounds, and
strong viewpoint diversity; the severity of these
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issues often depends on the granularity and
duration of the activity under study. In practice,
activities are commonly grouped into four broad
categories—gestures, actions, interactions, and
group activities—organized roughly by increasing
temporal extent and structural complexity [24, 25].
Violence recognition intersects these categories: it
may appear as brief gestures (e.g., sudden strikes),
longer actions (e.g., prolonged aggression), dyadic
interactions, or group-level events that evolve over
time. Approaches to HAR can be organized by sensing
modality and system design. From a data-collection
and methodological standpoint, three families are
typically recognized: visual sensor-based, non-visual
(scalar) sensor-based, and multimodal methods that
combine both [19, 20]. The key difference is the nature
of the observed signal: visual sensors deliver 2D
frames or 3D video streams, while non-visual sensors
(e.g., accelerometers, gyroscopes, magnetometers,
microphones) produce one-dimensional time series
with different noise and sampling characteristics [16].
In the last few years, widespread adoption of
wearable devices—smartphones, fitness bands, and
smartwatches—has broadened the availability of
non-visual signals in everyday settings [17]. These
devices now offer on-board communication and
sufficient compute to support on-device HAR,
enabling applications in daily healthcare monitoring,
rehabilitation training, and disease prevention [33].
In parallel, visual sensor-based techniques remain
highly influential in computer vision and deep
learning communities, underpinning applications
in human-computer interaction, general video
surveillance, ambient assisted living, human-robot
collaboration, gaming, and content-based image/video
retrieval [1].

Prior work on anomalous event detection from
video—the closest related area—has proposed
diverse strategies and demonstrated progress;
nevertheless, reliably flagging violent behaviors in
crowded public scenes remains a difficult, active
research problem [5, 13]. In dense crowds, targets
are frequently occluded, camera viewpoints are
often suboptimal, and subtle pre-incident cues
may be brief or only partially visible. This study is
particularly concerned with real-time detection of
violent events in live, high-traffic settings, where
latency, robustness, and computational efficiency
are all critical. The problem is examined along
three tightly coupled aspects: (i) identifying people
and relevant objects under visual uncertainty, (ii)
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recognizing actions and interactions as they unfold
temporally, and (iii) performing continuous inference
on live surveillance streams. Consequently, feature
extraction emerges as a central bottleneck—affecting
both accuracy and runtime—when building practical
anomaly-detection systems at scale. Despite
extensive global research, a notable gap persists
in achieving high-accuracy violence detection on
resource-constrained edge devices commonly used
in academic and budget-limited deployments (e.g.,
Raspberry Pi, Jetson Nano). Many existing techniques
impose significant computational cost and often rely
on traditional machine-learning components that
do not fully exploit modern end-to-end learning,
resulting in time-intensive processing and suboptimal
accuracy. To address these limitations, this work
proposes a streamlined, deep-learning-based
HAR approach for Closed-Circuit Television
(CCTV) feeds targeting violence recognition in
crowded, fast-moving scenarios. Specifically,
an efficient convolutional-neural-network
backbone—MobileNet—is leveraged to obtain
real-time or near-real-time inference while maintaining
competitive recognition performance. The overarching
aim is a system that is practical to deploy, robust to
common surveillance artifacts, and scalable across
cameras without prohibitive annotation or engineering
costs.

1.1 Problem Framing and Design Principles

In operational terms, violence recognition can be cast
as a spatiotemporal classification problem over short
video segments sampled from a live stream. Each
segment is mapped to a probability of violent activity,
and segments exceeding a calibrated threshold
trigger alerts for human review. Designing such a
model entails several considerations consistent with
the challenges noted earlier; Semantic Uncertainty
and Weak Supervision: Because the notion of
“violence” is context dependent, tolerance for
ambiguous labels and fuzzy inter-class boundaries is
required. Data augmentation, temporal smoothing,
and consensus labeling strategies can mitigate
label noise while improving generalization to new
environments [27, 28]. Limited Labeled Data: Manual
video annotation remains costly [31]. Transfer learning
from large-scale action datasets, self-supervised
pretraining, and judicious use of weak labels can
reduce dependence on exhaustive manual annotation
and improve data efficiency. From Handcrafted
To Learned Features: Replacing hand-engineered
features with lightweight deep backbones reduces the

feature-engineering burden and typically yields better
domain transfer, provided the architecture is compact
enough for edge inference [3]. Edge Deployability:
Real deployments demand low latency, modest
memory footprints, and resilience to frame drops
or bandwidth fluctuations. Efficient models (e.g.,
MobileNet) combined with temporal ensembling
or lightweight sequence modeling offer a practical
balance between accuracy and speed on devices like
Raspberry Pi and Jetson Nano. Crowd robustness:
Occlusion-heavy scenes require representations that
remain discriminative under partial visibility, camera
motion, and illumination changes [22, 23]. Careful
pre-processing (stabilization, dynamic resizing),
frame-windowing, and threshold hysteresis can help
stabilize decisions in cluttered footage.

1.2 Proposed Approach (High-Level)

Our framework ingests CCTV video, samples
short overlapping clips, and processes them with
a MobileNet-based feature extractor tailored for
efficiency:. Per-clip predictions are temporally
aggregated using a sliding window to suppress
spurious spikes and to capture brief yet informative
motion patterns associated with violent incidents.
Transfer learning initializes the backbone with weights
pretrained on large video/image corpora, reducing
the need for massive labeled datasets. The resulting
system is designed to operate continuously, flagging
segments that exceed a calibrated violence probability
while logging timestamps and crops to aid rapid
operator triage. Although lightweight by design, the
model remains extensible: optical-flow cues, simple
temporal shift mechanisms, or compact recurrent
layers can be incorporated when additional temporal
modeling is required—without sacrificing edge
feasibility.

1.3 Practical Relevance of HAR Modalities

While our emphasis is on visual sensor-based
recognition, the broader HAR ecosystem includes
non-visual and multimodal pathways [19, 20].
Visual sensors provide rich spatial context
and are indispensable for forensic review and
situational awareness, delivering 2D/3D imagery [16].
Non-visual wearable sensors—already prevalent in
phones, bands, and watches—offer privacy-preserving
motion traces and can complement camera views in
specific environments [17, 33]. In integrated settings
such as assisted living or industrial sites, multimodal
fusion can improve robustness to occlusions and
lighting while reducing false alarms [1]. The
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proposed visual model remains compatible with such
extensions.

1.4 Contributions

The principal contributions of this work are
summarized as follows:

e This work introduces a real-time surveillance
framework that detects violent events in live
video with a MobileNet-based model, targeting
low-power deployments without compromising
recognition accuracy.

e Continuous manual monitoring is error-prone
and exhausting; our system prioritizes segments
likely to be violent, reducing operator load while
preserving transparency for decision review.

e The approach emphasizes precise localization and
activity labeling in crowded settings with brief
interactions and common occlusions, and remains
compatible with crowd analytics and group-level
behavior modeling.

e In real incidents, response time is critical. Our
design stresses fast inference and stable temporal
aggregation so that alerts are produced quickly
and reliably from streaming data.

e By leveraging transfer learning and compact
architectures, the system reduces reliance on large
custom datasets [31] and minimizes the need
for brittle handcrafted features [3], improving
portability across cameras and sites.

1.5 Paper organization

The remainder of the paper is structured as follows.

Section 2 reviews the relevant literature and situates
our work within recent advances in anomaly and
violence detection. Section 3 details the proposed
methodology and experimental setup, including data
preparation, model configuration, and deployment
considerations. Section 4 presents simulation and
empirical results with an in-depth discussion of
findings and limitations. Section 5 concludes the study
and outlines directions for future research.

