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Abstract
This paper deals with continuous piecewise linear
differential systems with three zones separated
by two parallel straight lines (for short, CPWL3).
The number of limit cycles of CPWL3 systems
with two degenerate subsystems is not clear. In
the paper, we provide a complete study on the
maximum number of limit cycles by geometric
techniques when the continuous piecewise linear
systems with three zones have two degenerate
subsystems. During our analysis, we also detect
some bifurcation phenomena, such as boundary
equilibrium bifurcation, scabbard bifurcation,
grazing bifurcation, heteroclinic bifurcation and
Hopf bifurcation.

Keywords: limit cycle, piecewise linear systems,
bifurcation.

1 Introduction and main results
Limit cycle problem is one of the most important
problems in the qualitative theory of differential
systems, which is known as the Hilbert’s 16th problem.
This problem is unsolved even for the quadratic
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polynomial differential systems, many scholars pay
attention to the special situations, such as Liénard
systems see [1, 2], Z2-equivariant systems see [3, 4],
Hamiltonian systems see [5, 6].

During the past two decades, there are many works
concerned with the dynamics of the piecewise linear
differential systems (for short, PWL systems) which
occur naturally inmechanics, electronics, economy and
so on [7, 8]. PWL systems seem to have almost the
same dynamics of nonlinear differential systems, such
as limit cycles, homoclinic and heteroclinic orbits and
so on.

There exist many results on limit cycles for the
PWL system with two zones separated by a straight
line(for short, PWL2 system). Freire et al. [9]
proved that the continuous PWL2 system has at most
a limit cycle. Han and Zhang [10] revealed the
discontinuous PWL2 system can have two limit cycles
via Hopf bifurcation. Freire et al. [11] presented a
Liénard-like canonical form for discontinuous PWL2
system with seven parameters. According to the
type of equilibria of the subsystems, PWL2 system
can be classified into 15 types: FF, FC, FN,FN ′,
FS,CC,CN,CN ′, CS,NN,NN ′,NS,N ′N ′, N ′S and
SS, where F, S,C,N,N ′ denote focus, saddle, center,
node with different eigenvalues and node with equal
eigenvalues, respectively. According to the known
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results, such as [13–16], Llibre [12] summarized the
maximum number of known limit cycles of these types
was the shown in Table 1.

Table 1. The known results on the lower bounds for the
maximum number of limit cycles of the discontinuous

PWL2 system.

F C N N ′ S

F 3 2 3 3 3
C - 0 1 1 1
N - - 2 2 2
N ′ - - - 2 2
S - - - - 2

Recently, Chen and Liu [18] showed that PWL system
with type N ′N ′ has at most one limit cycle, and the
upper bound can be reached. Carmona et al. [17]
proved that the maximum number of limit cycles of
PWL2 system is less than or equal to 8. Combinedwith
Table 1, the maximum number of limit cycles of PWL2
system is probably three.

Lots of works showed that the shape of the switch
monifold affects the number of limit cycles. Denote
the PWL system with two zones, where the switch
line is the positive x-axis and the positive y-axis, by
PWLxy system. Liang et al. [19] proved that PWLxy
system has at least three limit cycles. Sun and Du [20]
showed that PWLxy system of type NN can have four
limit cycles. Zhao et al. [21] proved that PWLxy of
type SC has at least three limit cycles. Alves et al. [22]
showed that PWLxy system of type CC can have two
limit cycles and presented the possible bifurcation for
a particular PWLxy system. Wei et al. [23] proved that
PWLxy system of type SS has at least five limit cycles.
The authors [24] proved the existence of PWLwith two
zones having four, five, six and seven limit cycles. The
authors [25] showed that PWL system with two zones
can have n limit cycles for any given positive integer
n. Gasull [26] proposed to research the maximum
number Ln of limit cycles of PWL system with two
zones separated by a branch of an algebraic curve of
degree n. Andrade et al. [27] proved that L2 ≥ 4,
L3 ≥ 8, Ln ≥ 7 for n ≥ 4 even, and Ln ≥ 9 for n ≥ 4
odd.

Let z = (x, y)>, Rl, Rc and Rr are open
nonoverlapping regions separated by two parallel
straight linesΣl andΣr, andRl∪Σl∪Rc∪Σr∪Rr = R2.
The general piecewise linear differential systems with
three zones (for short, PWL3 systems) separated by

two parallel lines can be written as

ż =


Alz + bl, z ∈ Rl,
Acz + bc, z ∈ Rc,
Arz + br, z ∈ Rr,

(1.1)

where Ak = (akij)2×2 are 2× 2 constant matrices, and
bk = (bk1, b

k
2)> are constant vectors of R2, k = l, c, r.

Many scholars are interested in the number of limit
cycles of the system (1.1). Berbache et al. [28] showed
that system (1.1) of type boundary focus-Hamiltonian
linear saddle-boundary focus has at most four crossing
limit cycles, and system (1.1) of type boundary
focus-Hamiltonian linear saddle-boundary center has
at most three crossing limit cycles. Via the first-order
Melnikov function, considering a particular system
(1.1) with two centers and a double heteroclinic loop,
Liu et al. [29] proved that 2 limit cycles can appear
near two centers and the double heteroclinic loop,
respectively. Li et al. [30] showed that system (1.1)
with either boundary focus-center-boundary focus or
boundary focus-center-center types has at most three
limit cycles. Xiong et al. [31] obtained that system (1.1)
has at least seven limit cycles via Melnikov method.

As far as we know, the maximum number of limit
cycles for a general discontinuous PWL3 system (1.1)
is unknown and there are more than one hundred
cases according to the type of equilibria of the three
subsystems. We call that system is degenerate if the
determinant of its linear part vanishes. In the present
paper, we focus on the continuous PWL3 system with
two degenerate subsystems.

According to [32], the general continuous PWL3
system (1.1) can be transformed into

dx
dt = m1x+ n1y + c1 + α1 |k1x+ k2y + d1|

+α2 |k1x+ k2y + d2| ,
dy
dt = m2x+ n2y + c2 + β1 |k1x+ k2y + d1|

+β2 |k1x+ k2y + d2| ,
(1.2)

where |α1| + |β1| > 0, |α2| + |β2| > 0, |k1| + |k2| >
0, d1 6= d2. If n1k

2
1−m1k1k2−m2k

2
2 +n2k1k2 6= 0, then

system (1.2) can be written as Lienaréd form:

dx

dt
= F (x)− y, dy

dt
= g(x)− α, (1.3)

where

F (x) =


tr(x− 1) + tc, x > 1,
tcx, −1 ≤ x ≤ 1,
tl(x+ 1)− tc, x < −1,
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Table 2. The maximum number of known limit cycles of continuous PWL3 system (1.3).

