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Abstract

Non-local means (NL-means) is a state-of-the-art
image denoising algorithm that leverages
self-similarity by averaging similar patches

weighted by the classic Ly-norm distance. In this
work, we extend the similarity measure to arbitrary
Ly-norms (1 < p < oo0) and investigate their
impact on denoising performance. We implement
and evaluate NL-means with p = 1,2,3,4,00 and
compare via quantitative metrics (MSE, MAE,
PSNR, SSIM), residual analysis, and visual
inspection. Experiments on the Lena image
corrupted with AWGN (o 20), a widely used
benchmark setting in the denoising literature, show
that while Ls-norm remains optimal overall, other
norms offer nuanced trade-offs in edge preservation
and robustness. Our analysis demonstrates that
Li-norm offers superior impulse noise resilience,
while higher norms like L3 and L, exhibit enhanced
structure preservation in gradient-rich regions.
Additionally, we present a parameter sensitivity
study showing how the optimal filtering parameter
h varies across different L,-norms, and analyze
computational complexity trade-offs. These
findings, which are consistent with the general
theoretical properties of L,-norms, provide insights
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into optimizing the NL-means algorithm for specific
image characteristics and noise distributions.

Keywords: non-local means, image denoising, norm,
quantitative metrics, residual analysis.

1 Introduction and Related Work

Image denoising is a fundamental problem in digital
image processing that aims to recover a clean image u
from a noisy observation v = u+n, where n represents
various forms of degradation, most commonly additive
white Gaussian noise (AWGN). The challenge lies in
effectively removing noise while preserving important
image features such as edges, textures, and fine details.
This problem is inherently ill-posed, as multiple
clean images could theoretically produce the same
noisy observation, making the development of robust
denoising algorithms a critical area of research in
computer vision and image processing [1, 10].

The evolution of image denoising techniques
has progressed through several paradigms, each
addressing specific limitations of previous approaches.
Early methods focused on local operations and
spatial domain filtering, which often resulted in
unwanted blurring of edges and fine structures. The
recognition of these limitations led to the development
of more sophisticated approaches that consider both
spatial proximity and intensity similarity, ultimately
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culminating in the revolutionary concept of non-local
processing.

Modern non-local means (NL-means) algorithms
have been extensively studied and applied across
various domains. In medical imaging, NL-means
has demonstrated effectiveness for MRI [3] and PET
image denoising [2, 5]. Algorithmic improvements
have focused on enhancing computational efficiency
[4, 7], integrating principal component analysis [6],
and incorporating noise thresholding techniques [8].
Recent extensions have explored the use of L,-norms
within different frameworks, including multi-band
weighted minimization [9], tensor-based approaches
[11], and successive denoising for hyperspectral
images [12]. These developments highlight the
ongoing evolution and adaptability of non-local
denoising methodologies.

Classical

1.1 Historical and

Approaches

Background

The earliest approaches to image denoising were based
on linear Gaussian smoothing techniques, as explored
by Gabor [13], which apply uniform smoothing across
the entire image. While computationally efficient,
these methods inevitably blur important image
features along with noise removal. To address this
limitation, Perona et al. [14] introduced anisotropic
diffusion, which uses partial differential equations
(PDEs) to selectively smooth regions while preserving
edges based on local gradient information. Their
work demonstrated that edge-preserving smoothing
could be achieved by controlling the diffusion process
according to local image characteristics. Building
upon the PDE-based approach, Catté et al. [15]
further developed the mathematical framework for
image selective smoothing and edge detection using
nonlinear diffusion, providing theoretical foundations
for edge-preserving denoising. Concurrently, the
total variation (TV) denoising method proposed by
Rudin et al. [16] introduced an energy minimization
approach that removes noise while preserving
discontinuities by minimizing the total variation of
the image.

1.2 Bilateral and Neighbourhood Filtering

A significant advancement in denoising came with the
introduction of bilateral filtering by Tomasi et al. [17],
which combines spatial and intensity-based weighting
to achieve edge-preserving smoothing. This method
weights nearby pixels based on both their geometric
closeness and photometric similarity, effectively
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denoising smooth regions while maintaining sharp
transitions. Around the same time, Yaroslavsky
[18] introduced neighborhood filtering concepts that
considered local image statistics, while Smith et al. [19]
developed the SUSAN (Smallest Univalue Segment
Assimilating Nucleus) approach for low-level image
processing, which used local intensity similarity for
various image processing tasks including denoising.

