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Abstract

Poultry farming plays a vital role in global food
production, requiring efficient management
to ensure productivity and animal welfare.
Traditional methods, largely based on manual
monitoring, are often inefficient, error-prone,
and costly. With the rise of Internet of Things
(IoT) technologies, intelligent systems now
enable remote monitoring and management of
environmental conditions, farm operations, and
disease prevention. Platforms such as ThingSpeak
allow for real-time data collection, processing, and
visualization, offering a cost-effective solution for
poultry farm management. By integrating sensors
to measure temperature, humidity, air quality, and
feeding, and by leveraging ThingSpeak’s analytical
tools, farms can automatically adjust conditions
and support proactive decision-making. This not
only reduces operational costs but also improves
efficiency, resource management, and animal health
monitoring. The growing demand for poultry
products has pressured farms to increase production,
which heightens the risk of disease outbreaks
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and significant economic losses. Traditional
disease detection methods, which depend on
manual inspections by skilled professionals, are
labor-intensive and delay timely intervention. To
address these challenges, an IoI-based poultry
disease detection and classification system is
proposed. This system employs sensors for
continuous health monitoring and artificial
intelligence algorithms such as YOLOV7 and
MobileNetV3 to analyze data. YOLOV7 segments
regions of interest from automatically captured fecal
images, while MobileNetV3 classifies them into
four states: healthy, coccidiosis, salmonella, and
Newcastle disease. Trained on Zenodo database
samples, these models achieve high accuracy,
providing farmers and veterinarians with an
effective tool for proactive disease management and
sustainable poultry farming.

Keywords: ESP32, YOLOV7 , MobileNetV3, IoT, intelligent
poultry system, disease detection.

1 Introduction

The growing demand for poultry meat, due to
its protein richness, low energy intake, and low
cholesterol content, has led to a significant expansion
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in poultry production. In West Africa, particularly
in Senegal, this sector has experienced rapid growth
over the past few decades, responding to increased
demand for broiler chicken, which has resulted in
a notable rise in imports. However, maintaining
high poultry production depends on various
factors, such as environmental conditions, disease
management, breeding practices, and effective
resource administration. Effective management of
poultry health and welfare is therefore crucial to
prevent infectious diseases, improve productivity, and
ensure the health of broilers. Nevertheless, traditional
farming methods face significant challenges, including
high labor costs and inefficient management of
resources such as feed, water, and electricity. In
response to these challenges, it is essential to adopt
innovative solutions, such as the concept of "smart
farms," to optimize management and productivity
in poultry farming while minimizing errors and
improving the living conditions of the birds.

Good management of poultry welfare can not only
improve their overall health and living conditions
but also reduce the spread of diseases and minimize
economic losses. Early detection and classification
of poultry diseases from chicken fecal images are
essential for maintaining flock health and ensuring
product quality. This enables timely interventions and
the implementation of measures to control outbreaks
and protect animals and consumers.

In this context, the integration of the Internet of Things
(IoT) and deep learning (DL) emerges as a promising
technology for intelligent poultry farming. These
advanced technologies enable real-time monitoring of
farming conditions, precise data analysis, and optimal
decision-making to improve resource management
and productivity in poultry operations. The IoT
offers innovative technological solutions that can
simplify operations for workers and poultry farm
owners. These technologies allow for real-time
monitoring of farms via the cloud, as well as remote
control of environmental conditions, thus fostering
more effective and responsive farm management.
Meanwhile, deep learning can revolutionize the
management and optimization of poultry farming. By
analyzing images and videos of animals, deep learning
systems can detect signs of disease, monitor growth,
and assess environmental conditions with increased
accuracy. This technology also enables the prediction
of nutritional needs and the detection of behavioral
anomalies, contributing to improved poultry welfare
and maximized productivity.

In this work, we develop a low-cost and efficient
remote management system for poultry farms,
combining connected sensor technologies and artificial
intelligence (AI). This system allows for real-time
monitoring of environmental conditions such as
ammonia (NH3) levels, temperature, and humidity,
as well as the health status of the poultry through
an intelligent video surveillance device. The poultry
disease detection system employs advanced object
detection algorithms using YOLOV?7 for region
segmentation and pre-trained image classification
algorithms using MobileNetV3 to classify images into
four health states: healthy, coccidiosis, salmonella,
and Newcastle disease. The sensors are connected
to an ESP32 development board and use a Wi-Fi
connection to transmit data to the ThingSpeak
platform, enabling optimized remote management via
a mobile application or online platform. The main
contributions of this paper are summarized as follows:

e Designing an intelligent poultry monitoring
system capable of identifying and classifying
chicken diseases through fecal image analysis of
chickens.

e Predicting four health states of poultry: healthy,
coccidiosis, salmonella, and Newcastle disease via
various deep learning techniques.

e Detecting and classifying the pathological state of
poultry by classifying sick and healthy chickens
from a poultry farm using fecal image analysis.

e Presenting a comprehensive experimental study
of the work conducted and providing details on
the various significant results obtained.

The article is organized as follows: Section 2 examines
relevant prior studies related to our research. Basic
concepts regarding Iol, ESP32, YOLO V7, MobileNetV3
, and the dataset are discussed in Section 3. Section
4 presents the methodology of the system. Section 5
provides details on the infrastructure of the proposed
poultry farm system, while Section 6 describes the
intelligent poultry health monitoring system. The
experimental results are discussed in Section 7. Finally,
Section 8 presents the conclusions of the paper and
directions for future work.