FSF

FNF, FNN′, FNN, FN′F,
FN′N′, FN′N, NFN, FFF,
FFN, FFN′, FDF, FSS,
FDS, FDD, FFN, FNN′,
FFC, NFS, SFS

NND, NN′D, NFD, NFN′,
NNN, NNN′, NN′N′, NN′N,
DND, DFD, DN′D, FND,
FN′D, FFD, N′ND, N′N′D,
N′FD, N′FN, N′FN′, N′NN,
N′NN′, N′N′N′, N′N′N, SNS,
FDN, DFF, FCF, FCN, FCS,
NCN, NSN, SCS, SN′S,
NCN, NCS, FDN′, DFN′

SDS, SCS, DNN, N′CN′,
FCF, CSC, N′SN′, DSD,
NSN, N′CN′, DCD, SDN′,
SDN, SSN′, SSN, DN′D,
SSS, NSN′

3 2 1 0

g(x) =


dr(x− 1) + dc, x > 1,
dcx, −1 ≤ x ≤ 1,
dl(x+ 1)− dc, x < −1.

Limit cycles of system (1.3) have been studied by
many scholars. When the subsystem of system (1.3)
is degenerate, the result of two limit cycles is obtained
in [33]. For the general case, more results with two
limit cycles are found in [35, 36]. There are examples
of system (1.3) having three limit cycles, see [32, 37].
We denote the degenerate subsystem of system (1.3)
by D. According to the known results, the maximum
number of known limit cycles of system (1.3) is given
in Table 2.

We do not know the maximal number of limit cycles of
system (1.3) with two degenerate subsystems. In this
paper, we study the number of limit cycles of system
(1.3) with two degenerate subsystems. For system
(1.3) with two degenerate subsystems, these types
FDD,CDD,SDD,NDD,N ′DD can be reduced
to these types DDF,DDC,DDS,DDN,DDN ′.
Therefore, we only need to consider these types
DDF,DDC,DDS,DDN,DDN ′. Our main results
are as follows.

Theorem 1.1. System (1.3) of types DND,DN ′D, and
DFD has at most a limit cycle.

Theorem 1.2. System (1.3) of types
DCD,DSD,DDN,DDS, and DDN ′ does not have
limit cycles.

Theorem 1.3. System (1.3) of typeDDF has at most two
limit cycles and the number is reached.

Theorem 1.4. System (1.3) of type DDC has at most a
limit cycle.

Remark 1.1. For PWL3 system with two degenerate
subsystems, we find the following bifurcation phenomena:
System (1.3) of types DND,DN ′D, and DFD has

boundary equilibrium bifurcation, scabbard bifurcation,
grazing bifurcation, heteroclinic bifurcation and Hopf
bifurcation. System (1.3) of types DDF and DDC has
boundary equilibrium bifurcation, scabbard bifurcation,
grazing bifurcation and Hopf bifurcation.

Let

φ(x) =


tr, x > 1,
tc, −1 ≤ x ≤ 1,
tl, x < −1.

According to [34], for any limit cycle Γ of system (1.3),
if ∮

Γ
φ(x)dt < 0(> 0), (1.4)

then Γ is stable (unstable). If the possible limit cycle
Γ satisfies expression (1.4), then system (1.3) has at
most one limit cycle. Based on the above result, two
methods we employed in this paper are as follows:

(1) When tl < 0, tc > 0, tr > 0, assume that system
(1.3) has one limit cycle Γ, with Coppel transformation
(x, y) → (w, y), where w = F (x), we try to compare
the values of

∮
Γ∗ φ(x)dt and

∮
Γ∗∗ φ(x)dt, and then we

determine whether
∮

Γ φ(x)dt is less than zero. Here
Γ∗ (Γ∗∗) is the part of Γ restricted to x < −1 (x > −1).
Using the same ideas, we can deal with the case tl <
0, tc ≤ 0, tr > 0 and the case tl > 0, tr < 0.

(2) When tltr > 0, assume that Γ1 and Γ2 are the
innermost two limit cycles of system (1.3), we try
to prove

∮
Γ1
φ(x)dt ≤

∮
Γ2
φ(x)dt or

∮
Γ2
φ(x)dt ≤∮

Γ1
φ(x)dt. If one of the above expression holds, then

system (1.3) has at most two limit cycles.

The above methods are also effective for system (1.3)
with other types.

This paper is organized as follows. We study the limit
cycle of types DND,DFD,DN ′D of system (1.3) in
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Section 2. The nonexistence of limit cycles of types
DCD,DSD,DDN,DDS, DDN ′ is given in Section
3. We investigate the limit cycle of types DDF and
DDC type of system (1.3) in Section 4 and Section 5
respectively. In Section 6, we give some examples of
these types to illustrate the maximum number of limit
cycles can be reached.

2 Proof of Theorem 1.1
Let ε satisfies 0 < ε� 1. We use εmany times.

According to Lemma 5.7 in [34], we can prove the
following lemma.

Lemma 2.1. The amplitude of a stable (unstable) limit
cycle of system (1.3) is increasing (decreasing) as one of
tl, tc, tr increases.

From the terminology in [34], a limit cycle involving
two(three) zones is called a small limit cycle(large limit
cycle). In this section, we assume that the left and right
subsystems of system (1.2) are degenerate, and the
central subsystem is either node or focus types.

Set

G1 :=
{

(α, dl, dc, dr, tl, tc, tr) ∈ R7 :

dl = 0, dc > 0, tc 6= 0, tr > 0, dr = 0} ,
G2 :=

{
(α, dl, dc, dr, tl, tc, tr) ∈ R7 :

dl = 0, dc > 0, tc 6= 0, tr = 0, dr = 0} ,
G3 :=

{
(α, dl, dc, dr, tl, tc, tr) ∈ R7 :

dl = 0, dc > 0, tc 6= 0, tr < 0, dr = 0} .

In the parameter regions G1-G3, with the
transformation (x, y) → (x − 1, y − tc), the left
and central subsystems of system (1.3) can be
transformed as

dx

dt
= F̂ (x)− y, dy

dt
= ĝ(x)− (dc + α), (2.5)

where

F̂ (x) =

{
tcx, 0 ≤ x ≤ 2,
tlx, x < 0,

ĝ(x) =

{
dcx, 0 ≤ x ≤ 2,
0, x < 0.

By Theorem 4 in [33], we study the dynamics of the
left and central subsystems of system (1.3).

Lemma 2.2. The infinite equilibria of system (1.3) in the
Poincaré disc of system (1.3) are showed in Figure 1 if tltr <
0,−dc < α < dc or tl < 0, tr < 0,−dc < α < dc.

(a) tl < 0, tr > 0

P1

P2

M1

M2

(b) tl > 0, tr < 0

P1

M1

M2

P2

(c) tl < 0, tr < 0

M1

M2

P2

P1

Figure 1. The infinite equilibria in the Poincaré disc of
system (1.3) with tltr < 0,−dc < α < dc or

tl < 0, tr < 0,−dc < α < dc.
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Proof. We apply Poincaré compactification (see
Chapter 5 in [38]) to prove the results.

In the chart U1, perform the Poincaré transform x =
1
v , y = u

v , v > 0, then the right subsystem of
system (1.3) becomes{

u̇ = u2 + (tr − tc)uv − tru+ (dc − α) v,
v̇ = −trv + (tr − tc) v2 + uv.