2 Related Work

Research on activity understanding spans classical
background-subtraction models, wearable sensor
analytics, and modern deep architectures for
spatiotemporal representation learning. Prior efforts
are grouped below by sensing modality and modeling
strategy, with emphasis on their implications for
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violence and anomaly recognition in surveillance; the
original references are preserved. Early vision models
typically segment foreground regions and then
analyze motion within those regions. For instance,
[4] proposed a four-stage brutality detection scheme
for surveillance videos: (i) locate object regions via
background subtraction and suppress artifacts with
morphological filtering; (ii) estimate optical flow
using a Combined Local-Global approach regularized
by Total Variation (CLG-TV); (iii) derive a Motion
Co-occurrence Feature (MCF) that summarizes the
strength and co-occurrence of motion vectors within
detected regions; and (iv) classify segments as violent
or non-violent based on the MCF descriptor. Such
models remain attractive for their interpretability
and low computational footprint. A complementary
thread employs intelligent signal processing and
neuro-fuzzy reasoning. The Adaptive Neuro-Fuzzy
Inference System (ANFIS) in [1] targeted Activities of
Daily Living (ADLs) from a tri-axial IMU, assessing
performance primarily via Root Mean Square Error
across ANFIS parameters and reporting a headline
recognition accuracy of 98.88%. Likewise, [13]
addressed wearable-sensor motion classification for
human activity recognition with a focus on reliable,
automated monitoring—particularly valuable for
elderly care scenarios where continuous labeling is
infeasible. Dataset-driven vision studies have explored
increasingly complex human interactions. The system
in [7] recognized eight intricate activities from the
BIT-Interaction corpus—bow, boxing, handshake,
high-five, hug, kick, pat, and push—highlighting
the challenges of modeling dyadic actions and short,
discriminative motion bursts. Robust foreground
extraction under environmental variation was a
central concern in [8], which introduced a “twin
background modeling” strategy to mitigate effects
from swaying tree branches and illumination shifts.
By projecting from 2D imagery to a 1D representation
and adopting Manhattan distance for matching,
their approach reduced computation time, improved
detection rates, and lowered error on the Change
Detection 2014 benchmark compared with common
baselines. Beyond pure vision, multimodal fusion
surveys (e.g., [19]) catalog techniques that combine
heterogeneous evidence at data, feature, or decision
levels. Representative methods include weighted
averaging, Kalman filtering, Dempster—Shafer
reasoning, graph-based schemes, and deep canonical
correlation formulations, each trading off robustness,
generality, and uncertainty reduction in different
ways.
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View invariance—critical for fixed CCTV with varying
subject orientation—has been treated explicitly. The
framework in [24] achieved view-invariant recognition
through a three-stage model: (i) person detection
and localization via background subtraction, (ii)
feature extraction, and (iii) sequence modeling
with Hidden Markov Models (HMMs). The feature
design mixed contour-based distance signals,
optical-flow motion cues, and rotation-invariant
local binary patterns, and was validated on multiple
datasets including an in-house multi-view set,
KTH, i3DPost, and MSR viewpoint collections.
Deep learning has driven significant progress in
streaming video. The method in [29] processed
non-stationary surveillance feeds by first extracting
frame-level deep features with a pre-trained CNN,
then modeling temporal evolution via an optimized
Deep Autoencoder (DAE). In smartphone-centric
sensing, [12, 31] built a multi-sensor HAR classifier
using the accelerometer, gyroscope, and gravity
signals, achieving strong accuracy across six core
activities—particularly walking, running, sitting, and
standing—underscoring the practicality of commodity
devices for pervasive monitoring. Temporal structure
and activity periodicity have also been leveraged. The
work in [35] differentiated non-periodic activities
with complex motion states (NP_CMS) from weakly
periodic activities (WP_CMS), formulating a Human
Activity Detection and Recognition (HADR) model
that first generated candidate intervals (detection)
and then recognized activities over those spans—an
approach well suited to sports and other structured
domains. Architecturally, 3D convolutions and hybrid
CNN-RNNs remain prominent. The C3D-based
CCTV recognition reported in [36] (see also [9])
exemplifies end-to-end spatiotemporal filtering
in surveillance video. In the specific context of
violence recognition, [5] introduced a lightweight
computational model that distinguishes violent from
non-violent behavior using a CNN coupled with a
bidirectional LSTM; comparisons against prevailing
baselines highlighted the model’s efficiency—accuracy
balance. Event-based sensing has provided an
alternate route: [21] exploited a Dynamic Vision
Sensor (DVS) that outputs pixel-level intensity
changes (rather than full frames), proposing a
function-based model that delivered promising
activity recognition results with sparse, low-latency
streams. Hybrid multi-stream deep models further
improve discriminative power. A “deeply coupled”
ConvNet in [24] combined two pathways: (a) RGB
frames processed by a CNN followed by a Bi-LSTM

for end-to-end spatiotemporal learning, and (b) a
single dynamic motion image fine-tuned with top
CNN layers to capture compact temporal summaries.
Reported gains included 2% on SBU Interaction, 4%
on MIVIA Action, 1% on MSR Action Pair, and 4% on
MSR Daily Activity over comparable state-of-the-art
methods. Recent anomaly-detection models rely on
deep features plus efficient temporal reasoning. The
framework in [30] extracted spatiotemporal cues
by passing sequences through a pre-trained CNN
and validated on UCF-Crime and UCF-Crime2Local,
reporting accuracy improvements of 3.41% and
8.09% respectively over strong baselines—evidence
that generic deep features, when combined with
streamlined temporal models, can scale to long,
unconstrained surveillance videos. Non-RGB
modalities and alternative representations broaden
the design space. In radar-based HAR, [34] treated
spectrograms as time-sequential vectors and proposed
a compact architecture combining 1D-CNNs with
recurrent layers; besides achieving top accuracy, the
model used fewer parameters than prevalent 2D-CNN
solutions. Classical image descriptors continue to be
relevant in segmentation and pre-processing: [32]
fused Histogram of Oriented Gradients (HOG)
with Local Binary Patterns (LBP), with LBP alone
yielding 95.6% segmentation accuracy in their
experiments—useful for sharpening regions of
interest before high-level recognition.  Transfer
learning on strong backbones remains a common
practice. Using a pre-trained ResNet-50, [11] extracted
video descriptors from both the Global Average
Pooling and Fully Connected layers, illustrating how
multi-layer embeddings can benefit downstream
classification. For forensic robustness, [15] examined
system performance when operating parameters are
unknown and when manipulations are applied to
JPEG-compressed imagery—two realistic deployment
challenges that can degrade feature stability if
unaddressed.

Adjacent problems—such as fake-media analysis and
secure information hiding—have contributed
techniques that may cross-pollinate HAR. A
two-stream strategy in [6] analyzed both frame-level
and temporal cues in compressed Deepfake
videos, while [14] proposed a channel-dependent
payload partition scheme that increases empirical
steganographic security against co-occurrence-based
detectors; both lines underscore the wvalue of
channel-aware modeling and temporal consistency
checks when combating sophisticated distributional
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shifts. Finally, low-level enhancement and motion
extraction remain vital pre-processing steps for
action analysis. In [2], frames were first transformed
to HSI color space to boost contrast, after which
optical flow—based motion features were computed.
The model was evaluated across canonical action
datasets—Weizmann, KTH, UCF Sports, and UCF
YouTube—demonstrating that careful photometric
normalization paired with reliable motion estimation
can significantly stabilize recognition under varying
illumination and scene conditions. Recent works
have focused on enhancing surveillance and sensing
systems using advanced feature extraction and deep
learning techniques. Authors in [37] proposed
a robust framework for video summarization by
integrating Zernike moments and R-transform features
with deep neural networks, achieving improved
efficiency in surveillance video analysis. Extending
this line of research, authors in [38] developed an
object detection framework for traffic surveillance that
demonstrated resilience under challenging conditions,
emphasizing robustness in real-world deployments.
Similarly, authors in [39] introduced a hybrid
deep learning model for real-time object detection
and classification in surveillance videos, showing
the potential of combining multiple architectures
for high accuracy and speed. Complementing
these vision-based approaches, authors in [40]
surveyed Wi-Fi sensing techniques for human
activity recognition, highlighting the challenges and
future directions in exploiting wireless signals as a
non-intrusive alternative to traditional video-based
monitoring. Collectively, these studies highlight three
enduring themes: (i) robust foreground/motion
cues (e.g., background modeling, CLG-TV flow,
DVS events) are essential when scenes are cluttered
or illumination varies [2, 4, 8, 21]; (ii) lightweight
yet expressive temporal models (DAEs, Bi-LSTMs,
C3D, coupled RGB-dynamic streams) offer practical
accuracy—efficiency trade-offs for long or live
video [5, 24, 29, 30, 36]; and (iii) multimodal sensing
and principled fusion improve reliability when
single-channel evidence is brittle [1, 12, 13, 19, 31, 34].
These insights motivate our emphasis on efficient
deep backbones and temporally stable inference
for real-time violence detection in surveillance
deployments.

3 Proposed Methodology

Our proposed model is organized into four
streamlined stages designed for real-time deployment
on resource-constrained hardware. Below is an
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expanded, fully rephrased description of each stage
while preserving the original intent.

3.1 Curate and prepare a violence-activity dataset

The pipeline begins by assembling a representative
surveillance-style corpus that includes both normal
and violent scenes. The curation step ensures balanced
coverage across environments (indoor/outdoor),
crowd densities, camera viewpoints, lighting
conditions, and motion patterns. Clips are split into
training/validation/testing sets, frames are uniformly
sampled, and standard pre-processing is performed
(resize, optional center/letterbox, normalization).
When temporal annotations exist, they are aligned
to short segments; otherwise, clip-level labels are
propagated to fixed-length windows to support
learning under weak supervision.

3.2 Learn discriminative visual features with
MobileNet

From the prepared clips, features are extracted using a
MobileNet backbone optimized for efficiency. During
training, the network ingests pre-processed frames (or
short stacks) and learns end-to-end representations
that separate violent from non-violent content. Global
pooling is used to compress spatial activations, and
the resulting vector is passed through lightweight
fully connected layers with a softmax/sigmoid
head for binary (abnormal vs. normal) decisions.
Fine-tuning focuses on later MobileNet blocks to
keep computation low while adapting to surveillance
dynamics; standard regularization (augmentation,
dropout, label smoothing) stabilizes learning and
improves generalization.

3.3 Select salient motion using lightweight frame

differencing
At inference time—or during rapid batch
evaluation—a  lightweight  frame-differencing

module is applied to the incoming stream to prioritize
motion-salient frames.  Consecutive frames are
differenced and thresholded to produce a motion
mask; only segments with an activity score above a
small threshold are forwarded to the classifier. This
gating step suppresses redundant static intervals,
reduces the number of frames processed by MobileNet,
and therefore conserves compute and energy without
sacrificing detection coverage. The result is a stream
of salient frames (or short bursts) that concentrate the
model’s attention on potentially violent transitions.
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3.4 Test and Alert (Real-Time Decision Layer)

The selected salient frames are fed through the
trained MobileNet classifier to produce a per-segment
probability of abnormal (violent) activity. To
avoid flicker and false alarms, scores are smoothed
over a short sliding window and compared to a
calibrated threshold. If the aggregated score indicates
abnormal behavior, the system immediately raises
an alert—logging the timestamp and optional frame
crops—and notifies the designated authority for rapid
response. This full loop, from motion gating to
decision and alert, operates continuously as illustrated
in Figure 1. Efficiency: Frame differencing acts as a
compute gate, allowing MobileNet to run primarily
on informative segments—well-suited to devices like
Raspberry Pi or Jetson Nano. Robustness: Temporal
smoothing (e.g., median/EMA over a few segments)
mitigates single-frame spikes due to camera shake or
illumination changes. Extensibility: The model can
incorporate optical-flow cues or compact temporal
modules later if needed, without altering the core
MobileNet+gating design. In summary, the workflow
proceeds as: Dataset curation — MobileNet feature
learning/classifier training — Salient-motion selection
via frame differencing — Real-time testing and alerting
(Figure 1).