2 Related works

Intelligent systems based on the Internet of Things
(IoT) are revolutionizing poultry farming by providing
optimized management of environmental conditions
and improving animal welfare. These systems,
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through the real-time collection and analysis of
essential data such as temperature, humidity, and
gas levels, enable automatic regulation of conditions
to ensure an ideal environment. The integration
of renewable energy sources like solar energy and
nano-hydropower, along with the use of edge
computing solutions with devices like the Raspberry
Pi, makes power supply and data processing more
sustainable and cost-effective. =~ The automation
of tasks such as feeding and watering, combined
with the ability to manage equipment remotely via
mobile applications, reduces operational costs while
increasing efficiency. Advanced alert systems, coupled
with the application of artificial intelligence to monitor
poultry health, allow for early detection of problems,
thereby improving animal welfare and optimizing
production. Due to their flexibility and scalability;,
these solutions are suitable for various types and sizes
of farms, transforming poultry management into a
more proactive and sustainable approach. Recent
research has focused on the development of intelligent
systems for poultry farming using the Internet of
Things (IoT'). One notable work proposes in [1] an
IoI-based system that integrates renewable energy
sources, such as solar energy and nano-hydropower,
for power supply. This system collects diverse data
via sensors, including temperature, humidity, toxic gas
levels, and soil moisture. The collected data is stored
in a central database, allowing for in-depth analysis
and automatic regulation of environmental conditions
to maintain optimal poultry health. Furthermore,
the system offers remote control functionalities for
equipment, doors, and bins via mobile devices and
online platforms, thus facilitating remote management
with an internet connection.

In [2], a proposal is made for an intelligent automated
management system for poultry farming using the
Internet of Things (Iol). This program manages
feeding and watering of the poultry using sensors
installed in the containers. It also includes an alarm
that triggers in case of failure of essential components
or dihydrogen monoxide. The lighting in the farm
is regulated by a specific sensor. This system also
enables automatic feeding of birds, continuous supply
of dihydrogen monoxide, and egg collection.

In article [3], a weather monitoring system for poultry
farming using the Internet of Things (IoT') is proposed.
The DHT11 device is used to measure temperature
and humidity in the proposed system. The collected
data is transmitted to a cloud server, where it is stored
in a database and continuously compared to defined

thresholds. In the event of prolonged exceedance of
these thresholds, the system sends an alert to the user’s
smartphone and triggers a sound signal via a buzzer.
The system’s validation was successfully completed,
confirming its ability to send alerts to smartphones
and activate the buzzer.

To address challenges related to behavior detection
and health assessment of poultry, article [4] proposes
an intelligent monitoring system for hens using IoT
sensors. This system is designed to detect and
monitor the behavior of poultry in farming operations,
providing valuable data to industry stakeholders for
management and individual animal health assessment.
The proposed system includes several steps: data
preprocessing, feature extraction, feature selection,
and behavior detection of poultry using various
classification algorithms. An optimized synthetic
minority oversampling technique (SMOTE) is applied
via an artificial hummingbird algorithm (AHA) to
address the issue of data imbalance. Experimental
results indicate that the optimized SMOTE, with an
accuracy of 97%, outperforms other algorithms in
managing data imbalances. Additionally, for accurate
prediction of poultry behaviors, the Random Forest
(RF) algorithm stands out with an accuracy of 98%,
surpassing other machine learning algorithms.

In [5], an intelligent method has been developed to
detect and classify hens based on their vocalization.
This approach utilizes Fisher’s Discriminant Analysis
(FDA) combined with signal detection to differentiate
healthy hens from sick ones. In [6], the authors
developed an IoT platform that allows for real-time
analysis of each hen’s egg production, facilitating the
replacement of hens whose production falls below
a predetermined threshold to achieve overall yield
goals. The health, cleanliness, and growth of the
hens have been monitored using this platform [7].
Among the issues affecting poultry welfare, lameness
is a major factor [8]. Early detection of lameness allows
farmers and veterinarians to take preventive measures
to improve poultry welfare.

Work [9] presents an intelligent system based on
the Internet of Things (IoI) for monitoring and
controlling environmental conditions in poultry farms.
The system monitors essential parameters such as
temperature, humidity, and air quality in a chicken
coop to ensure an optimal environment for the poultry,
reduce mortality rates, and improve production. The
ESP32 microcontroller, equipped with built-in Wi-Fi
capabilities, is used in conjunction with several sensors:



ICCK Journal of Image Analysis and Processing

ICJK

a DHT11 temperature and humidity sensor, a PIR
motion detector, and an MQ135 gas detector. A
buzzer is also included to alert the farmer in case of
intrusion, and the Wi-Fi unit sends notifications to the
farmer. The system also regulates the brightness of a
lamp inside the coop to adjust the temperature. This
prototype, tested in a small coop, demonstrated its
effectiveness and achieved the set objectives.

The proposed research project in [10] aims to improve
hen health and reduce mortality rates in farms in
Brunei by automating the monitoring and maintenance
of environmental conditions such as temperature,
humidity, air quality, and feeding of the poultry.
By using Internet of Things (IoI') and Wireless
Sensor Network (WSN) technologies, a prototype
has been developed to monitor these parameters and
compare them to predefined thresholds. When the
measured values exceed the established thresholds,
the system automatically triggers corrective actions,
thereby contributing to the reduction of mortality
rates. Additionally, the system sends automatic alerts
to the user via SMS, email, and WhatsApp. A web
interface has also been established to enable real-time
monitoring and display of environmental parameters.

The project described in [11] focuses on raising
healthy laying hens, aiming to reduce mortality rates
and improve the consistency of poultry products.
To achieve these goals, the project utilizes wireless
sensor network (WSN) and Internet of Things (IoT)
technologies to effectively monitor and regulate
critical parameters such as temperature, humidity, air
quality, and feeding conditions. A model has been
developed by integrating advancements in IoI' and
WHSN, and critical thresholds have been tested against
predefined limits. The system also provides scheduled
notifications to users via SMS. Additionally, a web
interface has been designed to filter and display these
limits in real-time.