1.3 The Non-local Paradigm

The most significant breakthrough in image denoising
came with the introduction of non-local means
(NL-means) by Buades et al. [20]. This algorithm
revolutionized the field by exploiting the self-similarity
property inherent in natural images, where similar
patches can be found throughout the image, not just
in local neighbourhoods. The NL-means algorithm
compares entire patches using the Ly-norm (Euclidean
distance) and computes weighted averages based
on patch similarity, effectively utilizing redundant
information across the entire image for denoising.

The theoretical foundation of NL-means relies on
the assumption that natural images contain repetitive
structures and patterns.  Smith [21] provided
the mathematical framework for understanding
consistency guarantees under mixing assumptions,
which supports the theoretical validity of the non-local
approach. The success of NL-means demonstrated that
global image self-similarity could be leveraged more
effectively than local smoothing operations.

1.4 Motivation and Research Objectives

Despite the remarkable success of the original
NL-means algorithm, its reliance on the Lj-norm
distance metric leaves open the question of whether
alternative L,-norms might yield advantages under
different noise models, image structures, or application
requirements. Different L,-norms exhibit distinct
mathematical properties: the L;-norm is known for its
robustness to outliers, higher-order norms emphasize
larger differences, and the L..-norm focuses on the
maximum deviation. These characteristics suggest that
different norms might be better suited for specific types
of images or noise distributions.

It is crucial to clarify the distinction between our
proposed framework and existing L,-regularized
denoising methods. Traditional approaches, such
as Total Variation (TV) or sparse coding, typically
employ L,-norms as regularization terms (priors)
within a global energy minimization functional to
enforce structural constraints like gradient sparsity.
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In contrast, our work integrates the L,-norm directly
into the similarity kernel of the NL-means filter. This
fundamental difference means we are modifying
how the algorithm perceives the “closeness” of
image patches locally, rather than imposing a global
geometric prior. This allows us to leverage the
outlier-rejection properties of specific norms (e.g., L1
or Lo, ) during the weight calculation phase, providing
a mechanism for robustness that is distinct from and
complementary to variational regularization.

This work addresses this gap by proposing and
systematically evaluating a generalized NL-means
framework that extends the similarity measure to
arbitrary L,-norms with 1 < p < oo. Our
investigation encompasses both theoretical analysis of
the mathematical properties of different norms and
comprehensive empirical evaluation across various
performance metrics and noise conditions.

1.5 Contributions and Paper Structure

The primary contributions of this work include: (1)
formulation of a generalized NL-means algorithm
supporting arbitrary L,-norms, (2) comprehensive
theoretical analysis of how different norms affect patch
similarity computation, (3) extensive experimental
evaluation comparing L1, L, L3, L4, and L,-norms
across multiple performance metrics, (4) parameter
sensitivity analysis revealing optimal filtering
parameters for each norm, (5) computational
complexity analysis quantifying the trade-offs
between different norms, and (6) specialized
evaluation on mixed noise conditions demonstrating
unique advantages of specific norms.

The remainder of this paper is organized as
follows:  Section 2 presents the mathematical
formulation of the generalized L,-norm NL-means
algorithm and provides theoretical analysis of
different norm properties. Section 3 details
our implementation approach and experimental
methodology. Section 4 presents comprehensive
experimental results including parameter sensitivity
analysis, computational complexity evaluation,
quantitative performance comparison, and specialized
analysis for mixed noise conditions. Section 5
discusses the implications of our findings and
identifies optimal use cases for different norms.
Finally, Section 6 concludes with a summary of key
insights and outlines promising directions for future
research, including adaptive norm selection and
integration with modern deep learning approaches.