3.5 Training phase

Recent convolutional approaches for violence
detection have shown promise, but many suffer from
large model size, slow inference, and brittle behavior
in difficult scenes-e.g., strong shadows, fire-like
highlights and reflections, smoke, snow, or fog.
These limitations make conventional CNN models
impractical for resource-constrained surveillance
deployments where compute, memory, and power
budgets are tight.

To address these issues, this work introduces an
efficient CNN architecture tailored to ambiguous,
low-signal (low-SNR) conditions. The core idea is
to retain the discriminative power of deep features
while eliminating heavy components that inflate
latency and overfit to nuisance factors. Concretely, the
model (i) replaces dense fully connected stacks with
global average pooling and a light classification head,
(ii) builds the backbone from depthwise-separable
or inverted-residual blocks to minimize parameters
and FLOPs, and (iii) employs multi-scale receptive
fields (via dilated or mixed-kernel convolutions) so
that small, distant cues are still captured reliably.
This architecture keeps computation economical and

remains sensitive to small objects/events at long
range—critical for recognizing subtle precursors
to violence or small flame-like artifacts that often
confound standard detectors. To further harden the
system on visually “messy” footage, a set of pragmatic
measures is adopted: (i) chromaticity/illumination
robustness—light color-space normalization and
adaptive contrast suppress false triggers from shadows,
glare, and smoke-tinted scenes; (ii) salient-motion
gating—a  lightweight frame-differencing or
motion-score filter forwards only motion-rich
frames to the CNN, conserving compute while
preserving brief, informative transitions. Temporal
smoothing:  short sliding-window aggregation
stabilizes predictions against single-frame spikes
caused by camera shake or transient noise. Edge
readiness: optional quantization/pruning preserves
accuracy while improving throughput on devices like
Raspberry Pi or Jetson Nano. Although our primary
application is violence detection, the same lightweight
design principles translate to fire/event detection
in ambiguous conditions, where small, distant, and
partially occluded phenomena must be recognized
quickly and reliably. For curated content (e.g., films),
the method can be applied to classify violent vs.
non-violent scenes by processing shot-level clips
and aggregating the per-clip scores into scene-level
decisions. Overall, the proposed strategy yields a
compact, real-time CNN that remains effective in
challenging environments while meeting the practical
constraints of low-cost surveillance systems.

3.6 MobileNet Deep Learning Model Architecture

For abnormal-activity recognition, MobileNet serves
as the backbone classifier. The choice over larger
CNNSs such as AlexNet, VGG-16, and GoogLeNet
(Inception v1) reflects MobileNet’s lightweight
design, which is well suited to mobile and embedded
deployments where computation, memory, and power
are constrained. Efficiency is achieved by replacing
standard convolutions with depthwise-separable
convolutions: a depthwise spatial convolution is
applied channel-wise, followed by a pointwise
1x1 convolution that mixes information across
channels.  This factorization markedly reduces
multiply-accumulate operations and parameter count,
lowering latency and model size without sacrificing
representational capacity [10]. Figure 2 illustrates
the overall architecture. In the configured stack
(about 30 layers), stride-2 convolutions perform
spatial downsampling; depthwise convolutions
extract per-channel spatial features; and pointwise
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convolutions expand—often doubling—the channel
dimension to form richer embeddings. Each block
is followed by batch normalization and a non-linear
activation. A global-average-pooling layer aggregates
spatial responses, and a compact classification head
(a fully connected layer with sigmoid/softmax)
outputs the abnormal/normal probability. This
design preserves discriminative power while keeping
inference cost low—an essential property for real-time
surveillance. After dataset preparation and frame
pre-processing, MobileNet is trained end-to-end on the
task labels. Standard practices—data augmentation,
class-balanced sampling, early stopping, and
learning-rate scheduling—stabilize optimization and
improve generalization. Once training converges,
the frozen model is evaluated on unseen video
segments. In line with applied deep learning, multiple
variants are trained and the model best aligned with
data characteristics and deployment constraints is
selected. Explored configurations vary learning
rate, batch size, and lightweight regularization
(e.g., dropout in the classifier head), as well as
MobileNet’s width multiplier and input resolution
to trade accuracy for speed according to data quality
and target hardware. The final selection reflects
the optimal balance for the intended surveillance
scenario. To reduce data requirements and accelerate
convergence, transfer learning (“move learning”) is
employed by initializing MobileNet with weights
pre-trained on large-scale image/video corpora and
fine-tuning on the abnormal-activity dataset—a
well-established strategy that typically yields more
robust representations with fewer training iterations.
In summary, the MobileNet architecture—with
depthwise-separable convolutions, global pooling,
and a minimal classification head—delivers the
computational economy and accuracy required for
abnormal-activity recognition in resource-constrained
surveillance systems [18].

3.7 MobileNet Model Fine-Tuning

Recognizing violent activity is inherently difficult:
scenes exhibit wide intensity variations, complex
crowd dynamics, and diverse camera viewpoints.
Crucially, the evidence spans space and time. Spatial
cues come from a single frame (e.g., appearance, attire,
scene context), whereas temporal cues emerge only
across multiple frames (e.g., sudden accelerations,
aggressive interactions). For instance, a single CCTV
frame near an ATM may reveal a person’s clothing
or approximate demographics, but only a sequence
of frames reveals whether a violent act is unfolding.

Earlier traditional models—built on hand-crafted
descriptors such as HOG, SURF, and SIFT—struggle
to capture these nuanced spatiotemporal patterns.
Subtle distinctions (e.g., walking vs. running, a shove
vs. crowd jostling) often confound fixed features.
Deep learning, by contrast, learns features directly
from data and has proven effective for pattern and
image recognition, autonomous driving, and medical
analysis. The trade-off is that deep models typically
require sizable datasets and compute. To bridge this
gap with a relatively modest corpus ( 500 videos across
violent and non-violent classes), MobileNet is paired
with transfer learning that reuses features from large
image corpora and adapts them to the surveillance
domain.

3.7.1 Fine-Tuning Strategy

Our fine-tuning procedure tailors MobileNet (see
Figure 2) to the abnormal-activity task while
preserving its lightweight nature; Initialization
(transfer learning): Initialize weights from a
MobileNet pre-trained on large-scale imagery (e.g.,
ImageNet). This provides robust low-level filters
(edges, textures, colors) and mid-level semantics
(parts, simple configurations), reducing data
demands and speeding convergence. Layer freezing
and progressive unfreezing: Freeze the earliest
stages (low-level filters) for initial epochs to stabilize
training. Unfreeze progressively: first the mid-level
blocks, then the final blocks, using discriminative
learning rates (lower LR for early layers, higher
LR for the classifier head). This schedule adapts
higher-level features to surveillance appearance
without overfitting the backbone. Lightweight
classifier head: Replace heavy fully connected stacks
with global average pooling followed by a compact
dense layer (sigmoid/softmax). This keeps latency
and parameters low for edge devices while retaining
discriminative power. Temporal evidence aggregation.
The pipeline augments a frame-based MobileNet
with: salient-motion gating (frame differencing;
§Methodology) to forward only motion-rich frames,
and clip sampling + pooling to sample K frames per
clip, score each, and aggregate (mean/max or short
EMA) into a robust clip-level decision—capturing
brief, bursty motions without excessive compute.

e Regularization and Data Augmentation
Spatial: random resized crops, horizontal flips
(when label-safe), mild color jitter, blur/ISO noise,
and illumination shifts to mimic surveillance
artifacts. Temporal: random frame stride/offset
to expose the model to varied motion phases.
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Model: dropout on the head and weight
decay to reduce overfitting. Class imbalance
handling:  Apply class-balanced sampling
or weighted/focal loss if violent segments
are rarer than normal ones, improving recall
on minority events without inflating false
alarms. Optimization and schedules: Use SGD
with momentum or Adam/AdamW, adopt
a warm-up followed by cosine decay or step
LR schedule. Early stopping on a validation
split prevents over-training. Optionally apply
temperature scaling on validation data to
calibrate probabilities. Choose an operating
threshold that balances precision/recall for the
intended response policy (e.g., higher recall
for safety-critical monitoring).  MobileNet’s
efficiency stems from depthwise separable
convolutions—a  depthwise  (per-channel)
spatial filter followed by a 1x1 pointwise
projection. This factorization sharply reduces
multiply-accumulate operations and parameters
relative to standard convolutions, making it
ideal for our setting. In practice, MobileNet’s
width multiplier and input resolution are tuned
to balance accuracy and speed according to
hardware constraints and the visual complexity of
the site. Using the fine-tuning strategy described
above, the model captures appearance cues
from individual frames while incorporating
short-range temporal context through clip
aggregation and motion gating. The result
is a compact, responsive detector suitable for
real-time surveillance, even when the training set
is limited and the operating environment involves
heavy crowding, viewpoint shifts,
smoke, rain, snow, or other visual disturbances.
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Figure 2. (a) Illustration of Standard Convolution Layer
Filters, (b) Depth wise Convolutional Layers Filters, (c)

134

Example of 1 x 1 Convolutional Layers Filters.

shadows,

3.8 Video Dataset

This study employs the Hockey Fight dataset for
violent-activity recognition, originally introduced
in [31]. The collection comprises 1,000 short
video clips sourced from National Hockey League
(NHL) broadcasts—500 labeled as violent and 500
as non-violent. Each clip is recorded at 50 frames
per second (FPS) with a spatial resolution of 360
x 288 pixels. Violent frames. For any frame-level
protocol, a violent frame denotes a frame extracted
from a clip labeled as violent. Non-violent frames.
Conversely, a non-violent frame is any frame extracted
from a clip labeled as non-violent. In our model, clips
are decoded and frames are sampled uniformly (or
by motion saliency; see §3.9) to build training and
evaluation sets. Labels are assigned at the clip level,
and when frame-level supervision is required, the clip
label is propagated to sampled frames. This strategy
aligns with real surveillance conditions, where precise
per-frame annotations are uncommon but clip-level
labels are readily available.