Article [12] offers an in-depth analysis of poultry
health monitoring using an IoI-based platform that
integrates artificial intelligence (AI) techniques. The
studied system employs various IoI sensors, along
with video and image processing, to monitor the
health of poultry and birds. It also includes analysis
based on the animals” vocalizations. The increasing
accessibility of computational resources, IoT devices,
and standard algorithms enhances the use of these
modern technologies for continuous monitoring of
large poultry farms with millions of birds, thereby
improving overall productivity. Given that eggs

4

and poultry are essential sources of protein, the
adoption of advanced technological solutions for
poultry management is highly recommended.

Article [13] proposes a cost-effective solution based
on edge computing and the Internet of Things
(IoT) for managing environmental conditions and
disease control in poultry farms. The developed
model measures temperature, humidity, greenhouse
gases, and light intensity inside the chicken coop,
transmitting this data to a local server built with
a Raspberry Pi. Through edge computing, data
processing occurs directly on this server, enabling
intelligent information extraction for controlling
various actuators on the farm. The use of low-cost
computing devices, such as the Raspberry Pi, makes
this system particularly affordable for farmers.

Article [14] presents "Feather Sense," an innovative
IoT system specifically designed for poultry farming.
This cloud-based solution wuses the Telegram
platform for data storage, real-time monitoring,
and remote access. "Feather Sense" continuously
monitors crucial environmental parameters such as
temperature, humidity, and ammonia levels, providing
detailed analyses. It offers farmers a user-friendly
interface that facilitates remote monitoring and
informed decision-making. Field trials in commercial
poultry farms have shown that the system enhances
productivity and poultry welfare. This approach
promises to transform the poultry industry by offering
an economic, scalable, and accessible solution for
managing poultry farms.

Article [15] explores an effective method for
organizing an intelligent poultry farming system
based on Iol using specific IoI' components. The
proposed framework utilizes an Arduino Nano
to interact with various sensors to monitor key
environmental parameters such as temperature, odor
concentration in the air, and light intensity. The
collected data is then transferred to the cloud via an
ESP32 Wi-Fi module. This system not only detects
parameters but also actively manages them using
automated methods. This framework is particularly
useful for farmers applying regular cultivation
practices, as it allows for remote management of the
coop via mobile phones, thereby reducing the need
for manual checks and improving overall farming
efficiency.

In [16], Wang et al. used a deep learning technique
to classify the condition of poultry droppings to
facilitate disease detection within the flock. Zhuang
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et al. analyze the skeletal condition of infected broiler
chickens in studies [17, 18]. In [19], Sibanda et al.
aimed to identify outdoor laying hen subpopulations
and describe their resource utilization habits, which
can influence their performance and welfare. In
three commercial farms, 3,125 Lohmann Brown hens
were equipped with RFID bracelets and placed with
their companions, totaling 40,000 hens per farm. The
hens were monitored for their use of the aviary
system, including feeding lines, nests, and the outdoor
area. K-means and agglomerative analysis, optimized
by the Calinski-Harabasz criterion, identified three
distinct clusters. Significant individual variations
were observed, with the largest differences noted at
the upper feeder (140 + 1.02%) and the outdoor
area (176 + 1.03%). Hens in cluster 1 spent the
least time in the outdoor area and the most time
at the upper-level feeder chain (p < 0.05). The
results show an unequal load on resources and varied
movement patterns within the aviary. Further analysis
using classification models, such as support vector
machines, artificial neural networks, and decision
trees, is recommended to explore the impact of these
factors on hen performance. In [20], Yuanzhou et
al. developed the world’s first manually annotated
database for the classification of hen sex. This database
contains 800 images of flocks taken on farms and
1,000 individual images obtained through an object
detection network, along with information about the
sex of the hens. Additionally, they designed a classifier
using a deep neural network and cross-entropy,
achieving an average accuracy of 96.85%. The results
demonstrate that this automated method is effective for
sexing hens in farm settings and provides a practical
solution for estimating sex ratios.

The work presented in [21] describes a method to
improve the feed conversion rate (FCR) in poultry
farming through automated action plans. These plans,
adjusted by computational intelligence combining
deep learning and genetic algorithms, adapt over time
based on previous results. A network infrastructure
allows this method to be deployed in distributed
chicken coops, with a supervisory system as the
user interface. Tests based on real data show a
5% improvement over the performance of human
specialists.

In [22], Nasiri et al. proposed a deep convolutional
neural network to detect and track seven key points
on the bodies of walking hens. These extracted key
points were then fed into a long short-term memory
(LSTM) model to classify the hens according to a

six-level assessment method. This work proposes
the first large-scale benchmark for estimating the
pose of broiler chickens, including 9,412 images.
Additionally, the dataset includes 400 videos (totaling
36,120 images) of chickens with different gait score
levels. The developed LSTM model achieved an
overall classification accuracy of 95%, with an average
accuracy per class of 97.5%.

In [23], Li et al. developed a stretching behavior
detector for broiler chickens based on a faster
region-based convolutional neural network (faster
R-CNN) to evaluate stretching behaviors under
different stocking densities (27, 29, 33, and 39 kg/m?)
and examine their temporal and spatial distribution.
The results showed that this detector had precision,
recall, specificity, and accuracy greater than 86% for
all densities and ages of the chickens. Broiler chickens
stretched between 230 and 533 seconds per day, with
a higher frequency observed at stocking densities of
29, 33, and 39 kg/m? at week 4, and at densities of
29 and 33 kg/m? at week 5. Stretching behaviors
were less frequent a few hours after the lights were
turned on and before they were turned off, occurring
more in less frequented areas, such as along the fences.
In conclusion, the detector demonstrated satisfactory
performance for detecting stretching, revealing that
this behavior varies according to stocking density and
age of the chickens, as well as over time and space.