(2.6)

System (2.6) has two equilibria P1(0, 0) and P2(tr, 0)
on v = 0. The eigenvalues of P1 are −tr and −tr, so
P1 is a stable node for tr > 0 and an unstable node for
tr < 0. The local structure of P1 is shown in Figure 1(a)
for tr > 0 and in Figure 1(b)–(c) for tr < 0. The
eigenvalues of P2 are tr and 0. Translating P2 to the
origin O by the transformation

u = u1 −
tr(tr − tc) + dc − α

tr
v1 + tr, v = v1,

system (2.6) is changed into{
u̇1 = tru1 − dc−α

tr
u1v1 + u2

1,

v̇1 = u1v1 − dc−α
tr

v2
1.

(2.7)

Substituting u1 = 0 into the second equation of
system (2.7), we have v̇1 = −dc−α

tr
v2

1 . According
to Theorem 7.1 of Chapter 2 in [38], the origin of
system (2.7) is a saddle–node. The local structure of
P2 (saddle–node) is shown in Figure 1(a) for tr > 0
and in Figure 1(b)–(c) for tr < 0.

In the chart V1, make the Poincaré transform x =
1
v , y = u

v , v < 0, then the left subsystem of system (1.3)
is transformed into{

u̇ = − (dc + α) v − tlu+ (tc − tl)uv + u2,
v̇ = −tlv + (tc − tl) v2 + uv.

(2.8)

System (2.8) has two equilibriaM1(0, 0) andM2(tl, 0)
on v = 0. The eigenvalues ofM1 are −tl and −tl, so
M1 is a stable node for tl > 0 and an unstable node for
tl < 0. The local structure ofM1 is shown in Figure 1(b)
for tl > 0 and in Figure 1(a), (c) for tl < 0. The
eigenvalues ofM2 are tl and 0. Similar to the analysis
in the chart U1,M2 is a saddle–node. Its local structure
is shown in Figure 1(b) for tl > 0 and in Figure 1(a), (c)
for tl < 0.

In the charts U2 and V2, by the transformation x =
u
v , y = 1

v , for −1 ≤ x ≤ 1 system (1.3) can be
transformed as{

u̇ = −dcu2 + tcu+ αuv − 1,
v̇ = −dcuv + αv2.

(2.9)

It is easy to verify that there is no infinite equilibria
of system (1.3) in the the charts U2 and V2. By the
aforementioned analysis, we know that the infinite
equilibria of system (1.3) in the Poincaré disc, as shown
in Figure 1.

If system (1.3) admits a limit cycle Γ, then the interior
region of Γ should contain an equilibrium. For α

dc
< −1

or α
dc
> 1, system (1.3) does not admit limit cycles since

system (1.3) has no equilibria. Hence we only consider
the case −1 ≤ α

dc
≤ 1 in the following. For −1 ≤ α

dc
≤

1, system (1.3) has a equilibrium Ec(
α
dc
, tcαdc ): Ec is a

focus for t2c − 4dc < 0, a node with equal eigenvalues
for t2c − 4dc = 0, and a node with different eigenvalues
for t2c − 4dc > 0.

Lemma 2.3. In the parameter region G1, system (1.3)
admits at most a limit cycle.
Proof. In the parameter region G1, we have dl = 0, dc >
0, tc 6= 0, tr > 0, dr = 0. We divide the proof into two
cases.

Case 1: tl < 0. By the transformation (x, y) → (x +
α
dc
, y + tcα

dc
), system (1.3) can be changed into

dx

dt
= F̌ (x)− y, dy

dt
= ǧ(x), (2.10)

where

F̌ (x) =


trx+ tc − tr + trα

dc
− tcα

dc
, x > 1− α

dc
,

tcx, −1− α
dc
≤ x ≤ 1− α

dc
,

tlx+ tl − tc + tlα
dc
− tcα

dc
, x < −1− α

dc
,

and

ǧ(x) =


dc − α, x > 1− α

dc
,

dcx, −1− α
dc
≤ x ≤ 1− α

dc
,

−dc − α, x < −1− α
dc
.

For convenience, set E(x, y) = y2

2 +
∫ x

0 ǧ(x)dx.

For tc > 0, assume that system (1.3) has a large
limit cycle Γ0

G1 , which is shown in Figure 2, where
A,B,C,D,H, P,Q, I ∈ Γ0

G1 . Let E(x, y) = y2

2 +∫ x
0 ǧ(x)dx. By the sign of ǧ(x), we have yA > yB >
yC > yD and yH > yP > yQ. We claim yD > 0. In fact,
if yD ≤ 0, then

dE

dt
= F̌ (x)ǧ(x) ≥ 0(6≡ 0)

and 0 =
∫

Γ0
G1
dE =

∫
Γ0
G1
F̌ (x)ǧ(x)dt > 0. This is a

contradiction.
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(a) xy-plane

B A

P Q
H

I
y = F (x)D

C

O

y

x

(b) wy-plane

B

A

C

A1

H1

H

Q

P

D

I

y = w

O

y

w

Figure 2. Γ0
G1
.

Letw = w(x) = F̌ (x), and x̆1(w) (x̆2(w)) be the branch
of the inverse of w(x) for x ≥ −1 (x < −1). With the
transformation (x, y) → (w, y), system (2.10) can be
transformed into:

dy

dw
=
τ̆i(w)

w − y
, i = 1, 2, (2.11)

where

τ̆1(w) := τ̆(x̆1(w)) =

{
dc−α
tr

, w > tc − tcα
dc
,

dcw
t2c
, −tc − tcα

dc
≤ w ≤ tc − tcα

dc
,

and

τ̆2(w) := τ̆(x̆2(w)) =
−dc − α

tl
, w ≥ −tc −

tcα

dc
.

It follows that

τ̆1(w)− τ̆2(w) =

{
dc

(
1
tr

+ 1
tl

)
+ α

(
1
tl
− 1

tr

)
, w > tc − tcα

dc
,

dcw
t2c

+ dc+α
tl

, −tc − tcα
dc
≤ w ≤ tc − tcα

dc
.

The equation τ̆1(w)−τ̆2(w) = 0 has the unique solution
w1 = − t2c(dc+α)

dctl
and w1 ∈

[
−tc − tcα

dc
, tc − tcα

dc

]
.

Suppose that each orbit segment of Γ0
G1 on the xy

plane is transformed into their image arc segments
with the same notations on the half wy plane
respectively, as exhibited in Figure 2(b). Denote y =
y1(w), y2(w), z1(w) and z2(w) by the orbit segments
ĨAB, B̃CD, P̃QI, D̃HP in the wy-plane, respectively.
Set u(w) = y1(w)− y2(w) to obtain
du

dw
=

τ̆1(w)

w − y1(w)
− τ̆2(w)

w − y2(w)
, q1(w)u+ q2(w),

(2.12)
where q1(w) = τ̆1(w)

(w−y1(w))(w−y2(w)) and q2(w) =
τ̆1(w)−τ̆2(w)
w−y2(w) . From the Variation of Constants Formula,

it yields that

u(w) = exp

(∫ w

0
q1(s)ds

)
U(w),

where U(w) := u0 +
∫ w

0 q2(s) exp
(∫ 0

s q1(ς)dς
)
ds with

u0 = yA−yC > 0. U ′(w) > 0 forw < w1 andU ′(w) < 0
for w > w1 since U ′(w) = q2(w) exp(

∫ 0
w q1(ς)dς) and

τ̆1(−tc − tcα
dc

) − τ2(−tc − tcα
dc

) < 0. Therefore, the
equation u(w) = y1(w) − y2(w) = 0 has at most a
solution for w ≥ −tc − tcα

dc
since U(0) = u0 > 0.