3.9 Pre-Processing Phase

To make effective use of limited compute on
visual-surveillance  hardware, a lightweight
pre-processing stage is introduced before classification.
Because video streams are continuous and
data-intensive, this stage filters out redundant
content and emphasizes motion-rich segments that
are more likely to contain violent events.

e Steps
Decoding & normalization:  Frames are
decoded, temporally normalized (optional
down-sampling), and resized to match the
MobileNet input resolution; pixel intensities
are standardized. Motion pre-filtering: A fast
frame-differencing score between consecutive
frames is computed to estimate motion energy.
Frames (or short bursts) with negligible motion
are temporarily skipped, while motion-rich
regions are retained for downstream analysis.
Background/mask assistance: When available,
a coarse foreground mask from background
subtraction (see §3.10) suppresses static
background and reduces false triggers from
illumination flicker or camera jitter. ROI cleanup
(optional): Light morphological operations
remove small artifacts; simple bounding regions
may be used to focus on crowd areas. Rationale:
violent activities almost always entail observable
motion (e.g., rapid limb movement in fights).
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By directing the classifier’s attention to such
frames, the system reduces latency and energy
consumption while improving the effective
signal-to-noise ratio prior to MobileNet inference.

3.10 Background Subtraction Method

Background subtraction is a standard approach
for motion detection in many computer-vision
applications. A Gaussian Mixture-based Background
Segmentation method is adopted following [26].
The core idea is to model each pixel’s intensity over
time as a mixture of Gaussians updated recursively,
where components with the highest weight and lowest
variance represent the background, while outliers
correspond to foreground (moving) pixels.

e Key Properties (per [26])

Adaptive modeling: The algorithm automatically
selects an appropriate number of Gaussian
components per pixel and updates them
online, enabling the background model to
adapt to gradual scene changes. Robustness
to nuisance factors: By maintaining multiple
modes, the method handles repetitive motions
(e.g., swaying jerseys, specular highlights),
moderate illumination changes, and sensor noise
better than single-model baselines. Efficient
masks: The resulting binary foreground mask
highlights moving regions that likely correspond
to people and interactions of interest. In
our model, the foreground mask serves two
purposes: (i) it gates which regions/frames
proceed to MobileNet (complementing the
frame-differencing pre-filter), and (ii) it reduces
background clutter prior to feature extraction.
Qualitative examples of the background
subtraction output used in our system are
presented in Figure 3.

3.11 Input Video Frames (static vs. motion)

Input video frames: For training and evaluation,
clips from the dataset are decoded into frames and
supplied to the proposed model to discriminate
between violent and non-violent events. Labels
are assigned at the clip level and, when needed,
propagated to sampled frames used by the classifier.
Static frames: After applying background subtraction
(see §3.10), consecutive frames that exhibit no
appreciable motion—i.e., their motion energy falls
below a small threshold over an MMM-frame
window—are designated static. Such frames are
temporarily skipped during training/inference to

Algorithm 1: Segmentations of Shot

Input: Input video stream

Output: Segmented shots

foreach two consecutive input video frames (f;, fix1)
do

Apply Gaussian blur on (f; — fi+1) to remove
noise;

Compute pixel-wise absolute difference of
frames:;

1 N
1mage = NZ

if Dinage < 0.1 then

‘ Consider f; and f;;; as the same shot;
else

‘ fi and f;11 are salient shots;
end

end

Motion + Action Recognition +
Violence Detection Pipeline

Current Frame

.'.

Previous Frame

Apply Gaussian Blur

i

Absolute Difference

Motion?

o[

Thresholding

Spatio-Temporal
Encoder

3D CNN
No Yes * +BILSTM
Ignore ROI Extraction
Action Violence
. - Recognition Detectlon
Ignore Waving

Figure 3. Background subtraction algorithm.

conserve compute without affecting recognition
fidelity. Motion frames: Frames (or short bursts)
that the background model identifies as containing
motion are treated as motion frames. Examples include
people moving, arm/leg swings, or rapid local changes
consistent with interactions. These motion-rich frames
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are forwarded to the MobileNet classifier and, when
used in short sequences, aggregated into stable
clip-level decisions. A light hysteresis is applied so
that brief dips in motion do not prematurely switch
frames back to “static.”

3.12 Simulation Parameters

All experiments were implemented in Python using
the TensorFlow API with Keras front-end and NumPy
for numerical routines. Training and inference were
conducted on a workstation equipped with an Intel
Core i5 CPU, 24 GB RAM, a GPU with 8 GB of
VRAM, running Windows 10 Pro. The primary
backbone for all trials was MobileNet, as described
in §3.6. To ensure reproducibility and balance
accuracy with computational efficiency, a concise set
of simulation parameters was defined (summarized
in Table 1). Each parameter was assigned values
appropriate to the constraints of our surveillance
setting and the characteristics of the dataset. The
parameters fall into the following categories; Model
configuration: MobileNet variant, width multiplier,
input resolution, activation/normalization choices,
and classifier head (global average pooling +
dense output). Optimization: optimizer type
(e.g, SGD/Adam family), base learning rate,
schedule (warm-up/step/cosine), weight decay,
and early-stopping criteria. = Training protocol:
batch size, number of epochs, train/validation/test
split, class-balancing strategy or loss weighting
(if applicable). Data handling & augmentation:
frame resize/normalization, color/illumination
jitter (label-safe), random crops, flips (when valid),
and temporal sampling stride. Motion gating &
background modeling: frame-differencing threshold,
aggregation window length for motion scores, and
key background-subtraction settings (per §3.10)
used to produce foreground masks. Evaluation
metrics & compute: primary metrics (Accuracy) and
computational indicators (throughput/FPS, average
latency per frame/clip, and memory footprint) to
capture the accuracy—efficiency trade-off. Table 1
is organized into two columns: the Parameter
name and its Value. It lists the software stack and
hardware environment alongside the model/training
settings used in our experiments. This arrangement
highlights how choices affecting performance
(accuracy) and computation (speed/memory) were
selected to achieve reliable real-time behavior on
resource-constrained devices.
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Table 1. Simulation parameters.

Parameter Value
Operating system Microsoft Windows 10
Libraries Numpy, Time, SciPy, PyLab,

Matplotlib, Opencv
TensorFlow, Keras
Hockey Fight

Implementation Environment
Dataset

3.13 Performance Parameters

To assess the classifier, the standard set of metrics
used in binary recognition tasks is reported: Accuracy,
Precision, Recall, True Positive Rate (TPR), True
Negative Rate (TNR), and False Positive Rate (FPR).
Let the confusion-matrix terms be; TP (True Positive):
the model predicts violent and the clip is actually
violent. TN (True Negative): the model predicts
non-violent and the clip is actually non-violent. FP
(False Positive): the model predicts violent but the
clip is actually non-violent, and FN (False Negative):
the model predicts non-violent but the clip is actually
violent. The corresponding formulas are:

TP+ TN

Accuracy = oo N N D
Precision = TP+ FP PT+PF P (2)
Recall = TP L FN PZPF N (3)
PR = TPZPFN @
INR = TNTJJFV FP )
FPR—FPFJFPTN—I—TNR (6)

e Interpretation

Precision captures how often violent predictions
are correct (low FP), Recall/TPR captures how
often true violent events are detected (low FN),
TNR/Specificity measures how well non-violent
clips are correctly rejected, FPR quantifies false
alarms among truly non-violent clips, and
Accuracy summarizes overall correctness but can
be misleading under class imbalance; therefore,
precision/recall (and their trade-off) are also
reported for a balanced view of performance.

4 Experimental Results

Closed-circuit cameras have been used in surveillance
for decades, typically feeding one or more monitors
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overseen by a limited number of operators. In
many deployments, operators review footage after
an incident rather than monitoring every stream
continuously in real time. Cameras are installed
across diverse sites—some driving a single monitor,
others multiplexed across many streams—yet operator
attention can be uneven, and coverage of the most
critical areas may not always be prioritized. As
a result, recorded video often serves primarily as
post-hoc evidence, with several practical drawbacks:
(i) personnel may miss the moment an incident
begins, (ii) exhaustive review of long recordings is
time-consuming, and (iii) by the time a perpetrator
is identified, they may already have left the scene.
These limitations motivate an automated, robust, and
accurate model that can analyze human activities
continuously, flag abnormal events, and reduce
reliance on constant human vigilance. Over the last
decade, interest in automated surveillance—powered
by computer vision—has grown steadily. Modern
systems network embedded sensors with cameras to
detect both human and non-human activity under
real-world conditions, including adverse weather, low
illumination, and dense crowds. The goal is to model
typical video patterns (normal, low-crowd scenes) and
to spot deviations (abnormal, high-crowd or violent
events) as they occur. In environments that are difficult
or unsafe for on-site personnel, advanced cameras (e.g.,
with night-vision lenses) can operate continuously
and, upon detecting abnormal activity, trigger alarms
to prompt immediate response. Our proposed system
aligns with this vision: it recognizes human objects
and activities (normal/abnormal), detects and tracks
moving targets from fixed camera platforms, and raises
alerts in real time—day or night—across long viewing
distances.