In [24], Kiugtliktopcu et al. developed a simple,
accurate, rapid, and economical model to estimate
ammonia (NH3) concentration in poultry farms. Four
models were tested: multilayer perceptron (MLP),
adaptive neuro-fuzzy inference systems with grid
partitioning (ANFIS-GP) and subtractive clustering
(ANFIS-SC), and multiple linear regression (MLR).
These models used easily accessible climatic variables
and bedding properties. The performance of the
models was evaluated using root mean square error
(RMSE), mean relative percentage error (MRPE), and
coefficient of determination (R?). The ANFIS-SC
model, using air temperature, relative humidity, and
air velocity as inputs, showed the best performance
with an RMSE of 1.130 ppm, an MRPE of 4.032%, and
an R? of 0.858 for the validation dataset. The MLR
model was the least accurate. The study concludes
that the neurocomputing model (ANFIS-SC) is a
reliable and effective alternative for estimating NH3
concentration in poultry farms.

Article [25] presents an innovative method for
determining the sex of day-old chicks using their
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vocalizations, addressing the challenges associated
with the time-consuming manual identification of sex
in poultry production. The proposed method employs
sound technology to detect chick vocalizations and
uses a double-threshold technique to automatically
detect the endpoints of vocalizations, based on
three parameters: short-term energy, short-term
zero-crossing rate, and duration. For sex classification,
three deep learning models—Convolutional Neural
Networks (CNN), Long Short-Term Memory (LSTM),
and Gated Recurrent Unit (GRU)—were trained using
audio features extracted from the vocalizations. The
models were evaluated using a training set and a test
set comprising vocalizations from different chicks to
ensure robust performance. Results showed that the
GRU model achieved the highest accuracy (76.15%) for
sex detection, followed by LSTM (75.73%) and CNN
(74.55%). The GRU model also obtained the highest
recall (77.03%), while the LSTM model demonstrated
the highest specificity (78.38%). Furthermore, for sex
prediction based on vocalizations, the CNN exhibited
the best performance with an average accuracy of
91.25%, compared to 87.08% for LSTM and 88.33% for
GRU.

In [26], Fang et al. proposed a non-invasive method for
analyzing the behavior of broiler chickens using pose
estimation based on Deep Neural Networks (DNN)
and pose classification via a Naive Bayesian Model
(NBM). This approach allows the construction of a
pose skeleton from feature points to track movements
and identify behaviors such as standing, walking,
running, feeding, resting, and feather preening, with
accuracy ranging from 0.5135 to 0.9623 depending
on the behavior. This automated method provides
an efficient solution to replace human observation
in poultry farming, allowing for rapid detection of
behavioral anomalies and thereby improving health
management and farm productivity.

In [27], Cuan et al. presented the Deep Poultry
Vocalization Network (DPVN), an innovative method
for early detection of Newcastle Disease (ND) in
poultry by analyzing their vocalizations. The DPVN
employs advanced techniques such as multi-window
spectral subtraction and high-pass filtering to reduce
noise and improve detection accuracy. The automatic
vocalization detection method was evaluated with
a recall of 95.11% and an accuracy of 96.54%. In
terms of classification, the model achieved an accuracy
of 98.50%, a recall of 96.60%, and an F1 score of
97.33%. Detection accuracy varied depending on
the day after infection, with rates ranging from

82.15% on the first day to 98.50% on the fourth
day. This promising approach allows for effective
early disease detection, contributing to animal welfare
and facilitating automated monitoring in poultry
production.

In [28], Mahdavian et al. evaluated five acoustic
features of bird calls to determine the health status
of birds. Signals were collected from chickens raised
in three groups: control group, group infected with
bronchitis, and group infected with Newcastle Disease.
Data analysis results showed that among the five
studied acoustic features, wavelet entropy (WET) had
the best performance and was capable of detecting
bronchitis on the third day after inoculation with
an accuracy of 83%, while the type II error in this
test (incorrectly detecting a sick bird as healthy) was
below 14% and 6% respectively on the third and fourth
days. In the case of Newcastle Disease, although
WET and Mel-frequency cepstral coefficients (MFCC)
presented similar accuracy (80% and 78% respectively
on the fourth day), the difference was that WET was
more reliable for detecting healthy birds, while MFCC
performed better in detecting infected birds.

In [29], You et al. developed an Artificial Neural
Network (ANN) model capable of predicting the
probability of daily laying events at a specific time
of day. Using 706 recorded laying events from
radio-frequency-equipped nests and 706 non-laying
events, the study introduced a new anchor point as
a temporal reference and created 26 features around
this point for each event. The developed ANN
model demonstrated exceptional performance with
an area under the ROC curve of 0.9409. It enables
prediction of laying events on the same day and
provides informative probabilities for each individual
breeder. In situations where the total egg production
is known, this model can estimate the probability of
laying for each bird and rank them to identify those
most likely to have laid.

The literature identifies three main applications of IoT
and machine learning in managing poultry health
and welfare: first, monitoring the behavior and
environment of poultry; second, disease analysis;
and finally, control and intervention to optimize
their welfare. The majority of studies on monitoring
poultry behavior and environment focus on using
IoT technologies to remotely monitor aspects such as
feeding, resting, running, as well as environmental
parameters like temperature and humidity. These
systems enable automated and non-intrusive data
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collection, providing farmers with an instant and
continuous view of the health and welfare of
chickens. Research includes monitoring physiological
responses (respiratory rate, cloacal temperature) [30-
32], sex determination [20, 33], posture [22, 23], as
well as real-time tracking of body weight [34, 35],
laying events [36], and feed consumption [37, 38].
Additionally, several studies examine environmental
parameters such as temperature, humidity, and pest
presence, as well as detecting failures in poultry
equipment.