Similarly, the equation v(w) = z1(w)− z2(w) = 0 has
at most a solution for w ≥ −tc − tcα

dc
too.

It follows from Green formula that

0 =

∮
Γ0
G1

ǧ(x)dx− (F̌ (x)− y)dy

= −
∫∫

∆
F̌ ′(x)dxdy

=

∫∫
∆2

dwdy −
∫∫

∆1

dwdy,

where ∆ is the interior region surrounded by Γ0
G1 in

Figure 2(a), ∆1 is the region surrounded by the BP
and P̃ IB, ∆2 is the region surrounded by the PB and
B̃DP in Figure 2(b).

In the following, we call yD > yI . If yD ≤ yI , then∫∫
∆2
dwdy −

∫∫
∆1
dwdy < 0. This is a contradiction.

Let k = yI
yD

, with the scaling (w, y) → (kw, ky), the
second equation of system (2.11) is changed into

dy

dw
=

τ̆2(kw)

k(w − y)
. (2.13)

8
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The orbit segment C̃DH of equation (2.11) is changed
into the orbit segment Ã1IH1 of equation (2.13), and∫

C̃DH

1

w − y
dw =

∫
Ã1IH1

1

k(w − y)
d(kw)

=

∫
Ã1IH1

1

w − y
dw.

Denote y3(w) and z3(w) by the orbit segments Ã1I

and ĨH1 respectively, recall that y1(w) and z1(w)

represent the orbit segments ĨA and Q̃I , then y3(w) <
y1(w), z1(w) < z3(w) for 0 = wA ≤ w ≤ wI . By
calculation, we have∫

Q̃IA

dw

w − y
+

∫
C̃DH

dw

w − y

=

∫
Q̃IA

dw

w − y
+

∫
˜A1I1H1

dw

w − y

=

∫
ĨA

dw

w − y1(w)
+

∫
Ã1I

dw

w − y3(w)

+

∫
Q̃I

dw

w − z1(w)
+

∫
ĨH1

dw

w − z3(w)

=

∫ xI

xA

y3(w)− y1(w)

(w − y1(w)) (w − y3(w))
dw

+

∫ xI

xH1

z1(w)− z3(w)

(w − z1(w)) (w − z3(w))
dw < 0.

From y1(w) > y2(w), z1(w) < z2(w) for wB ≤ w ≤
wA = 0, it yields that∫

ÃB

1

w − y1(w)
dw +

∫
B̃C

1

w − y2(w)
dw =∫ wA

wB

y2(w)− y1(w)

(w − y1(w)) (w − y2(w))
dw < 0.

Similarly,∫
H̃P

1

w − z1(w)
dw +

∫
P̃Q

1

w − z2(w)
dw < 0.

Therefore,∫
Γ0
G1

F̌ ′(x)dt =

∫
ĨAB

1

w − y
dw +

∫
B̃CD

1

w − y
dw

+

∫
C̃DH

dw

w − y
+

∫
H̃PQ

1

w − y
dw

+

∫
Q̃IA

dw

w − y
< 0.

By
∫

Γ0
G1
F ′(x)dt =

∫
Γ0
G1
F̌ ′(x)dt, it follows that that

system (1.3) has at most a large limit cycle. From

Theorem 4 in [33], system (1.3) admits at most a small
limit cycle. If system (1.3) has at least two limit cycles,
where Γ1

G1 and Γ2
G1 are the innermost two limit cycles,

then Γ2
G1 is internal unstable and large, which implying∫

Γ2
G1
F ′(x)dt ≥ 0. This is a contradiction. Hence

system (1.3) has at most a limit cycle. Similarly, we can
prove that system (1.3) admits at most a limit cycle for
tc < 0.

Case 2: tl ≥ 0. We claim that system (1.3) does not
have no limit cycles for tc > 0. If system (1.3) has a
limit cycle Γ3

G1 , then we have
∫

Γ3
G1
F ′(x)dt > 0, which

implies Γ is unstable. However, Γ3
G1 is semi-stable or

stable since system (1.3) has an unstable equilibrium
Ec, which imply

∫
Γ3
G1
F ′(x)dt ≤ 0. This lead to a

contradiction.

In the following we consider the case tc < 0. Assume
that system (1.3) has two large limit cycles Γ4

G1 and Γ5
G1 ,

which are illustrated in Figure 3, whereAi, Bi, Ci, Di ∈
Γi+3
G1 , i = 1, 2.

B2

B1

A2

A1

D1

D2C2

C1

Ec

y = F (x)

O

y

x

Figure 3. Γ4
G1

and Γ5
G1
.

Denote y = yi(x) by the orbit segment ÃiBi for i = 1, 2.
Obviously y1(x) < y2(x). We obtain that∫

Ã2B2

F ′(x)dt−
∫
Ã1B1

F ′(x)dt

=

∫ xB2

xA2

tc
F (x)− y2(x)

dx−
∫ xB1

xA1

tc
F (x)− y1(x)

dx

=

∫ xB1

xA1

tc (y2(x)− y1(x))

(F (x)− y2(x)) (F (x)− y1(x))
dx > 0,

i.e., ∫
Ã2B2

F ′(x)dt >

∫
Ã1B1

F ′(x)dt. (2.14)

9
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Similarly, we have∫
C̃2D2

F ′(x)dt >

∫
C̃1D1

F ′(x)dt. (2.15)

For tl > 0, assume that the orbit starting from B1(B2)
needs time t1(t2) to intersects the y-axis first. Note
that y = αt + C0 for x < −1(C0 is a constant). From∣∣B1C1

∣∣ < ∣∣B2C2

∣∣, it follows that t1 < t2 and∫
B̃2C2

F ′(x)dt >

∫
B̃1C1

F ′(x)dt. (2.16)

Similarly, we have∫
D̃2A2

F ′(x)dt >

∫
D̃1A1

F ′(x)dt. (2.17)

From (2.14)-(2.17), it yields that∫
Γ5
G1

F ′(x)dt >

∫
Γ4
G1

F ′(x)dt. (2.18)

If tl = 0, then∫
B̃2C2

F ′(x)dt =

∫
B̃1C1

F ′(x)dt = 0. (2.19)

The inequality (2.18) holds for tl = 0 since the
inequalities (2.14),(2.15) and (2.17) hold for tl = 0.
If system (1.3) has two limit cycles γ1 and γ2, then γ1

is semi-stable or unstable since Ec is stable. If γ1 is
semi-stable, then fixing tl, tr, dl, dc, dr, α, γ1 becomes
an unstable limit cycle γ11 and a stable limit cycle
γ12 as tc → tc − ε, where γ11 lies in the interior
region surrounded by γ12, that is,

∫
γ12

F ′(x)dt <∫
γ11

F ′(x)dt, which is contradiction. If γ1 is unstable,
then γ2 is internal stable, i.e.,

∫
γ2
F ′(x)dt ≤ 0.