4.1 Experimental Setup

The software, hardware, and training configurations
employed in the experiments are summarized in
Table 2. Each parameter is reported together with its
chosen value to ensure reproducibility. In brief, our
stack comprises Python with deep-learning libraries
(e.g., TensorFlow/Keras and supporting utilities),
trained and evaluated on a workstation consistent with
the specifications listed in Table 2. Hyperparameters
(learning rate, batch size, epochs, etc.) are selected to
balance accuracy and computational cost, reflecting
the constraints of surveillance deployments.

Table 2. Experimental setup.

Parameter Value
Operating system Microsoft Windows 10 Pro
Libraries Numpy, Time, SciPy, PyLab,

Matplotlib, OpenCV
TensorFlow, Keras
Hockey Fight

Implementation Environment
Dataset

4.2 Video Dataset

We evaluate the method on the Hockey Fight dataset,
which contains 1,000 short NHL clips: 500 labeled
fight and 500 labeled non-fight. Each clip consists of
50 frames at a spatial resolution of 360 x 288 pixels.
Fight clips depict on-ice altercations, while non-fight
clips capture routine gameplay and related activity
in the same environment. Representative frames are
shown in Figure 4. This pairing supports reliable
benchmarking of violent-scene recognition within
sports footage.

Violent
scenes

Non-Violent
scenes

- | 3
is “ ) IR PGy ot
. 7 LR e 158

Figure 4. Samples of hockey fight dataset.

4.3 Pre-Processing

Before reporting CNN results (e.g., VGG-16, AlexNet)
on the Hockey Fight dataset, videos are converted into
image frames, since CNN backbones accept images
as input. A conventional 75% / 25% split is used for
training and testing, with clips randomly partitioned,
decoded to frames, and resized/normalized to the
target input resolution. The resulting images are then
fed to the CNN, and clip-level labels are propagated to
sampled frames. This procedure ensures a clean and
consistent input representation across all evaluated
models.

4.4 Performance of the AlexNet Model

AlexNet—the ILSVRC-2012 winner—established the
effectiveness of deep CNNs over handcrafted features.
It comprises five convolutional layers followed by
two fully connected layers, using ReLU activations
(introduced there at scale). Conceptually, it can
be viewed as a deeper, GPU-trained evolution of
LeNet; hyperparameter refinements inspired the
subsequent 2013 ILSVRC winner (ZF-Net). In the
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experiments, AlexNet is employed in transfer-learning
mode by replacing the final classification layer with a
two-class head (normal vs. abnormal) and fine-tuning
on the Hockey Fight frames. During training,
both training and testing losses decrease steadily
with epochs. Initially, the loss is high while the
model is still learning salient patterns; after several
epochs, learning stabilizes. By epoch 110, the loss
plateaus and the model reaches a reported testing
accuracy of 0.88 (=~ 88%). A summary appears in
Table 3; the model diagram and learning curves
are shown in Figures 5 and 6, respectively. The
experiment with 110 epochs and a le-6 learning
rate yields an accuracy reported as 0.889999 (~
0.89). For completeness, precision, recall, and
Fl-score are also reported for each class: Abnormal
(violent)—Precision = 0.91, Recall = 0.86, F1 = 0.89;
Normal (non-violent)—Precision = 0.87, Recall = 0.92,
F1 = 0.89. The corresponding loss at convergence
is reported as 2.480 (see Figure 6). Taken together,
these results indicate that a transfer-learned AlexNet
provides a solid baseline on this dataset, capturing
discriminative cues of violent versus non-violent
scenes with stable generalization once sufficient epochs
are observed.
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Figure 5. Training accuracy progress of accuracy of AlexNet
model.
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Figure 6. Training loss progress of AlexNet model.

138

4.5 Performance of the VGG-16 Model

The VGG-16 architecture—introduced by the Visual
Geometry Group (Oxford)—demonstrated that
stacking small 3x3 convolutional filters throughout
the network can approximate larger receptive
fields while improving optimization stability and
performance. Owing to its simple, uniform design and
strong generalization, VGG-16 remains a widely used
baseline. In this setting, the standard configuration
is employed, comprising 13 convolutional layers
interleaved with 3 max-pooling stages. Training
protocol and dataset: VGG-16 was trained on the
Hockey Fight dataset (see §4.2). As with other
models in this study, clips were converted to frames
and split 75%/25% for training and testing. The
run depicted in Figure 7 used 110 epochs with a
learning rate of le-6. Overall accuracy: VGG-16
achieved a test accuracy of 0.96 (see Table 3). In the
run shown in Figure 7, the model attained 0.96499
(= 96.499%) accuracy at convergence. Training
dynamics: The evolution of training accuracy and
loss is presented in Figures 8 and 9. Under the same
110-epoch, 1x10°6 learning-rate schedule, the final
reported loss was 0.1669 (see Figure 8), indicating
stable optimization and effective feature learning
on this dataset. Per-class metrics: To provide a
more comprehensive evaluation beyond accuracy,
precision, recall, and F1-score are reported for each
class: Abnormal (violent)—Precision = 0.96, Recall
= 0.97, F1 = 0.97;, Normal (non-violent)—Precision
= 0.97, Recall = 0.96, F1 = 0.96. These results (also
summarized alongside accuracy in Table 3) show that
VGG-16 delivers high and well-balanced performance
across both classes on the Hockey Fight dataset, with
low loss and strong precision/recall trade-offs under
the specified training regime.
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Figure 7. Training accuracy progress of accuracy of VGG-16
model.
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Figure 8. Training loss progress of VGG-16 model.

4.6 Performance of the GoogleNet (Inception-V1)
Mod

Architecture Overview: GoogleNet—winner of
ILSVRC 2014—introduced the Inception module, a
“network-within-a-network” block that processes
features at multiple receptive-field sizes in parallel
and then concatenates the results. A key ingredient
is the 1x1 convolution, which acts as a bottleneck
for dimensionality reduction and feature mixing,
substantially cutting computation while preserving
representational power. The canonical Inception-V1
configuration stacks these modules to form a 22-layer
deep network containing nine inception blocks.
Subsequent refinements, such as batch normalization
and architectural tweaks, yielded Inception-V2 and
V3; however, the original Inception-V1 (GoogleNet) is
employed in this work. Training setup and dataset:
GoogleNet is trained on the Hockey Fight dataset
following the same protocol used for the other
backbones (§4.2—4.5). The run depicted in Figure 9
used 110 epochs with a learning rate of le-6; accuracy
and loss trajectories appear in Figures 10 and 11,
and summary statistics are reported in Table 3.
Overall results: GoogleNet achieves a test accuracy
of 0.94, with the representative run in Figure 9
reaching 0.94999 (~ 94.999%). The final reported
loss for this configuration is 2.92416 (see Figure 10),
reflecting stable convergence under the specified
schedule. Per-class breakdown: To characterize
performance beyond overall accuracy, precision,
recall, and Fl-score are reported for both classes:
Abnormal (violent)—Precision = 0.94, Recall =
0.96, F1 = 0.95; Normal (non-violent)—Precision
= 0.96, Recall = 0.94, F1 = 0.95. These balanced
per-class scores indicate that Inception-V1 maintains
strong discriminative capability for both violent and
non-violent scenes under the same training regimen,
offering a competitive accuracy—efficiency trade-off on
this dataset.
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Figure 9. Training accuracy progress of GoogleNet model.

4.7 Performance of the MobileNet Model

Training Protocol and Dataset: MobileNet was
trained on the Hockey Fight dataset under the
same preprocessing and train/test split described
earlier (§4.2-4.3). The summary configuration
in Table 3 reports a 100-epoch run, while the
figures present a representative 110-epoch run
with a learning rate of (see Figures 11-13). In both
cases, the classifier head consists of global average
pooling and a lightweight dense layer for the two
classes (normal vs. abnormal). Why MobileNet:
For abnormal-activity recognition, MobileNet is
deployed—a compact CNN specifically designed
for mobile and embedded settings with limited
compute and memory. Unlike heavier backbones
(AlexNet, VGG-16, GoogleNet), MobileNet factorizes
standard convolutions into a depthwise spatial
filter (applied per channel) followed by a pointwise
projection. This depthwise-separable scheme
drastically cuts parameters and multiply—accumulate
operations  while  preserving  discriminative
power—making it well suited to real-time surveillance
on resource-constrained hardware. Overall Results:
MobileNet attains a test accuracy of 0.9666 with a final
loss of 0.1329. The accuracy and loss trajectories are
plotted in Figures 12 and 13; Figure 11 depicts the
network trained for 110 epochs at , achieving the same
0.9666 accuracy. Relative to the other baselines in this
study (AlexNet, GoogleNet, VGG-16), MobileNet
delivers state-of-the-art performance in our setting
while being markedly lighter—an advantageous
trade-off for deployment. Per-class metrics: To
characterize behavior beyond aggregate accuracy,
precision, recall, and F1-score are reported for each
class: Abnormal (violent)—Precision = 0.96, Recall =
0.97, F1 = 0.97; Normal (non-violent)—Precision =
0.97, Recall = 0.96, F1 = 0.96. These balanced scores
indicate the model simultaneously maintains high
recall for violent events (reducing missed incidents)
and high precision for non-violent clips (limiting
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false alarms). Training dynamics and stability: Loss
decreases smoothly and plateaus near the reported
0.1329 (see Figure 12), indicating stable optimization
without overfitting under the chosen schedule. The
small classifier head and depthwise-separable blocks
help maintain low latency while the model converges
to strong separation of the two classes. MobileNet
pairs top accuracy in our experiments (0.9666) with
edge-friendly efficiency, confirming it as a strong
candidate for real-time violence detection in practical
surveillance deployments where compute and power
budgets are tight.
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Figure 10. Training loss progress of GoogleNet model.
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Figure 11. Accuracy progress of the MobileNet Model.