Early identification of avian diseases to prevent their
spread remains a major challenge in the poultry sector.
However, numerous studies have introduced advanced
technologies to improve rapid disease detection
and diagnosis. Several studies [32, 39—41] aim to
minimize reliance on manual observations and human
decisions. The most frequently studied diseases
include Newcastle Disease virus, avian influenza,
capillary diseases, Salmonella, hock burn, and the
prevalence of Listeria spp. Common methods for
identifying sick poultry include analyzing feeding
habits [38], observing movements and postures [26],
checking weight [35], and analyzing sounds produced
by poultry [32].

Effective management of poultry health relies on
careful monitoring of environmental parameters such
as temperature, humidity, ventilation, and lighting.
Precise regulation of these factors is essential for
maintaining optimal conditions in poultry houses,
contributing to improved animal welfare, reduced
energy consumption, and increased productivity.
The use of advanced sensors allows for automatic
control of ventilation, lighting, cooling, and heating
systems. For instance, systems developed by [33,
42] demonstrate respective accuracies of 93.70% and
97.00% in regulating temperature and humidity. Other
studies, such as those by [43], illustrate the integration
of sensors to monitor various parameters such as water
levels and harmful gas levels. In parallel, feeding
optimization strategies aim to improve production
efficiency while reducing costs, as demonstrated
by the work of [44, 45]. Finally, low-complexity
systems, like the one by [46], allow adjustment of
poultry environments with an accuracy of 80.00%,
offering an economical solution for controlling farming
conditions.

Research in machine learning (ML) aims to develop
computer programs capable of generating or
improving knowledge from data.  Traditional

techniques require technical expertise to extract
features from raw data, while deep learning automates
this process, facilitating feature extraction without
prior expertise. Deep learning architectures, such
as convolutional neural networks, are particularly
effective for image processing. ML models, whether
supervised or unsupervised, use historical data to
predict new outcomes and find increasing applications
in poultry welfare management. They are used to
monitor environmental parameters, assess thermal
stress, track poultry behavior, and detect diseases,
thereby improving the health and productivity of
farms.

Deep learning (DL) is widely used to enhance the
management of poultry health and welfare. Methods
such as Faster R-CNN, YOLO, and SSD are applied
for object detection, automatic counting of chickens,
vocalization classification, and disease diagnosis with
high precision. Several models, such as CNNs and
Residual Networks (ResNet), demonstrate remarkable
performance for various tasks, including density
estimation, recognition of feeding behaviors, and
detection of sick chickens. Deep Reinforcement
Learning (DRL) is not yet commonly used in this field,
but it holds potential for more complex applications
in managing poultry welfare.

3 Background

The Internet of Things (Iol') has paved the way for
innovative solutions for managing and automating
processes in various sectors, including agriculture
and livestock. The use of devices such as the ESP32
and cloud platforms like ThingSpeak offers immense
potential to improve efficiency, productivity, and
management in poultry farming.

3.1 Internet of Things (IoT)

The Internet of Things (IoI') represents a network
of interconnected devices capable of collecting and
exchanging data, thereby transforming various sectors
such as agriculture, healthcare, and industry. In
agriculture, Iol' plays a crucial role by enabling
remote monitoring and control of essential parameters
such as temperature, humidity, and air quality.
Through this technology, control systems, such as
those for feeding, ventilation, and lighting, can be
automated to enhance production conditions. In
poultry farming, IoI' provides innovative solutions
for real-time monitoring of environmental conditions
and the health of birds. Integrated sensors and
microcontrollers allow for tracking various parameters
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and automating management systems, reducing the
need for human intervention. This automation
optimizes resource use and minimizes disease risks
by maintaining optimal living conditions for poultry,
thus contributing to more efficient and productive
management of poultry farms.

3.2 ESP32 Microcontroller

The ESP32 is a versatile and cost-effective
microcontroller developed by Espressif Systems,
widely used in IoT applications due to its computing
capabilities, Wi-Fi and Bluetooth connectivity, and low
power consumption. It features a dual-core Tensilica
LX6 processor running at up to 240 MHz, 520 KB of
SRAM, and up to 16 MB of external Flash memory. It
provides Wi-Fi and Bluetooth 4.2 (BLE) connectivity,
as well as various communication interfaces, including
UART, SPI, 12C, 12S, CAN, and Ethernet. The ESP32
also includes up to 34 programmable GPIOs, ADCs,
DACs, and built-in sensors, while offering advanced
security features such as cryptography and memory
encryption. With its low-power consumption modes,
the ESP32 is particularly well-suited for applications in
environments where power supply is limited. Figure 1
shows an ESP32 board.

Figure 1. ESP32.

In the context of poultry farms, the ESP32 proves to be
extremely advantageous. Its low cost enables farmers,
whether small or large, to install large-scale monitoring
and control systems without significant financial
investment, making advanced technologies accessible
even with limited budgets. Its energy efficiency
is also a major asset, allowing the microcontroller
to operate on battery power for extended periods,
which is ideal for agricultural environments where

constant access to electrical power is not always
feasible. Additionally, the ESP32 easily integrates
into various development environments and IoT
platforms, facilitating the creation of agricultural
management systems capable of monitoring and
controlling conditions in real-time via web or mobile
interfaces. The ESP32 also offers advantages in
wireless connectivity thanks to its Wi-Fi and Bluetooth
capabilities, allowing multiple sensors and actuators
to be connected without complex wiring. It supports
various IoI protocols such as MQTT, HTTP/HTTPS,
and WebSocket, ensuring secure communication
between devices. By integrating security features like
AES cryptography and secure boot, the ESP32 ensures
data reliability and protection against intrusions,
which is crucial for preventing economic losses due
to failures or cyberattacks. In summary, the ESP32
is an ideal solution for modernizing poultry farms,
enabling more efficient, economical, and sustainable
management of the farming environment.