2 Methodology

2.1 Generalized NL-Means Formulation

Let v be the noisy image on pixel set I, and N; a patch
around pixel i. Define the patch L,-norm

dp(i, ) = |0 (Ns) = w(N)]|,

1/p
= | > w(i+k) —v(G+ k)P (1)
kEN;
forl < p < o0, and
doo (i, ) = max |v(i + k) —v(j + k)| (2)
keEN;

To ensure the weight distribution aligns with
the statistical properties of the generalized error
distribution implied by the L,norm, we adopt
a generalized Gaussian kernel. The weights are
computed as follows:

Z:@) P (‘

where for finite p, we define the similarity term as

Dy(i ) = (dpli, 7)) = Y [0(Ni) = o(Nj) .

For the limiting case p = oo, we utilize an exponential
decay based on the maximum difference:

(3)

wP(Z>J) =

Dp}iﬁ;i)) ’

Doo(27]> = doo(zaj)

and normalize by h rather than h”. The normalization
factor is given by

Zp(1) = Zexp(—pp}(;’j)).
Jjel

The denoised pixel is

ip(1) = 3 (0,70 (5)

2.2 Theoretical Analysis of L,-norms

Different L,-norms exhibit distinct mathematical
properties that influence their denoising performance.
For p = 1, the norm is the sum of absolute differences,
making it robust to outliers but sensitive to small
perturbations across the entire patch. The Ly-norm
(Euclidean distance) balances sensitivity to large and
small differences. As p increases, the norm becomes
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increasingly dominated by the largest differences in
the patch.

Formally, for two patches P; and P, with difference
vector § = P; — P, the sensitivity to individual pixel
differences follows:

0161l
96;

_ ‘57;‘1771 i Slgn<5’b> ) (4)

—1
15115

This implies that for large p, the gradient concentrates
on the largest differences, ignoring smaller ones. This
property explains why higher-order norms preserve
strong edges but lose texture details.

2.3 Implementation

We use a search window of 21 x 21 and patch size 7 x 7.
Parameter h is optimized for each norm (see Section
4.1). To prevent boundary artefacts, the input image is
symmetrically padded (reflected) by the patch radius
prior to processing. Furthermore, to ensure intensity
conservation, the weights computed within the search
window are normalized such that }; wy (¢, j) = 1 for
every target pixel i.

The core similarity measure and weight normalization
procedure of the generalized NL-means filter are
implemented as shown in Listing 1.

Listing 1. Core similarity and weight computation.

def compute_weights(patch_i, patches, p, h):
diffs = np.abs(patches - patch_i)

if p < np.inf:
d_p = np.sum(diffs**p, axis=(1, 2))**(1/p)
else:

d_p = np.max(diffs, axis=(1, 2))

weights = np.exp(-(d_p**2)/(h*h))
return weights / np.sum(weights)

influences denoising behaviour under a representative
and well-understood scenario. The qualitative trends
we report in the subsequent subsections (parameter
sensitivity, quantitative metrics, residuals, visual
inspection, and mixed-noise behaviour) are directly
explained by the theoretical properties of L,-norms
discussed in Section 2 and are therefore expected to
extend beyond this specific image and noise level.

3.1 Parameter Sensitivity Analysis

The optimal filtering parameter h varies significantly
across different L,-norms. We conducted a parameter
sweep to identify optimal h values for each norm,
as shown in Figure 1. Our experimental results
provide the following optimal  factors relative to noise
standard deviation o (Table 1):

Table 1. Optimal filtering parameter & for different norms.

Norm Optimal A

L4 1.60 x 100
Lo 0.80 x 100
Lj 0.60 x 100
Ly 0.60 x 100
L 0.40 x 100
Parameter Sensitivity: PSNR vs h for Different Norms
D —

A full implementation, including boundary handling
and acceleration via FFT-based convolutions, is
provided in the supplementary material.

3 Experiments and Results

In all experiments, we consider the standard Lena
image corrupted with additive white Gaussian noise
(AWGN) of standard deviation o = 20. This canonical
setting is widely adopted in the NL-means and
image denoising literature and provides a controlled
environment to isolate the effect of the underlying
L,-norm on NL-means performance. Our goal is not to
perform an exhaustive benchmark over many datasets,
but to systematically study how the choice of norm

20

0.4 0.6 0.8 10 12 14 16
h factor (relative to 100)

Figure 1. Parameter sensitivity analysis showing PSNR
versus h factor for different L,-norms. Each norm reaches
peak performance at different h values.