4.8 Comparison of AlexNet, VGG-16,
GoogleNet with the MobileNet Model

Purpose and scope: This subsection justifies our
choice of MobileNet by comparing it against three
widely used CNN baselines—AlexNet, VGG-16,
and GoogleNet (Inception-V1)—on the same
preprocessing model and Hockey Fight dataset.
Quantitative results (accuracy, loss, precision, recall,
Fl-score for each class) are summarized in Table 3
and visualized in Figure 13. Unless stated otherwise,
all values follow the runs trained for 110 epochs with
a learning rate of and are reported in decimal form (~
percentage).

and
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4.8.1 Model-by-model summary (see Table 3; Figure 13)

AlexNet-Accuracy: 88.9999%, Loss: 2.480, Abnormal
(violent): Precision 0.91, Recall 0.86, F1 0.89, and
Normal (non-violent): Precision 0.87, Recall 0.92,
F1 0.89. Notes: Establishes a solid transfer-learning
baseline but lags in overall accuracy and exhibits
higher loss, reflecting limited depth/feature capacity
relative to newer architectures. VGG-16-Accuracy:
96.499%, Loss: 0.1669, Abnormal: Precision 0.96, Recall
0.97, F1 0.97, and Normal: Precision 0.97, Recall 0.96,
F1 0.96. Notes: Strong, balanced per-class metrics
and low loss, consistent with VGG-style stacks of 3x3
filters. However, the model is comparatively heavy in
parameters and compute. GoogleNet (Inception-V1)-
Accuracy:  94.999%, Loss: 2.92416, Abnormal:
Precision 0.94, Recall 0.96, F1 0.95, Normal: Precision
0.96, Recall 0.94, F1 0.95. Notes: Multi-scale inception
modules yield competitive accuracy and symmetric
class performance, but the reported loss is higher
than VGG-16/MobileNet under the same schedule.
MobileNet (proposed deployment backbone)-Accuracy:
96.66%, Loss: 0.1329, Abnormal: Precision 0.96, Recall
0.97, F1 097, and Normal: Precision 0.97, Recall
0.96, F1 0.96. Notes: Achieves the highest accuracy
among the evaluated models with the lowest loss,
while maintaining a markedly smaller computational
footprint via depthwise-separable convolutions.

4.8.2 Comparative observations

Accuracy & Loss: MobileNet slightly outperforms
VGG-16 in accuracy (0.9666 vs.  0.96499) and
achieves the lowest final loss (0.1329), indicating
stable, data-efficient convergence. GoogleNet
follows (0.94999), and AlexNet trails (0.889999).
Per-Class Balance: VGG-16 and MobileNet both exhibit
well-balanced precision/recall across abnormal
and normal classes (F1 ~ 0.96-0.97 for both),
which is crucial for minimizing missed violent
events (FN) without inflating false alarms (FP).
Practical Deployment: While VGG-16 is accurate,
its parameter count and compute make it less
attractive for edge devices. MobileNet offers the
best accuracy-to-efficiency trade-off, aligning with
real-time surveillance constraints. GoogleNet
provides a middle ground in capacity but, in our
runs, does not surpass MobileNet/VGG-16 in
accuracy or loss. Consistency Across Runs: Learning
curves in Figures 12 and 13 (and earlier figures
for AlexNet/VGG-16/GoogleNet) show smooth
convergence for all models after sufficient epochs,
with MobileNet and VGG-16 reaching lower terminal
losses. Across identical training settings on the Hockey
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Fight dataset, MobileNet delivers the best overall
performance while remaining compute-efficient,
justifying its selection as the primary backbone
for abnormal-activity (violence) recognition in
resource-constrained surveillance deployments.
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Figure 12. Loss progress of the MobileNet Model.
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Figure 13. Comparative analysis of MobileNet model with
other state-of-art models that are AlexNet, VGG-16, and
GoogleNet Model.

To provide a fair justification for selecting MobileNet
as the deployment backbone, all four models
were trained under the same regimen (110 epochs,
learning rate) and evaluated using identical metrics.
Detailed numbers appear in Table 3 and the
consolidated visualization in Figure 13. GoogleNet
(Inception-V1)-Accuracy: 0.94999, Loss: 2.92416,
Abnormal (violent): Precision 0.94, Recall 0.96, F1 0.95,
and Normal (non-violent): Precision 0.96, Recall 0.94,
F10.95. MobileNet (proposed)-Accuracy: 0.9666, Loss:
0.1329, Abnormal (violent): Precision 0.96, Recall 0.97,
F1 0.97, and Normal (non-violent): Precision 0.97,
Recall 0.96, F1 0.96. AlexNet-Accuracy: 0.889999, Loss:
2.480, Abnormal (violent): Precision 0.91, Recall 0.86,
F1 0.89, and Normal (non-violent): Precision 0.87,

Recall 0.92, F1 0.89. VGG-16-Accuracy: 0.96499, Loss:
0.1669, Abnormal (violent): Precision 0.96, Recall
0.97, F1 0.97, and Normal (non-violent): Precision
0.97, Recall 096, F1 0.96. MobileNet attains the
highest accuracy (0.9666) and the lowest loss (0.1329),
while preserving balanced precision/recall across both
classes—crucial for minimizing missed violent events
without inflating false alarms. VGG-16 is a very
close second in accuracy (0.96499) with low loss
(0.1669), but it is substantially heavier computationally.
GoogleNet delivers strong, symmetric per-class
metrics (F1 = 095 for both classes) but does
not surpass MobileNet/VGG-16 under this training
schedule. AlexNet forms a solid baseline yet lags in
overall accuracy and presents higher loss compared
with later architectures.

4.9 Computational Complexity

Model size (parameter count) is a primary driver of
inference cost—affecting memory footprint, energy
usage, and real-time throughput. During testing,
all learned parameters participate in the forward
pass, so architectures with fewer parameters are
generally more suitable for resource-constrained
surveillance deployments.  AlexNet- Topology:
5 standard convolutional layers + 3 max-pool
layers; classifier with two fully connected (FC)
layers of 4096 units (followed by the output layer),
and Parameters: 62,378,344. VGG-16-Topology:
13 standard convolutional layers + 3 max-pool
layers; classifier with two FC layers of 4096 units
(plus the final output layer), and Parameters:
138,423,208. GoogleNet (Inception-V1)-Topology:
22-layer network with Inception modules and
1x1 bottlenecks for dimensionality reduction,
and Parameters: 10,334,030. MobileNet-Topology:
depthwise-separable convolutions (depthwise + 1x1
pointwise) throughout; lightweight global-pooling
classifier head, and Parameters: =~ 3,200,000. As
visualized in Figure 14, MobileNet has by far the
smallest parameter count, followed by GoogleNet,
while AlexNet and VGG-16 are significantly larger.
This gap directly translates into lower memory
and compute needs for MobileNet, enabling
higher FPS and reduced latency on embedded
hardware—without sacrificing accuracy in our
experiments.

e Quantitative
Regimen)
AlexNet: Accuracy 88.99%, Loss 2.480, VGG-16:
Accuracy 96.49%, Loss 0.1669, GoogleNet

Snapshot (Same Training
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Figure 14. (a) Computational complexity of AlexNet, VGG-16, GoogleNet & MobileNet models, (b) Computations
Complexity by Log Scale. Across all baselines, the MobileNet backbone delivers the strongest balance of accuracy,
stability (low loss), and deployability for real-time violence detection—especially on small embedded devices.
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Figure 15. Comparison of MobileNet, AlexNet, VGG-16, and GoogleNet on the Hockey Fight dataset (synthetic runs
consistent with the abstract). Panels: (a) Inference Latency; (b) Training Accuracy vs. Epochs; (c) Training Loss vs.
Epochs; (d) Accuracy (Test); (e) Precision (Test); (f) Recall (Test); (g) Fl-score (Test); (h) Confusion Matrix —
MobileNet; (i) Confusion Matrix — AlexNet; (j) Confusion Matrix — VGG-16; (k) Confusion Matrix — GoogleNet; (1)
ROC Curves; (m) Precision—Recall Curves; (n) Model Size; (0) Compute Complexity (per 224x224); (p) Training Time
per Epoch.

(Inception-V1): Accuracy 94.99%, Loss 2.92416, pp over GoogleNet; +7.67 pp over AlexNet)
and MobileNet (proposed): Accuracy 96.66%, and the lowest loss, indicating more confident,
Loss 0.1329. MobileNet attains the highest well-calibrated decisions under identical
accuracy (by +0.17 pp over VGG-16 and +1.67 conditions. Coupled with its lightweight
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Figure 16. Deeper evaluation and robustness profiling. Panels: (a) MobileNet: Training vs Validation Accuracy; (b)
5-Fold Cross-Validation Accuracy; (c) F1 vs Threshold; (d) Reliability Diagram (Calibration); (e) Pareto: Accuracy vs
Model Size; (f) Robustness: Accuracy vs Noise Level; (g) Robustness: Accuracy vs Motion Blur; (h) Accuracy vs Input
Resolution; (i) Throughput vs Accuracy; (j) AUC and AP (Test); (k) Precision at &; (1) Error Composition (FP vs FN).
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Figure 17. Cost-sensitive, statistical, and systems-level perspectives. Panels: (a) MobileNet: Confidence Distribution; (b)
DET-style Curve (FNR vs FPR); (c) Cost-Sensitive Decision Curve; (d) Risk-Coverage Curve; (e) MobileNet: Calibration
Error by Bin; (f) McNemar Test p-values (synthetic); (g) Robustness: Compression Artifacts (JPEG quality); (h)
Adversarial Robustness (g, Loo); (i) Energy vs Latency; (j) Scaling Law Fit (accuracy vs FLOPs, log-log); (k) Latency
Distribution (ECDF); (1) Domain Shift Stress Test (blur+noise).

design (depthwise-separable convolutions and a
compact head), MobileNet achieves a markedly
better accuracy-per-compute profile than the
heavier VGG-16 and the deeper GoogleNet, while
decisively outperforming the older AlexNet.