3.3 YOLOv?7

YOLOv7, an advanced version of the well-known
object detection model You Only Look Once, stands
out due to its significant improvements in accuracy,
speed, and flexibility. Compared to its predecessors
like YOLOv4 and YOLOv5, YOLOvV7 introduces
architectural optimizations, such as more efficient
convolutional layers and advanced normalization
techniques, allowing for finer and faster object
detection in complex images. This version is
particularly suited for real-time detection applications,
where analysis speed and precision are essential.
When applied to the detection of regions of interest
in fecal images captured by cameras, YOLOvV7 can
accurately identify specific characteristics of fecal
samples, even in low-contrast conditions or in the
presence of debris. This ability to detect subtle details
in real time is crucial for monitoring animal health
indicators and for proactively managing the welfare
conditions of poultry. By integrating YOLOV7 into
a camera-based monitoring system, producers can
enhance the quality of collected data, leading to
improved decision-making and optimized resource
management.

3.4 MobileNetV3

MobileNetV3 is an advanced convolutional neural
network architecture designed to provide an optimal
balance between performance and efficiency. It relies
on innovative techniques such as depthwise separable
convolutions and expansion blocks to capture
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(a)
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Figure 2. Examples of images from the fecal image dataset. (a) Coccidiosis. (b) Healthy State. (c) Salmonella.

relevant features while minimizing computational
complexity. MobileNetV3 comes in two variants:
MobileNetV3-Large, which is optimized for increased
performance in terms of accuracy and processing
capacity, and MobileNetV3-Small, specifically
designed for resource-constrained environments,
offering a trade-off between model size and inference
speed.  The architecture of MobileNetV3 also
integrates non-linearity modules such as ReLU6 and
expansion convolution blocks to enhance feature
extraction while maintaining a reduced memory
footprint. Due to its efficient approach to network
architecture, MobileNetV3 is particularly well-suited
for applications such as image classification on mobile
or embedded devices, where speed and efficiency
are crucial. Using MobileNetV3 for moderate-sized
datasets, such as those with 8,067 images, allows for
high-quality results while optimizing computational
resources and energy consumption.

3.5 Dataset

A data set of 8,067 images of annotated poultry feces
was obtained from the open database Zenodo [46].
These images come from the Arusha and Kilimanjaro
regions in Tanzania and were collected between
September 2020 and February 2021 using the Open
Data Kit (ODK) mobile application. The dataset
is organized into four distinct categories: "healthy,"
"salmonellosis," "coccidiosis,” and "Newcastle disease."
Table 1 summarizes the size of each class, and Figure 2
presents some example images from the fecal image
dataset:

Table 1. Size of each class in the database.

Class Number of Images Percentage
Salmonella 2625 32.54%
Coccidiosis 2476 30.69%
Healthy 2404 29.8%
Newrcastle Disease 562 6.96%
Total 8067 100%

4 Methodology of the System

The proposed system integrates various sensors
(temperature, humidity, gas, water level, etc.),
microcontrollers (ESP32), relay modules, a servo
motor, and other electronic components. These sensors
collect environmental data, which is transmitted
to a cloud via Wi-Fi. The overall conditions
are then monitored and managed automatically by
the developed system. All data is stored in the
ThingSpeak cloud database for in-depth analysis,
allowing for useful insights and notifications to be
received. Optimal values for maintaining the health
and performance of the poultry are determined from
the stored data, which also helps in forecasting future
conditions. Meanwhile, a system is employed to
monitor the health parameters of the poultry, as
illustrated in Figure 3.

The collected data is analyzed using two artificial
intelligence algorithms: Yolov7 to segment regions
of interest from the fecal images captured by cameras,
and MobileNetV3 to classify these images into four
health statuses: healthy, coccidiosis, salmonella, and
Newcastle disease.

The cloud enables bidirectional communication, as
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Figure 4. Communication diagram between the
smartphone and ESP32 via the Cloud.

illustrated in Figure 4. First, all electrical devices
on the farm, such as doors, lights, and fans, are
automated and can be controlled remotely via Wi-Fi
using a smartphone and the internet. Second, the user
can receive real-time information about the status of
the farm. The data, transmitted to the cloud by the
ESP32 from various sensors, is then displayed on the
user's phone. Monitoring, analysis, and control can
be performed from anywhere in the world. Notably,
our proposed system sends data and notifications via
email and SMS.

The comfort of the chickens is ensured by an automatic
control system. The user can set thresholds for
temperature, humidity, and water level. When the
temperature exceeds the defined threshold, the fans
and cooler automatically activate. Conversely, if the
temperature drops below the threshold, the heating
system starts. Additionally, if the water level in the
reservoir decreases, the pumps automatically turn
on to replenish the water. The lighting and fan
are regulated based on the temperature. When the
temperature is below 20 °C, all heating indicators light
up. Conversely, when the temperature reaches 24 °C,
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the heating indicator automatically turns off, and the
cooling fan activates to regulate the temperature. This
temperature threshold can be adjusted by the user.

5 Infrastructure of the Poultry Farm System

5.1 Hardware Design

The hardware infrastructure of a poultry farm is based
on an ESP32 development board. This section details
the various hardware components connected to this
device. Figure 5 presents a functional representation
of the poultry farm system using the ESP32.