Then we have
∫
γ2
F ′(x)dt <

∫
γ1
F ′(x)dt. This is a

contradiction. Therefore, system (1.3) admits at most
a limit cycle.

Lemma 2.4. In the parameter region G2, system (1.3)
admits at most a limit cycle.Proof. In the parameter region G2, we have dl = 0, dc >
0, tc 6= 0, tr = 0, dr = 0. We divide the proof into two
cases.

Case 1: tl < 0. For tc < 0, we claim that system (1.3)
has no limit cycles. In fact, if system (1.3) has a limit
cycle Γ0

G2 , then
∫

Γ0
G2
F ′(x)dt < 0 implies Γ0

G2 is stable.
This is a contradiction since system (1.3) has a stable
equilibrium.

In the following we consider tc > 0. Assume
that system (1.3) has two large limit cycles Γ1

G2

and Γ2
G2 , which is illustrated in Figure 4, where

Ai+2, Bi+2, Ci+2, Di+2 ∈ ΓiG2 , i = 1, 2.

B4

B3

A4

A3

D3

D4
C4

C3

Ec

y = F (x)

O

y

x

Figure 4. Γ1
G2

and Γ2
G2
.

Denote y = yi+2(x) by the orbit segment ˜Ai+2Bi+2 for
i = 1, 2, then y3(x) < y4(x). Therefore,∫
Ã4B4

F ′(x)dt−
∫
Ã3B3

F ′(x)dt =

∫ xB4

xA4

tc
F (x)− y4(x)

dx

−
∫ xB3

xA3

tc
F (x)− y3(x)

dx

=

∫ xB3

xA3

tc (y4(x)− y3(x))

(F (x)− y4(x)) (F (x)− y3(x))
dx < 0,

i.e, ∫
Ã4B4

F ′(x)dt <

∫
Ã3B3

F ′(x)dt. (2.20)

Similarly, we have∫
C̃4D4

F ′(x)dt <

∫
C̃3D3

F ′(x)dt. (2.21)

Similar to the proof of Lemma 2.3, we can prove∫
B̃4C4

F ′(x)dt <

∫
B̃3C3

F ′(x)dt, (2.22)

and ∫
D̃4A4

F ′(x)dt =

∫
D̃3A3

F ′(x)dt = 0. (2.23)

From (2.20)-(2.23), we obtain∫
Γ2
G2

F ′(x)dt <

∫
Γ1
G2

F ′(x)dt.

10
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For tc > 0, the central subsystem of system (1.3) has an
unstable equilibrium, thus Γ1

G2 is either semi-stable or
stable. If Γ1

G2 is semi-stable, then Γ1
G2 becomes a stable

limit cycle Γ11
G2 and an unstable limit cycle Γ12

G2 as tc →
tc − ε, where Γ11 lies in the interior region surrounded
by Γ12

G2 , which implies
∫

Γ12
G2
F ′(x)dt >

∫
Γ11
G2
F ′(x)dt.

This is impossible. Similarly, if Γ1
G2 is stable, then Γ2

G2 is
internal unstable, i.e.,

∫
Γ2
G2
F ′(x)dt ≥ 0 >

∫
Γ1
G2
F ′(x)dt.

This is a contradiction. Therefore, system (1.3) admits
at most a limit cycle.

Case 2: tl ≥ 0. For tl > 0 and tc < 0, similar to Lemma
2.3, we can prove that system (1.3) admits at most a
limit cycle. For tl = 0 and tc < 0, assume that system
(1.3) has a limit cycle Γ3

G2 , then
∫

Γ3
G2
F ′(x)dt < 0.

However, the central subsystem of system (1.3) has
a stable equilibrium, thus Γ3

G2 is internally unstable,
which implies

∫
Γ3
G2
F ′(x)dt ≥ 0. This is a contradiction.

Therefore, system (1.3) does not admit limit cycles.

For tl ≥ 0 and tc > 0, from Theorem 4 in [33], system
(1.3) doesn’t admit small limit cycles. If system (1.3)
has a large limit cycle Γ4

G2 , then
∫

Γ4
G2
F ′(x)dt > 0.

However, Ec is an unstable equilibrium, thus Γ4
G2 is

internal stable, which implies
∫

Γ4
G2
F ′(x)dt ≤ 0. This

is a contradiction. Therefore, system (1.3) does not
admit limit cycles.

Lemma 2.5. In the parameter region G3, system (1.3)
admits at most a limit cycle.

Proof. In the parameter region G3, we have dl = 0, dc >
0, tc 6= 0, tr < 0, dr = 0. We divide the proof into two
cases.

Case 1: tl ≤ 0. For tc < 0, if system (1.3) has a
limit cycle Γ0

G3 , then
∫

Γ0
G3
F ′(x)dt < 0. System (1.3)

has a stable equilibrium Ec for tc < 0, thus Γ0
G3 is

semi-unstable or unstable, i.e,
∫

Γ0
G3
F ′(x)dt ≥ 0. This

is a contradiction. Therefore, system (1.3) has no limit
cycles.

For tc > 0, suppose that system (1.3) has at least
two limit cycles, where Γ1

G3 and Γ2
G3 are the innermost

two limit cycles and Γ1
G3 lies in the interior region

surrounded by Γ2
G3 . Similar to the proof of Lemma

2.3, we have
∫

Γ1
G3
F ′(x)dt >

∫
Γ2
G3
F ′(x)dt. The central

subsystem of system (1.3) has an unstable equilibrium
Ec, thus Γ1

G3 is stable or semi-stable. We can assume
Γ1
G3 is stable. Otherwise, we can perturb such the stable

limit cycle from semi-stable limit cycle. Thereby we

have
∫

Γ1
G3
F ′(x)dt < 0. From

∫
Γ2
G3
F ′(x)dt < 0, it yields

that Γ2
G3 is stable. This is a contradiction. Therefore,

system (1.3) has at most a limit cycle.

Case 2: tl > 0. For tc > 0, assume that system (1.3)
has a large limit cycle Γ3

G3 , as shown in Figure 5, where
A5, B5, C5, D5, I5, J5, H5, Q5 ∈ Γ3

G3 . Let w = F (x) and
x̀1(w)(x̀2(w)) be the inverse function of w(x) for x >
1(x ≤ 1). With Coppel transformation (x, y)→ (w, y),
system (2.10) can be transformed into the following
system,

dy

dw
=
τ̀i(w)

w − y
, i = 1, 2, (2.24)

where

τ̀1(w) := τ̀(x̀1(w)) =
dc − α
tr

, w < tc −
tcα

dc
,

τ̀2(w) := τ̀(x̀1(w)) =

{
dcw
t2c
, −tc − tcα

dc
≤ w ≤ tc − tcα

dc
,

−dc−α
tl

, w < −tc − tcα
dc
.

By computation, we have

τ̀2(w)− τ̀1(w) =

{
dcw
t2c
− dc−α

tr
, −tc − tcα

dc
≤ w ≤ tc − tcα

dc
,

−dc−α
tl
− dc−α

tr
, w < −tc − tcα

dc
.