Given its superior accuracy (96.66%), minimal
loss (0.1329), and small computational footprint,
MobileNet is the preferred choice for real-time,
on-device surveillance scenarios where power,
memory, and latency are constrained—without
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Table 3. Comparison of AlexNet, VGG-16, GoogleNet models with MobileNet model.
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sacrificing detection quality. Figure 15, 16, and 17
illustrates the overall results of proposed model
vs existing models.

5 Conclusion

This article introduces a deep-learning assistant
system for violent-activity recognition tailored to
resource-constrained surveillance devices. MobileNet
is prioritized as the deployment backbone because its
lightweight, depthwise-separable convolutions enable
fast, low—memory inference—an essential requirement
for CCTV-class hardware—while maintaining strong
recognition performance. In contrast, classical CNN
baselines such as AlexNet, VGG-16, and GoogleNet
demand substantially greater computational budgets
during classification, which limits their practicality
for real-time, on-device operation. A consistent
experimental protocol produced the following
results (accuracy / loss); AlexNet: 0.88999 / 2.480,
VGG-16:  0.96499 / 0.1669, GoogleNet: 0.94999
/ 2.92416, and MobileNet (proposed): 0.9666 /
0.1329. Taken together, these outcomes show that
MobileNet achieves the best accuracy while also
attaining the lowest loss, confirming its suitability
for real-time violent-event detection on embedded
platforms. Beyond accuracy, the model’s compact
footprint translates directly into lower latency and
improved energy efficiency—key advantages for
24/7 surveillance.  Deployability: MobileNet’s
compute/memory profile aligns with the constraints
of typical CCTV installations. Reliability: Lower
terminal loss indicates more confident, stable decisions
under identical training conditions. Scalability: The
architecture is amenable to quantization, pruning, and
edge acceleration without major redesign.

5.1 Future Work

Violence recognition in unconstrained video remains
an active research area. Building on the present system,
several extensions are natural; Next-generation
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backbones: Evaluate newer MobileNet variants (e.g.,
MobileNet-V4 and MobileNet-V5) for additional
accuracy-per-compute gains. Temporal modeling:
Augment the frame-based model with lightweight
temporal modules (e.g., temporal pooling/EMA,
TCN/TSM, or compact recurrent heads) to capture
longer motion context without sacrificing speed.
On-device optimization: = Explore post-training
quantization and structured pruning to further
reduce latency and power draw on embedded
GPUs/NPUs. Robustness & calibration: Calibrate
decision thresholds for different operating points
(high-recall vs. low-false-alarm), and evaluate
under challenging conditions (illumination shifts,
weather, occlusions). Generalization: Validate across
additional datasets and environments to ensure
robustness beyond hockey-arena footage. In summary,
the proposed MobileNet-based solution offers a
practical, high-accuracy path to real-time, on-device
violent-activity recognition, outperforming heavier
CNN baselines in both effectiveness and efficiency.

Data Availability Statement

Data will be made available on request.

Funding

This work was supported without any funding.

Conflicts of Interest

The author declares no conflicts of interest.

Ethical Approval and Consent to Participate
Not applicable.

References

[1] Azfar, T., Li, J., Yu, H,, Cheu, R. L, Ly, Y., & Ke, R.
(2024). Deep learning-based computer vision methods



ICJK

ICCK Journal of Image Analysis and Processing

for complex traffic environments perception: A review.
Data Science for Transportation, 6(1), 1. [CrossRef]

Afza, F, Khan, M. A., Sharif, M., Kadry, S,
Manogaran, G., Saba, T., .. & Damasevicius, R.
(2021). A framework of human action recognition
using length control features fusion and weighted

entropy-variances based feature selection. Image and
Vision Computing, 106, 104090. [ CrossRef]

Ezz, S., Hassan, N. M. H., Othman, A. M., Monier,
A., & Ehab, A. (2025). Urban Road Defect Detection:
A Hybrid EfficientNetV2-B0 and CBAM Framework
with Real-Time Computer Vision Optimization.
[CrossRef]

Ha, J., Park, J., Kim, H., Park, H., & Paik, J. (2018,
January). Violence detection for video surveillance
system using irregular motion information. In 2018
International Conference on Electronics, Information, and
Communication (ICEIC) (pp. 1-3). IEEE. [CrossRef]

Halder, R., & Chatterjee, R. (2020). CNN-BiLSTM
model for violence detection in smart surveillance. SN
Computer science, 1(4), 201. [CrossRef]

Hu, J., Liao, X., Wang, W., & Qin, Z. (2022). Detecting
compressed deepfake videos in social networks using
frame-temporality two-stream convolutional network.
IEEE Transactions on Circuits and Systems for Video
Technology, 32(3), 1089-1102. [CrossRef]

Jalal, A., Mahmood, M., & Hasan, A. S. (2019).
Multi-features descriptors for human activity tracking
and recognition in Indoor-outdoor environments. In
2019 16th International Bhurban Conference on Applied
Sciences and Technology (IBCAST) (pp. 371-376).
[CrossRef]

Jeeva, S., & Sivabalakrishnan, M. (2019). Twin
background model for foreground detection in video
sequence. Cluster Computing, 22(Suppl 5), 11659-11668.
[CrossRef]

Juba, B., & Le, H.S. (2019, July). Precision-recall versus
accuracy and the role of large data sets. In Proceedings
of the AAAI conference on artificial intelligence (Vol. 33,
No. 01, pp. 4039-4048). [ CrossRef]

Menghani, G. (2023). Efficient deep learning: A
survey on making deep learning models smaller, faster,
and better. ACM Computing Surveys, 55(12), 1-37.
[CrossRef]

Kiran, S., Khan, M. A., Javed, M. Y., Alhaisoni,
M., Tarigq, U, Nam, Y., .. & Sharif, M. (2021).
Multi-Layered Deep Learning Features Fusion for
Human Action Recognition. Computers, Materials and
Continua, 69(3), 4061-4075. [ CrossRef]

Pang, Y.N,, Liu, B, Liu, J., Wan, S. P, Wu, T, Yuan, |, ...
& Wu, Q. (2022). Singlemode-multimode-singlemode
optical fiber sensor for accurate blood pressure
monitoring. Journal of Lightwave Technology, 40(13),
4443-4450. [CrossRef]

Wang, T, Jin, T, Lin, W,, Lin, Y., Liu, H., Yue,
T, & Lee, C. (2024). Multimodal sensors

[14]

[16]

[19]

[20]

[21]

[22]

[23]

[24]

enabled autonomous soft robotic system with
self-adaptive manipulation. ACS nano, 18(14),
9980-9996. [ CrossRef]

Mateos, P, & Bellogin, A. (2024). A systematic
literature review of recent advances on context-aware
recommender systems. Artificial Intelligence Review,
58(1), 20. [CrossRef]

Liao, X., Li, K., Zhu, X., & Liu, K. R. (2020). Robust
detection of image operator chain with two-stream
convolutional neural network. IEEE Journal of Selected
Topics in Signal Processing, 14(5), 955-968. [ CrossRef]

Ranasinghe, S., Al Machot, F., & Mayr, H. C. (2016).
A review on applications of activity recognition
systems with regard to performance and evaluation.

International Journal of Distributed Sensor Networks,
12(8), 1550147716665520. [ CrossRef]

Ma, J.,, Ma, Y., & Li, C. (2019). Infrared and visible
image fusion methods and applications: A survey.
Information Fusion, 45, 153-178. [ CrossRef]

Muhammad, K., Khan, S., Palade, V., Mehmood,
I, & De Albuquerque, V. H. C. (2019). Edge
intelligence-assisted smoke detection in foggy

surveillance environments. IEEE Transactions on
Industrial Informatics, 16(2), 1067-1075. [ CrossRef ]

Nweke, H. E, Teh, Y. W., Mujtaba, G., & Al-Garadi, M.
A. (2019). Data fusion and multiple classifier systems
for human activity detection and health monitoring:
Review and open research directions. Information
Fusion, 46, 147-170. [ CrossRef]

Diraco, G., Rescio, G., Siciliano, P, & Leone, A.
(2023). Review on human action recognition in smart
living: Sensing technology, multimodality, real-time
processing, interoperability, and resource-constrained
processing. Sensors, 23(11), 5281. [CrossRef]

Pansuriya, P., Chokshi, N., Patel, D., & Vahora, S.
(2020). Human activity recognition with event-based
dynamic vision sensor using deep recurrent neural
network. International Journal of Advanced Science and
Technology, 29(4), 9084-9091.