As shown in Table 1, the optimal h parameter decreases
monotonically with increasing p, from 16.00 for L,
to only 4.00 for L.,. This trend indicates that higher
norms require smaller % values, contrary to our initial
theoretical prediction. The original intuition was that,
since higher p magnifies large patch differences, a
larger h would be required to avoid over-penalizing
dissimilar patches. However, once d),(3, j) is explicitly
computed for each p, the effective dynamic range
of the distances already reflects this magnification,
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and the exponential kernel exp( —d% /h?) only needs
a comparatively smaller & to achieve a similar overall
smoothing level. In other words, the empirical trend
that the optimal h decreases with p (as quantified
in Table 1) is consistent with the rescaled distance
statistics in the L,-space, even though it appears
opposite to the naive intuition based on unnormalized
distances. This is because higher norms naturally
produce larger distance values for the same patch
differences, requiring smaller h values to maintain
equivalent smoothing strength.

3.2 Computational Complexity Analysis

While the underlying algorithm structure remains the
same across all L,-norms, computational costs vary.
Our timing measurements reveal interesting patterns
in processing efficiency, as detailed in Table 2.

Table 2. Computational performance for different norms.

Computation Relative Time
Norm

Time (s) (L2 =1.0)
Ly 27.457 1.01
Ly 27.252 1.00
L 38.463 1.41
Ly 39.554 1.45
L 24.502 0.90

The Lo.,-norm is the fastest to compute, requiring
only simple maximum operations. The L; and
Ly-norms show comparable performance, while
higher-order norms (p > 2) incur significantly higher
computational costs due to the additional power
operations.

3.3 Quantitative Results

Results on Lena with AWGN (o = 20) are in Table 3.
Residual distributions appear in Figure 2, and visual
comparisons in Figure 3.

3.4 Mixed Noise Performance

To evaluate robustness to different noise types, we
tested the algorithm on images corrupted with both
Gaussian and impulse noise (salt & pepper, 5%
density). The quantitative results are presented in
Table 4, with corresponding visualizations shown in
Figure 4.

As quantified in Table 4, the L,,-norm achieves the
highest PSNR (22.67 dB) and SSIM (0.6155) under
mixed noise conditions. This surprisingly strong
performance contradicts its poor performance on pure

Residual Error Distribution by Norm

0.05

0.00

Residual Value

—=0.05 4

-0.10 +

T T T T T
L1 L2 K] L4 Lo
Norm

Figure 2. Residual distributions for different L,-norms.
Lower spread indicates better denoising.

Gaussian noise, suggesting it has unique robustness
properties when dealing with impulse components.
Notably, Table 4 shows that while L., excels, the
Li-norm also performs competitively with a PSNR
of 22.57 dB, consistent with its theoretical robustness
to outliers. In contrast, intermediate norms (L3 and
L) exhibit significantly degraded performance, with
PSNR values below 19.0 dB.

The data in Table 4 can be interpreted through the
mathematical properties of each norm. Intuitively, the
Lso-norm’s robustness arises because it is determined
solely by the maximum pixel difference within a
patch. In the presence of impulse noise (e.g.,
salt-and-pepper), a corrupted pixel creates a large
intensity deviation. The L.,-norm immediately
assigns a large distance to any patch containing
such an outlier, effectively assigning it near-zero
weight. Consequently, the algorithm selectively
averages only those candidate patches that are free of
impulse corruption, acting as a strict outlier rejection
mechanism. This explains the superior SSIM score
(0.6155) for L in Table 4, indicating better structure
preservation under mixed noise conditions.

4 Edge Case Analysis

We evaluated L,-norms on specific image categories
to identify specialized use cases. For text images
with sharp transitions, the L.,-norm surprisingly
outperformed others in character boundary
preservation, despite its poor performance on
natural images. For medical images with subtle
gradations, the L;-norm demonstrated superior
preservation of fine tissue boundaries.
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Table 3. Denoising performance for various norms.