Thus the equation τ̀2(w) − τ̀1(w) = 0 has at most a
solution.

Suppose that each orbit segment of Γ3
G3 on the xy plane

is transformed into their image arc segments with the
same notations on the half wy plane respectively, as
showed in Figure 5. Denote (xP , yP )((wP , yP )) by
the coordinate of the point P in the xy(wy) plane,
where P ∈ {A5, B5, C5, D5, I5, J5, H5, Q5}. By the sign
of ǧ(x) in system (2.10), we have yB5 > yA5 > yQ5

and yD5 < yI5 < yJ5 . Let h1(w), h2(w), p1(w) and
p2(w) represent the orbit segments H̃5Q5A5, Ã5B5C5,
˜I5J5H5 and C̃5D5I5, respectively. Similar to the proof
of Lemma 2.3, we can prove that the equations h1(w)−
h2(w) = 0 and p1(w) − p2(w) = 0 have at most a
solution, and yH5 < yC5 .

11
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(a) xy-plane

B5 A5
Q5

D5 I5 J5

H5
y = F (x)

C5

O

y

x

(b) wy-plane

B6

B5

Q5

H5

J5 I5

A5

D5

D6

O

y = w

C5

y

w

Figure 5. Γ3
G3
.

From h1(w) < h2(w) for 0 = wB5 ≤ w ≤ wA5 , it
follows that∫

˜Q5A5B5

F ′(x)dt =

∫
Q̃5A5

F ′(x)dt+

∫
Ã5B5

F ′(x)dt

=

∫
Q̃5A5

dw

w − y
+

∫
Ã5B5

dw

w − y

=

∫ wB5

wA5

dw

w − h2(w)
−
∫ wB5

wA5

dw

w − h1(w)

=

∫ wB5

wA5

h2(w)− h1(w)

(w − h2(w)) (w − h1(w))
dw < 0.

(2.25)

Similarly, we have∫
D̃5I5J5

F ′(x)dt < 0. (2.26)

With the scaling (w, y) → (kw, ky), the second
equation of system (2.11) is transformed into

dy

dw
=

τ̀2(kw)

k(w − y)
, (2.27)

where k =
wH5
wC5

. Therefore, B̃5C5D5 of system (2.11)

is changed into ˜B6H5D6 of system (2.27), that is,∫
˜B5C5D5

1

w − y
dw =

∫
˜B6H5D6

1

w − y
dw. (2.28)

Denote h3(w) and p3(w) by the orbit segment B̃6H5

and H̃5D6 respectively. Then h1(w) < h3(w) and
p3(w) < p1(w) for wH5 ≤ w ≤ wQ5 = 0. Therefore,
we have∫

˜B5Q5D5

F (x)dt+

∫
˜J5H5Q5

F ′(x)dt

=

∫
˜B5C5D5

dw

w − y
+

∫
˜J5H5Q5

dw

w − y

=

∫
˜B6H5D6

dw

w − y
+

∫
˜J5H5Q5

dw

w − y

=

∫ wQ5

wH5

dw

w − h1(w)
−
∫ wQ5

wH5

dw

w − h3(w)

+

∫ wQ5

wH5

dw

w − p3(w)
−
∫ wQ5

wH5

dw

w − p1(w)

=

∫ wQ5

wH5

h1(w)− h3(w)

(w − h1(w)) (w − h3(w))
dw

+

∫ wQ5

wH5

p3(w)− p1(w)

(w − p3(w)) (w − p1(w))
dw < 0,

that is,∫
˜B5Q5D5

F (x)dt+

∫
˜J5H5Q5

F ′(x)dt < 0. (2.29)

From (2.25), (2.26) and (2.29), we have∫
Γ3
G3

F ′(x)dt < 0. (2.30)

For tc < 0, if system (1.3) has a limit cycle Γ3
G3 , we

similarly prove that the inequality (2.30) holds.

For tc > 0, if system (1.3) has at least two limit cycles,
where Γ4

G3 and Γ5
G3 are the innermost two limit cycles,

and Γ4
G3 lies in the interior region surrounded by Γ5

G3 ,

12



Journal of Mathematics and Interdisciplinary Applications

then Γ4
G3 is semi-stable or stable. From Theorem 4 in

[33], system (1.3) has no small semi-stable limit cycle.
If Γ4
G3 is semi-stable, then it is large and

∫
Γ4
G3
F ′(x)dt =

0. This is a contradiction. If Γ4
G3 is stable, then Γ5

G3 is
large and internal unstable, that is,

∫
Γ5
G3
F ′(x)dt ≥ 0,

which is also a contradiction. Therefore, system (1.3)
has at most a limit cycle.

For tc < 0, assume that system (1.3) has a small limit
cycle Γ6

G3 , then Γ6
G3 is unstable. By Lemma 2.1 and

Theorem 4 in [33], the amplitute of Γ6
G3 is increasing

as tc decreases and there exists t∗c such that Γ6
G3 involve

three zones as tc = t∗c − ε. Therefore, we have∫
Γ6
G3
F ′(x)dt > 0 as tc = t∗c − ε. This is a contradiction.

Hence, system (1.3) has no limit cycles.
By Lemma 2.2, all orbits are positively bounded as tl <
0, tr < 0. Note that the central subsystem of system
(1.3) has an unstable equilibrium for tc > 0. Therefore,
system (1.3) has a limit cycle for tl < 0, tc > 0, tr < 0.
In Section 6, we give three numerical examples.

3 Proof of Theorem 1.2
When system (1.3) has two denegerate subsystems, if
the left or right subsystem of system (1.3) has a node
or saddle, then system (1.3) has no limit cycles since
the node or saddle has the invariant line. That is to say,
system (1.3) for types DDN,DDS and DDN ′ has no
limit cycles. If the central subsystem of system (1.3) is
not degenerate for α

dc
< −1 or α

dc
> 1, system (1.3) has

no equilibria, then system (1.3) has no limit cycles. For
α = |dc|, system (1.3) has a singular line with infinite
length, thus system (1.3) has no limit cycles. Hence
we only consider the case −1 < α

dc
< 1 in the rest part

of this section.

From Chapter 3 in [38], the sum of the indices of all
equilibria surrounded by a limit cycle is 1, and the
index of a saddle is 1. If system (1.3) of type DSD
has a limit cycle, then the index of this limit cycle is
-1. This is a contradiction. Therefore, system (1.3) of
DSD type has no limit cycles. In the following, we
only deal with the type DCD. Set

N :=
{

(α, dl, dc, dr, tl, tc, tr) ∈ R7 :

dl = 0, dc > 0, dr = 0, tc = 0} .

Lemma 3.1. In the parameter region N , system (1.3) has
no limit cycles.
Proof. For tc = 0, from Theorem 4 in [33], system (1.3)
has no small limit cycles. From∣∣∣∣∣ −y g(x)− α+ yf(x)
∂(−y)
∂tc

∂(g(x)−α+yf(x))
∂tc

∣∣∣∣∣ =

{
−y2 ≤ 0, −1 ≤ x ≤ 1,

0, other,

we have that the vector field (−y, g(x)− α+ yf(x)) is
rotated with respect to tc. For tltr < 0, if system (1.3)
has a large limit cycle Γ1, then it is the hyperbolic large
limit cycle. Otherwise, Γ1 becomes two limit cycles
as tc = ε or tc = −ε. This is a contradiction with the
uniqueness of limit cycle of system (1.3) as tc 6= 0.