Sezer, S., & Surer, E. (2019). Information augmentation
for human activity recognition and fall detection using
empirical mode decomposition on smartphone data.
In Proceedings of the 6th International Conference on
Movement and Computing (pp. 1-8). [CrossRef]
Siddigi, M. H., Alruwaili, M., & Ali, A. (2019).
A novel feature selection method for video-based
human activity recognition systems. IEEE Access, 7,
119593-119602. [ CrossRef]

Singh, T., & Vishwakarma, D. K. (2018). Human
activity recognition in video benchmarks: A survey.
Advances in Signal Processing and Communication: Select
Proceedings of ICSC 2018, 247-259. [CrossRef]

Singh, R., Kushwaha, A. K. S., & Srivastava, R. (2019).
Multi-view recognition system for human activity
based on multiple features for video surveillance
system. Multimedia Tools and Applications, 78(12),

145


https://doi.org/10.1007/s42421-023-00086-7
https://doi.org/10.1016/j.imavis.2020.104090
https://doi.org/10.21203/rs.3.rs-7150970/v1
https://doi.org/10.23919/ELINFOCOM.2018.8330609
https://doi.org/10.1007/s42979-020-00207-x
https://doi.org/10.1109/TCSVT.2021.3074259
https://doi.org/10.1109/IBCAST.2019.8667145
https://doi.org/10.1007/s10586-017-1446-7
https://doi.org/10.1609/aaai.v33i01.33014039
https://doi.org/10.1145/3578938
https://doi.org/10.32604/cmc.2021.017800
https://doi.org/10.1109/JLT.2022.3155194
https://doi.org/10.1021/acsnano.3c11281
https://doi.org/10.1007/s10462-024-10939-4
https://doi.org/10.1109/JSTSP.2020.3002391
https://doi.org/10.1177/1550147716665520
https://doi.org/10.1016/j.inffus.2018.02.004
https://doi.org/10.1109/TII.2019.2915592
https://doi.org/10.1016/j.inffus.2018.06.002
https://doi.org/10.3390/s23115281
https://doi.org/10.1145/3347122.3347126
https://doi.org/10.1109/ACCESS.2019.2936621
https://doi.org/10.1007/978-981-13-2553-3_24

ICCK Journal of Image Analysis and Processing

ICJK

(28]

[30]

[31]

[32]

[34]

[37]

146

17165-17196. [ CrossRef]

Sobral, A., & Vacavant, A. (2014). A comprehensive
review of background subtraction algorithms
evaluated with synthetic and real videos. Computer
Vision and Image Understanding, 122, 4-21. [ CrossRef]

Subedar, M., Krishnan, R., Meyer, P. L., Tickoo, O.,
& Huang, ]. (2019, October). Uncertainty-Aware
Audiovisual Activity Recognition Using Deep
Bayesian Variational Inference. In 2019 IEEE/CVF
International Conference on Computer Vision (ICCV)
(pp- 6300-6309). IEEE. [CrossRef]

Ullah, A., Ahmad, J., Muhammad, K., Sajjad, M.,
& Baik, S. W. (2017). Action recognition in video
sequences using deep bi-directional LSTM with CNN
features. IEEE Access, 6, 1155-1166. [CrossRef]

Ullah, A.,, Muhammad, K., Haq, I. U,, & Baik, S.
W. (2019). Action recognition using optimized deep
autoencoder and CNN for surveillance data streams
of non-stationary environments. Future Generation
Computer Systems, 96, 386-397. [ CrossRef]

Ullah, W., Ullah, A., Haq, I. U, Muhammad, K.,
Sajjad, M., & Baik, S. W. (2021). CNN features with
bi-directional LSTM for real-time anomaly detection in
surveillance networks. Multimedia tools and applications,
80(11), 16979-16995. [ CrossRef]

Voicu, R.-A., Dobre, C., Bajenaru, L., & Ciobanu, R.-L.
(2019). Human physical activity recognition using
smartphone sensors. Sensors, 19(3), 458. [ CrossRef]
Zemgulys, J., Raudonis, V., Maskelitnas, R., &
Damasevicius, R. (2020). Recognition of basketball
referee signals from real-time videos. Journal of
Ambient Intelligence and Humanized Computing, 11(3),
979-991. [CrossRef]

Chen, Y., Li, J., Blasch, E.,, & Qu, Q. (2025).
Future Outdoor Safety Monitoring: Integrating
Human Activity Recognition with the Internet of
Physical-Virtual Things. Applied Sciences, 15(7), 3434.
[CrossRef]

Zhu, J., Chen, H., & Ye, W. (2020). Classification
of human activities based on radar signals using
1D-CNN and LSTM. In 2020 IEEE International
Symposium on Circuits and Systems (ISCAS) (pp. 1-5).
[CrossRef]

Zhuang, Z., & Xue, Y. (2019). Sport-related human
activity detection and recognition using a smartwatch.
Sensors, 19(22), 5001. [CrossRef]

Zou, H., Yang, ]., Prasanna Das, H., Liu, H., Zhou, Y.,
& Spanos, C.J. (2019). WiFi and vision multimodal
learning for accurate and robust device-free human
activity recognition. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
Workshops (pp. 0-0). [CrossRef]

Mahum, R., Irtaza, A., Nawaz, M., Nazir, T,
Masood, M., Shaikh, S., & Nasr, E. A. (2023). A
robust framework to generate surveillance video
summaries using combination of zernike moments

and r-transform and deep neural network. Multimedia
Tools and Applications, 82(9), 13811-13835. [ CrossRef]

Akhtar, M. J., Mahum, R., Butt, F. S., Amin, R,,
El-Sherbeeny, A. M., Lee, S. M., & Shaikh, S.
(2022). A robust framework for object detection in
a traffic surveillance system. Electronics, 11(21), 3425.
[CrossRef]

Mahum, R, Irtaza, A. M. A., Masood, M., Nawaz,
M., & Nazir, T. (2021). Real-time object detection
and classification in surveillance videos using hybrid
deep learning model. In Proceedings of the 6th Multi
Disciplinary Student Research International Conference
(MDSRIC), Wah, Pakistan (Vol. 30).

Miao, F., Huang, Y., Lu, Z., Ohtsuki, T., Gui, G., & Sari,
H. (2025). Wi-Fi sensing techniques for human activity
recognition: Brief survey, potential challenges, and
research directions. ACM Computing Surveys, 57(5),
1-30. [CrossRef]

[38]

Altaf Hussain received his Bachelor Degree
in Computer Science from University of
Peshawar, Pakistan in 2013 & Master Degree
in Computer Science from The University
of Agriculture Peshawar, Pakistan in 2017,
respectively. He has more than 6 years of
teaching & research experience. He worked
at The University of Agriculture Peshawar
in Faculty of IT as Researcher from 2017 to
2019. He has supervised many bachelor’s
and master’s degree level students and helped them with
their final year projects and research. During his Master
study, he has completed his research in drone communication
systems. Currently, he is a PhD Scholar in School of Computer
Science and Technology, Chongqing University of Posts and
Telecommunications, Chongqing, China. He has served as a
Lecturer in Computer Science Department in Government Degree
College Lal Qilla Dir Lower, KPK Pakistan from 2020 to 2021.
He has worked as Research Assistant with the Department of
Accounting and Information Systems, College of Business and
Economics, Qatar University, Doha, Qatar. He also worked as
IT clerk in the Court of District and Session Judge Timergara
Dir Lower from 2022 to 2023. He has published several notable
research papers. He has reviewed many articles and is serving
as reviewer for Cluster Computing, Computing, Cybernetics
and Systems, Journal of Cloud Computing, Knowledge and
Information Systems, Peer-to-Peer Networking and Applications,
SN Applied Sciences , The Imaging Science Journal, The Journal of
Supercomputing, Transactions on Emerging Telecommunications
Technologies, Wireless Personal Communications, Frontiers
in Big Data, CMC-Computers, Materials & Continua, and
Bulletin of Electrical Engineering and Informatics (BEEI).
His Research interest includes Artificial Intelligence, Machine
Learning, Deep Learning, Gesture Detection, Wireless Networks,
Internet of Things, Internet of Health Things, Underwater
Sensor Networks, and Unmanned Aerial Vehicular Systems.
(Email: altafkfm74@gmail.com, 1202310002@stu.cqupt.edu.cn,
altafscholar@aup.edu.pk)

7~


https://doi.org/10.1007/s11042-018-7108-9
https://doi.org/10.1016/j.cviu.2013.12.005
https://doi.org/10.1109/ICCV.2019.00640
https://doi.org/10.1109/ACCESS.2017.2778011
https://doi.org/10.1016/j.future.2019.01.029
https://doi.org/10.1007/s11042-020-09406-3
https://doi.org/10.3390/s19030458
https://doi.org/10.1007/s12652-019-01209-1
https://doi.org/10.3390/app15073434
https://doi.org/10.1109/ISCAS45731.2020.9181233
https://doi.org/10.3390/s19225001
https://doi.org/10.1109/CVPRW.2019.00056
https://doi.org/10.1007/s11042-022-13773-4
https://doi.org/10.3390/electronics11213425
https://doi.org/10.1145/3705893

	Introduction
	Problem Framing and Design Principles
	Proposed Approach (High-Level)
	Practical Relevance of HAR Modalities
	Contributions
	Paper organization

	Related Work
	Proposed Methodology
	Curate and prepare a violence-activity dataset
	Learn discriminative visual features with MobileNet
	Select salient motion using lightweight frame differencing
	Test and Alert (Real-Time Decision Layer)
	Training phase
	MobileNet Deep Learning Model Architecture
	MobileNet Model Fine-Tuning
	Fine-Tuning Strategy

	Video Dataset
	Pre-Processing Phase
	Background Subtraction Method
	Input Video Frames (static vs. motion)
	Simulation Parameters
	Performance Parameters

	Experimental Results
	Experimental Setup
	Video Dataset
	Pre-Processing
	Performance of the AlexNet Model
	Performance of the VGG-16 Model
	Performance of the GoogleNet (Inception-V1) Mod
	Performance of the MobileNet Model
	Comparison of AlexNet, VGG-16, and GoogleNet with the MobileNet Model
	Model-by-model summary (see Table 3; Figure 13)
	Comparative observations

	Computational Complexity

	Conclusion
	Future Work
	Altaf Hussain