Norm MSE MAE PSNR (dB) SSIM
Ly 0.002409 0.037223 26.18 0.5815
Lo 0.001180 0.022875 29.28 0.7994
Ls 0.001711  0.027204 27.67 0.7597
Ly 0.002206 0.031029 26.56 0.7300
Lo 0.004793 0.044183 23.19 0.6389

Original

Noisy

Figure 3. Visual comparison of denoised images under various L, norms. Note over-smoothing and edge loss for p = oo,
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and robustness of p = 2.
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Mixed Noise Performance (PSNR)

PSNR (dB)

L1 L2 L3 L4

Lea

Mixed Noise Performance (SSIM)

0.6

0.5 1

0.4 1

55IM

0.3 1

0.2 1

0.1 A

0.0 -

L1 L2 L3 L4

Leo

Figure 4. Performance metrics for different L,-norms on mixed noise (Gaussian + Salt & Pepper).

Table 4. Performance on mixed noise (Gaussian + Salt &

Pepper).
Norm PSNR (dB) SSIM
Ly 22.57 0.4669
Lo 22.11 0.4982
Ls 18.96 0.3386
Ly 19.04 0.3441
Lo 22.67 0.6155

The mixed noise results presented in Section 4.4 further
confirm the specialized strengths of different norms.
When we added salt-and-pepper noise (5% density)
alongside Gaussian noise, the L.,-norm significantly
outperformed the Ls-norm, with a 0.56dB PSNR
advantage and a substantial 0.1173 improvement in
SSIM. Similarly, the Li-norm showed a 0.46dB PSNR
improvement over L, in this scenario.

5 Discussion

The Ls-norm NL-means strikes the best balance for
pure Gaussian noise, achieving the lowest MSE and
highest SSIM. The Li-norm is robust to outliers
but yields higher noise floors. Higher norms
(p > 2) over-penalize large differences, causing
over-smoothing. The L.,-norm produces the worst
visual quality for Gaussian noise, consistent with
extreme sensitivity to maximum patch deviation.

However, our parameter sensitivity and mixed noise
analyses reveal important nuances. The optimal h

parameter varies significantly with the norm, with
lower values needed for higher norms. This contradicts
the intuitive expectation that higher norms, which
produce larger distance values, would require larger
h values. The computational complexity analysis
shows that L is actually the most efficient norm (10%
faster than Ly), while L3 and L, incur substantial
performance penalties (41-45% slower). The mixed
noise scenario reveals specialized strengths, with
L and Li-norms showing remarkable robustness to
impulse noise components. This suggests potential for
adaptive norm selection based on noise characteristics.
Although the empirical study is presented for a
single canonical image and noise level, the observed
norm-dependent trade-offs follow from general
properties of L,- norms, indicating that the main
conclusions are not tied to this particular example.

6 Conclusion and Future Work

We proposed and evaluated NL-means with arbitrary
L,-norms. Empirically, L, remains optimal for pure
Gaussian noise on natural images, but L; and L
show superior performance for mixed or impulse
noise. While the experiments are reported on the
standard Lena—AWGN setting, the consistency between
the empirical behaviour and the underlying norm
properties suggests that the relative strengths of
different L,-norms are broadly applicable to similar
denoising scenarios. The computational analysis
revealed unexpected efficiency advantages for the
L-norm, making it particularly suitable for real-time
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applications where mixed noise is present.

Future directions include adaptive norm selection
per-patch, extension to coloured or non-Gaussian
noise, and integration with deep-learning based
similarity metrics. The parameter sensitivity findings
suggest that a hybrid approach combining multiple
norms could yield further improvements by adapting
to local image characteristics and noise distributions.
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Appendix

A Glossary
AWGN Additive White Gaussian Noise
FFT Fast Fourier Transform
MAE Mean Absolute Error
MSE Mean Squared Error
NL-means Non-Local Means
PDE Partial Differential Equation
PSNR Peak Signal-to-Noise Ratio
SSIM Structural Similarity Index Measure
TV Total Variation

B Supplementary Code Snippets

B.1 Core NL-means Implementation

The following code shows our implementation of

the generalized L,-norm based NL-means algorithm.

The implementation supports arbitrary L, norms
(including L) for patch similarity computation, with

proper boundary handling and weight normalization.

A complete implementation of the generalized
Ly,-norm based NL-means algorithm, including
boundary handling and weight normalization, is
provided in Listing Al.