PIR SENSOR — | RFID |
LIGHT SENSOR
E—— 16X2 LCD
MG 90 S SERVO
MOTOR
BUZZER

Relay

ESP 32

FLAME SENSOR

DHT 22 SENSOR

WATER SENSOR

I

MQ135 Air Quality

SENSOR

MOE GAS SENSOR | —

Figure 5. Functional representation of the poultry farm
system using the ESP32.

FAN

According to the functional diagram presented in
Figure 5, the ESP32 board is connected to various
components, such as sensors, an RFID module, a
lamp, an LCD screen, and a fan. The RFID system
(radio-frequency identification) is used to verify the
authenticity of users access cards, while the 16x2
LCD screen displays a welcome message and the
identification number of each scanned RFID card. The
MG 90 S servo motor automatically opens and closes
the door when the RFID module detects a valid card. In
case of an emergency, such as a fire, flood, or gas leak,
a buzzer alerts the occupants of the farm. The lamp is
installed to provide lighting, while a fan regulates the
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indoor temperature according to a programmed value.

Various sensors also play a crucial role in the system:
the MQ)5 gas sensor detects gas leaks and can identify
different types of gases such as LPG, natural gas, and
city gas. The water sensor identifies the presence of
water to signal flooding, especially in sensitive areas.
The DHT sensor measures temperature and humidity,
while the flame sensor detects the presence of flames
to prevent fires. The DHT sensor allows for continuous
monitoring of the conditions in the chicken coop. A
temperature below 20 °C (70 °F) can be fatal for chicks,
and inadequate humidity can affect their breathing.
The optimal humidity range for poultry is between
60% and 80%. The light sensor measures the level
of indoor brightness, and the PIR sensor is used to
detect movements, thereby enhancing the security
of the poultry farm. The inexpensive PIR motion
sensor detects the presence of humans or animals
around a chicken coop. Birds, especially the younger
ones, are at risk of predation by animals like cats
and dogs, as well as theft by people. Installing a PIR
motion detector is therefore essential for monitoring
any unwanted presence around the chicken coop. The
MQ135 air quality sensor detects a variety of gases,
including ammonia (NHj3), nitrogen oxides (NO,,),
alcohol, benzene, smoke, and carbon dioxide (COy).
The system also includes an insect-repelling device that
uses ultrasound. These interconnected components
enable efficient and secure management of the indoor
environment.

5.2 Electrical Supply of the Poultry Farm

The electrical supply in the proposed system is
designed from renewable energies, with a particular
focus on solar energy, in order to provide a
sustainable and environmentally friendly solution.
By harnessing solar energy, poultry farms can meet
various energy needs, such as lighting, heating,
ventilation, and powering automation systems, using
photovoltaic panels to convert sunlight into electricity
and solar thermal systems to generate heat. This
approach significantly contributes to the reduction
of greenhouse gas emissions by minimizing the
carbon footprint associated with traditional electricity
production methods. Moreover, solar installations,
combined with storage batteries, ensure a stable and
continuous power supply, even in rural or remote
areas away from the main power grid, thus enhancing
the farm's energy independence. Finally, despite
potentially high initial investment costs, long-term

operating costs are low due to the absence of fuel
expenses and reduced maintenance, making solar
energy economically attractive and providing an
improved return on investment over time. It is noted
that backup energy and energy consumed during the
night are stored in batteries during the day.

6 The Proposed Intelligent Health Monitoring
System for Poultry

This research integrates an automated system for the
detection and classification of poultry diseases based
on the Internet of Things (IoT') and ThingSpeak. The
system uses IoI' sensors to collect real-time images
of poultry droppings, which are then analyzed to
predict the presence of the three most common poultry
diseases: salmonellosis, coccidiosis, and Newcastle
disease. The collected data, including classification
results and confidence scores, are transmitted to
ThingSpeak, where they are stored and visualized in
real time. The development of this system includes
the collection and preprocessing of image datasets
via connected devices, the creation of augmented
images, segmentation of the region of interest, and
the training and testing of a deep learning model for
image classification, as shown in Figure 6.

By integrating ThingSpeak, the system also offers
a centralized management interface that allows for
remote monitoring and analysis of poultry health
data, thus facilitating proactive management and rapid
disease detection.

6.1 Image Preprocessing

Image preprocessing is essential for enhancing the
performance of computer vision models. Common
steps include resizing images to a uniform size,
normalizing pixels to accelerate learning, and
data augmentation (rotation, cropping, noise) to
reduce overfitting. Other techniques include color
standardization, whitening to reduce redundancy,
and noise reduction to improve feature quality. These
methods help models learn effectively and generalize
well to unseen data. In our study, region of interest
(ROI) segmentation and data augmentation were
performed on the images before introducing them
into the deep learning classification model.

6.2 Extraction of the Region of Interest (ROI)

ROI extraction is a technique used in image processing
to isolate the area of interest from the rest of the visual
content. In this work, the YOLO v7 (You Only Look
Once, version 7) object detection method was used

11
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Figure 6. Summary diagram of the proposed system.

Table 2. Results of the poultry disease classification model with various performance metrics.

Training Accuracy Validation Accuracy Training Loss Validation Loss Precision Recall F1 Score
0.9963 0.9945 0.0149 0.0286 0.9934  0.9957  0.9946
instead of YOLO v3, after being trained on annotated ThingSpeak platform.

datasets, to identify ROIs from images of feces. YOLO
v7 is a real-time object detection algorithm that enables
the identification of specific objects in videos, live
streams, or still images. The algorithm utilizes features
extracted by a deep convolutional neural network
and advanced image processing techniques to identify
objects in a given scene. YOLO v7 first divides an
image into a grid. Each cell in this grid predicts
several bounding boxes (or anchor boxes) around

objects that exhibit a high score for predefined classes.