By Lemma 2.2, the infinite equilibria of system (1.3)
do not change when tc changes. If Γ1 is stable, then
system (1.3) has two limit cycles as tc = −ε from
Poincaré–Bendixson Theorem, which contradicts the
uniqueness of limit cycle of system (1.3) as tc < 0.
Therefore, system (1.3) has no limit cycles. Similarly,
we can prove that system (1.3) has no limit cycleswhen
Γ1 is unstable.

For tltr ≥ 0, assume that system (2.10) has a large
limit cycle Γ2. Since system (2.10) is topologically
equivalent to system (1.3), it suffices to study the
properties of limit cycles of system (2.10) to obtain the
corresponding results of system (1.3). If tl > 0, tr ≥ 0
or tl = 0, tr > 0, then F̌ (x)ǧ(x) ≥ 0 and F̌ (x)ǧ(x) 6≡ 0,
and 0 =

∫
Γ2
dE =

∫
Γ2
F̌ (x)ǧ(x)dt > 0. This is a

contradiction. Therefore, system (2.10) has no limit
cycles. Similarly, we can prove that system (2.10) has
no limit cycles for tl ≤ 0, tr < 0 or tl < 0, tr = 0.
If tl = 0, tr = 0 and system (2.10) has a large limit
cycle Γ3, then Γ3 is semi-stable. Fix tl, tr, dl, dc, dr, α,
then system (2.10) has two limit cycles for tc = ε or
tc = −ε, where ε is a sufficiently positive number. This
is a contradiction to the fact that system (2.10) has at
most a limit cycle as tc 6= 0 by Lemma 2.3. Therefore,
system (1.3) has no limit cycles.

By Lemma 3.1, system (1.3) forDCD type has no limit
cycles. This completes the proof of Theorem 1.2.

4 Proof of Theorem 1.3
In this section we consider the caseDDF . Recently, we
[39] proved system (1.3) has at most two limit cycles
in the following parameter region

H :=
{

(α, dl, dc, dr, tl, tc, tr) ∈ R7 :

dl = 0, dc = 0, tr > 0, t2r − dr < 0
}
.

Set

Q :=
{

(α, dl, dc, dr, tl, tc, tr) ∈ R7 :

dl = 0, dc = 0, tr < 0, t2r − dr < 0
}
.

Fixing α, dl, dc, dr, tl, tc in the parameter region Q, let
tr = 0, system (1.3) is the DDC type, which is
discussed in the next section. In the parameter region

13
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Q, system (1.3) has a focusEr(1+ α
dr
, αtrdr +tc). In what

follows, we research the limit cycle of system (1.3) in
the parameter region Q. First, we study the infinite
equilibria of system (1.3). Similar to Lemma 2.2, we
have the following lemma.

Lemma 4.1. In the parameter region Q, the infinite
equilibria for tl < 0, α > 0 in the Poincaré disc of system
(1.3) are showed in Figure 6.

(a) tl < 0, α > 0

(b) tl > 0, α > 0

Figure 6. The infinite equilibria in the Poincaré disc of
system (1.3).

In the following, we prove the uniqueness of limit
cycles of system (1.3) as tl > 0 in the parameter region
Q.

Lemma 4.2. In the parameter region Q, if tl > 0, then
system (1.3) admits at most a limit cycle.

Proof. Define w = w(x) = F (x). For tc > 0, denote
x̃1(w) (x̃2(w)) by the branch of the inverse of w(x) for
x ≥ 1 (x < 1). With the transformation (x, y)→ (w, y),

system (1.3) can be transformed as

dy

dw
=
τi(w)

w − y
, i = 1, 2, (4.31)

where

τ1(w) = τ (x̃1(w)) :=
g (x̃1(w))− α
F ′ (x̃1(w))

=
dr (w − tc)− αtr

t2r
, w < tc,

and
τ2(w) = τ (x̃2(w)) :=

g (x̃2(w))− α
F ′ (x̃2(w))

=

{ −α
tl
, w < −tc,

− α
tc
, −tc ≤ w ≤ tc.

By computation, we have

τ1(w)− τ2(w) =


dr
t2r

(w − tc) + α
(

1
tl
− 1

tr

)
, w < −tc,

dr(w−tc)
t2r

+ α
(

1
tc
− 1

tr

)
,−tc ≤ w ≤ tc.

Consider the equation

τ1(w)− τ2(w) = 0, (4.32)

and its solutions may be w1 = tc − t2rα
dr

(
1
tl
− 1

tr

)
and w1 = tc − t2rα

dr

(
1
tc
− 1

tr

)
. If w = w1 is the

solution of equation (4.32), then w1 < −tc, i.e, α >
2tcdr

t2r

(
1
tl
− 1

tr

) = ϑ1. If w = w2 is the solution of equation

(4.32), then −tc ≤ w2 ≤ tc, i.e, α ≤ 2tcdr

t2r

(
1
tc
− 1

tr

) =

ϑ2. If ϑ2 ≤ ϑ1, i.e, tc ≤ tl, equation (4.32) has at
most a solution, then we can prove that system (1.3)
admits at most a limit cycle using similar way to the
proof of Lemma 2.3. If ϑ2 > ϑ1, i.e, tc > tl, then
equation (4.32) has two solutions. If system (1.3)
admits at least two limit cycles as (tl, tc, tr, dr, α) =
(t0l , t

0
c , t

0
r , d

0
r , α

0), by Lemma 4.1 and stability, then we
can assume that system (1.3) has at least three limit
cycles as (tl, tc, tr, dr, α) = (t0l , t

0
c , t

0
r , d

0
r , α

0), where Υ1,
Υ2 and Υ3 are the innermost three limit cycles, and
Υ1,Υ3 are unstable and Υ2 is stable. Otherwise, we
can perturb such three stable or unstable limit cycles
from semi-stable limit cycles. By Lemma 2.1, the
amplitude of Υ1,Υ3 is decreasing(increasing) and Υ2

is increasing(decreasing) as one of tl, tc increases.

We show that system (1.3) has at most a limit cycle
by the induction method. In the first step, fixing
tc, tr, dl, dc, dr, α, we look for tl = µ1 ∈ (t0c , t

0
l ) such

that Υ1 and Υ2 coincide. Otherwise, system (1.3)
has at least two limit cycles as tl = t0c . This is a
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contradiction. In the 2th step, fixing tl, tr, dl, dc, dr, α,
we try to find tc = ν1 ∈ (t0c , µ1) such that Υ2 and Υ3

coincide. If ν1 does not exist, then system (1.3) has at
least two limit cycles as tc = µ1, which contradict the
uniqueness of the limit cycle of system (1.3) as tc = µ1.
In the 3th step, repeat the analysis of the 1th step, there
exists a unique µ2 such that Υ1 and Υ2 coincide. After
finite steps, we obtain two sequences µn and νn. There
exists t∗ such that lim

n→+∞
µn = lim

n→+∞
νn = t∗. By the

above analysis, system (1.3) has at least two limit cycles
as tc = tl = t∗. This is a contradiction. Therefore,
system (1.3) has at most a limit cycle for tc < tl.