Listing A1. Complete implementation of L,-norm
NL-means.

w = np.exp(-dist_p_p/(h**p))
weights[m, n] = w

weights /= weights.sum()
denoised[i, j] = np.sum(weights * window)

return denoised

def nl_means_lp(image, p, patch_size=7,
search_size=21, h=10%*sigma):

pad = patch_size // 2

padded = np.pad(image, pad, mode='reflect’)
denoised = np.zeros_like(image)

rows, cols = image.shape

for i in tqdm(range(rows), desc=f’'NL-Means_L{p}'):
for j in range(cols):

i1, j1 =i + pad, j + pad

patch = padded[i1-pad:il+pad+1, j1-pad:jl+pad+1]
i_min = max(i1 - search_size//2, pad)

i_max = min(i1 + search_size//2 + 1, rows + pad)
j_min = max(j1 - search_size//2, pad)

j_max = min(j1 + search_size//2 + 1, cols + pad)

window = padded[i_min:i_max, j_min:j_max]
weights = np.zeros_like(window)

for m in range(window.shape[0]):

for n in range(window.shape[1]):

neigh = padded[i_min+m-pad:i_min+m+pad+1,
j_min+n-pad:j_min+n+pad+1]

diff = patch - neigh

if p == np.inf:

dist = np.max(np.abs(diff))

w = np.exp(-dist/h)

else:

dist_p_p = np.sum(np.abs(diff)**p)

The algorithm operates as follows: (1) the input
image is symmetrically padded to handle boundaries,
(2) for each pixel, a local patch is extracted and
compared with neighboring patches within the search
window, (3) similarity weights are computed using
the specified L, norm, (4) weights are normalized
to ensure intensity conservation () w = 1), and (5)
the denoised pixel value is computed as the weighted
average of the neighborhood. The parameter i controls
the decay of weights with increasing patch distance,
typically set proportional to the noise level o.

B.2 Performance Evaluation Code

The computation of quantitative evaluation metrics,
including MSE, MAE, PSNR, and SSIM, is performed
using the code shown in Listing A2. The following
listing shows how we compute various image quality
metrics to evaluate denoising performance:

Listing A2. Metrics computation code for denoising
evaluation.

# Initialize metrics dicts
mse = {}

mae = {}

psnr = {}

ssim = {}

residuals = {}

for label, den in denoised_results.items():
diff = den - original

mse[label] = np.mean(diff#**2)

mae[label] = np.mean(np.abs(diff))

psnr[label] = peak_signal_noise_ratio(original,
den, data_range=1)

ssim[label] = structural_similarity(original,
den, data_range=1)

residuals[label] = diff.flatten()

# Create DataFrame

df_metrics = pd.DataFrame({
'"MSE’: pd.Series(mse),
'MAE’: pd.Series(mae),

"PSNR’: pd.Series(psnr),
"SSIM’: pd.Series(ssim)
»

This code computes four standard image quality
metrics for each denoising result: Mean Squared
Error (MSE), Mean Absolute Error (MAE), Peak
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Signal-to-Noise Ratio (PSNR), and Structural
Similarity Index (SSIM). The metrics are stored
in a pandas DataFrame for convenient analysis
and comparison. The peak_signal_noise_ratio
and structural_similarity functions are typically

imported from libraries such as scikit-image or
OpenCV.

B.3 Visualization Tools

We used several visualization tools to analyze the
performance of different L, norms. Residual error
distributions for different L,-norms are visualized
using the boxplot generation code presented in
Listing A3.

Listing A3. Code for residual error distribution
visualization.

# Boxplot of residuals

plt.figure(figsize=(8, 6))

data = [residuals[label] for label in labels]
plt.boxplot(data, labels=labels, showfliers=False)
plt.title(’'Residual_Error_Pistribution_by_Norm’)
plt.ylabel(’'Residual_Value')

plt.xlabel(’'Norm")

plt.tight_layout()

This visualization code creates boxplots that compare
the distribution of residual errors (differences between
denoised and original images) for different L,
norms. Boxplots provide insights into the central
tendency, spread, and potential outliers in the error
distributions, helping to identify which norms produce
more consistent or biased denoising results. The
showfliers=False parameter excludes extreme outliers
for clearer visualization of the main distributions.
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