Each bounding box is accompanied by a confidence
score, representing the accuracy of the prediction, and
detects a single object per box. The bounding boxes
are generated by aggregating the dimensions of the
ground truth areas from the original dataset to identify
the most common shapes and sizes.

6.3 Training of the MobileNetV3 Model

Training a model from scratch requires a considerable
number of images and significant computational
resources, such as high-performance processors. To
address these requirements, transfer learning is an
effective approach. This technique involves adapting
and reusing a pre-trained model on a large dataset
to reorient it towards a new task. By doing so, it is
possible to leverage the knowledge already acquired
by the model, which reduces the need for large datasets
and decreases training time. It should be noted that the
model training was conducted offline, and the weight
files were converted from a format readable by the
training framework to a format compatible with the
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7 Experimental Results and Discussion

7.1 Performance Evaluation Criteria

The performance evaluation criteria for the models
are varied and depend on the task and objectives.
Several indicators are commonly used to measure
these performances. The first indicator is accuracy,
which evaluates the proportion of correct predictions
relative to the total number of predictions. This
indicator is particularly relevant when the classes
are well balanced. Other important criteria include
precision, recall, and Fl-score. Precision refers to
the proportion of true positive predictions among
all positive predictions made by the model. Recall,
on the other hand, measures the model's ability to
correctly identify true positives among all actual
positive cases. These indicators provide a better
assessment of performance in situations where classes
are imbalanced.

7.2 Experimental Results

The image classification model employed was trained
on a set of annotated images, using a data split
of 85% for training and 15% for testing. Training
was conducted over 80 epochs, allowing the model
to learn effectively from the available data. The
results show that the model achieved an impressive
accuracy of 99.3%, a recall of 0.9957, and an
approximate Fl-score of 0.9946. This high accuracy
indicates not only remarkable performance in correctly
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classifying images but also significant robustness
against data variability. Table 2 presents a comparison
of performance in terms of training and validation
accuracy/error, as well as precision, recall, and
Fl-score.

Regarding the extraction of the region of interest (ROI),
the YOLO v7 model was trained on a fully annotated
dataset. The training used a data split of 85% for
training and 15% for testing, allowing for a thorough
and rigorous evaluation of the model's performance.
The process was carried out over 150 epochs, a duration
that ensured the model had sufficient time to learn and
adjust to the characteristics of the objects to be detected.
At the end of this training, the model demonstrated
notable performance with an average loss of 0.14,
indicating good generalization capability and low
error in object prediction. Furthermore, the model
achieved an average mean Average Precision (mAP)
of 89.84%, a key indicator of the accuracy and relevance
of detections. These results highlight not only the
effectiveness of the YOLO v7 model but also the
importance of annotation quality and hyperparameter
optimization in achieving high performance.

7.3 Discussion

Our work is not among the first attempts to address
the detection and classification of poultry diseases
from images of poultry droppings using deep learning
techniques, as many research projects have preceded
us. However, what significantly distinguishes our
work is the high classification accuracy we achieved
compared to previous research. This superiority is a
direct result of the multiple improvements made to the
methodology and techniques used.

Among the major improvements we introduced is the
use of the Yolov7 object detection algorithm instead of
YOLO-V3. Yolov7 is an updated and more efficient
version of YOLO-V3, offering better accuracy and
greater speed in detecting and classifying objects in
images. This has significantly improved our system’s
performance in accurately identifying poultry diseases.

Additionally, we used the pre-trained MobileNetV3
image classification model instead of ResNet50.
MobileNetV3 stands out for its efficiency and speed in
processing images while consuming fewer resources,
making it an ideal choice for applications requiring
high classification accuracy and rapid execution. This
model is also designed to be easily deployed on devices
with limited processing capabilities, such as those used
in farms.

Another key element of our system is the integration
of ThingSpeak, an IoT (Internet of Things) platform
that enables real-time collection, storage, analysis, and
visualization of data. ThingSpeak provides us with the
advantage of remotely monitoring critical parameters
of the poultry farm, such as temperature, humidity,
and levels of lighting and feeding. Through this
platform, collected data is sent in real time, allowing
for quicker decision-making and immediate responses
to urgent situations. Moreover, ThingSpeak facilitates
centralized data management from multiple sensors,
thus providing a comprehensive overview of the farm'’s
status.

In addition to these technical improvements, our
work is also distinguished by the integration of a
comprehensive poultry farm management system.
This system is not limited to disease detection from
droppings images but also extends to monitoring
farm conditions, such as temperature, humidity,
as well as managing feeding and lighting. With
the integration of ThingSpeak, this system offers a
complete and intelligent solution for managing farms
more effectively while enhancing poultry productivity
and health.

In summary, our work stands out from previous
research in four main aspects: higher classification
accuracy achieved through the use of modern
technologies such as Yolov7 and MobileNetV3,
faster and more efficient performance, integration
of ThingSpeak for real-time monitoring, and an
integrated farm management system.

8 Conclusion

The proposed intelligent poultry system, integrating
IoI and deep learning technologies, offers an
innovative and effective solution for the early detection
of poultry diseases from fecal images and remote farm
management. By utilizing IoI sensors, the ESP32,
and the ThingSpeak platform, this system allows for
real-time monitoring of environmental conditions and
poultry health while reducing operational costs. The
Yolov7 and MobileNetV3 algorithms demonstrated
remarkable accuracy in detecting and classifying
diseases, significantly improving poultry productivity
and welfare. The experimental results show robust
performance, making this system viable for large-scale
application in the poultry sector. This approach
thus contributes to proactive farm management,
minimizing economic losses and optimizing resource
utilization.
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