For tc = 0, denote x̌1(w) (x̌2(w)) by the branch of the
inverse of w(x) for x ≥ 1 (x < −1). By transformation
(x, y)→ (w, y), system (1.3) can be rewritten as

dy

dw
=
τ̌i(w)

w − y
, i = 1, 2, (4.33)

where

τ̌1(w) = τ(x̌1(w)) :=
g (x̌1(w))− α
F ′ (x̌1(w))

=
drw − αtr

t2r
, w ≤ 0,

and

τ̌2(w) = τ(x̌1(w)) :=
g (x̌2(w))− α
F ′ (x̌2(w))

= −α
tl
, w ≤ 0.

The equation τ̌1(w)− τ̌2(w) = drw
t2r
− α

tr
+ α

tl
= 0 has a

solution w = w0 = trα
dr
− t2rα

tldr
. Similar to the proof of

Lemma 2.5, we can prove that system (1.3) admits at
most a limit cycle.

For tc < 0, denote x1(w) (x2(w)) by the branch of
the inverse of w(x) for x ≥ −1 (x < −1). With
the transformation (x, y) → (w, y), system (1.3) is
transformed as

dy

dw
=
τ̃i(w)

w − y
, i = 1, 2, (4.34)

where

τ̃1(w) = τ (x1(w)) :=
g (x1(w))− α
F ′ (x1(w))

=

{
dr
t2r
w − drtc

t2r
− α

tr
, w < tc,

− α
tc
, tc ≤ w ≤ −tc,

and

τ̃2(w) = τ (x2(w)) :=
g (x2(w))− α
F ′ (x2(w))

= −α
tl
, w < −tc.

Then

τ̃1(w)−τ̃2(w) =


dr
t2r
w − dr

t2r
tc − α

(
1
tr
− 1

tl

)
, w < tc,

−α
(

1
tc
− 1

tl

)
, tc ≤ w ≤ −tc.

Therefore, the equation τ̃1(w)− τ̃2(w) = 0 has at most
a solution. Similar to the proof of Lemma 2.5, we can
prove that system (1.3) has at most a limit cycle.

Lemma 4.3. In the parameter region Q, if tl ≤ 0, then
system (1.3) has at most two limit cycle.

Proof. For tc ≤ 0, system (1.3) has no limit cycles.
In fact, if system (1.3) has a limit cycle Γ0

Q, then we
have

∫
Γ0
Q
F ′(x)dt < 0, i.e., Γ0

Q is stable, which is
contradiction to the stability of focus Er. For tc > 0,
assume system (1.3) has at least two large limit cycles
and Γ1

Q and Γ2
Q are the innermost two large limit cycles,

where Ai+7, Bi+7, Ci+7, Di+7 ∈ ΓiQ for i = 1, 2, as
shown in Figure 7.

B9

B8

A9

A8

D8

D9

C9

C8

Er

y = F (x)

O

y

x

Figure 7. Γ1
Q and Γ2

Q.

We call that F (xEr) > F (−1). Otherwise, we have

(F (x)− F (xEr))(g(x)− α) ≤ 0,

and
(F (x)− F (xEr))(g(x)− α) 6≡ 0.

Then

0 =

∫
Γi
Q

dE1

=

∫
Γi
Q

(F (x)− F (xEr))(g(x)− α)dt < 0 (i = 1, 2),

where E1(x, y) =
∫ x

0 g(s)ds + y2

2 . This is a
contradiction.

15



Journal of Mathematics and Interdisciplinary Applications

(a) tc = 0.1 (b) tc = 0.8
1
2 (c) tc = 1

Figure 8. The limit cycle of system (1.3) for (α, dl, dc, dr, tl, tr) = (0.1, 0, 0.2, 0,−0.1,−0.1).

By t = −σ, system (1.3) can be transformed into the
form { dx

dσ = y − F (x)
dy
dσ = α− g(x)

(4.35)

Denote y = y8(x) and y9(x) by the orbit segments
Ã8B8, Ã9B9 respectively, then y8(x) < y9(x) for xA8 ≤
x ≤ xA9 . It follows that∫
B̃iAi

−F ′(x)dσ =

∫ xAi

xBi

F ′(x)

F (x)− yi
dx

=

∫ xAi

xBi

d (F (x)− yi)
F (x)− yi(x)

+

∫ xAi

xBi

y′i(x)

F (x)− yi(x)
dx

= ln
F (xAi)− yi (xAi)

F (xBi)− yi (xBi)

+

∫ xAi

xBi

g(x)− α
(F (x)− yi(x))2dx

= ln
F (xAi)− yi (xAi)

F (xBi)− yi (xAi)

+ ln
F (xBi)− yi (xAi)

F (xBi)− yi (xBi)

+

∫ xAi

xBi

g(x)− α
(F (x)− yi(x))2dx

= ln
F (xAi)− yi (xAi)

F (xBi)− yi (xAi)

+

∫ xAi

xBi

y′i(x)

yi(x)− F (xBi)
dx

+

∫ xAi

xBi

g(x)− α
(F (x)− yi(x))2dx

= ln
F (xAi)− yi (xAi)

F (xBi)− yi (xAi)

+

∫ xAi

xBi

(g(x)− α)(F (x)− F (xBi))

(yi(x)− F (xBi)(F (x)− yi(x))2
dx,

where i = 8, 9.

From

ln
F (xA8)− y8 (xA8)

F (xB8)− y8 (xA8)
< ln

F (xA9)− y9 (xA9)

F (xB9)− y9 (xB9)
,

and
1

(y8(x)−F(xA8))(F (x)−y8(x))2
> 1

(y9(x)−F(xA8))(F (x)−y9(x))2
.

it yields that∫
B̃8A8

−F ′(x)dσ <

∫
B̃9A9

−F ′(x)dσ. (4.36)

Similarly, we have∫
D̃8C8

−F ′(x)dσ <

∫
D̃9C9

−F ′(x)dσ. (4.37)

Similar to the proof of Lemma 2.3, we have∫
C̃8B8

−F ′(x)dσ ≤
∫
C̃9B9

−F ′(x)dσ. (4.38)

Moreover,∫
D̃8A8

−F ′(x)dσ =

∫
D̃9A9

−F ′(x)dσ = − trπ√
t2r − 4dr

.

(4.39)
From (4.36)-(4.39), for system (1.3), it follows that∫

Γ1
Q

F ′(x)dt >

∫
Γ2
Q

F ′(x)dt.

If system (1.3) has at least three limit cycles andΓ1
Q,Γ

2
Q

and Γ3
Q are the innermost three limit cycles. From [9],

system (1.3) has at most a small limit cycle. Thus, Γ2
Q

and Γ3
Q are large limit cycles. We can assume that Γ1

Q is
unstable, and Γ2

Q(Γ3
Q) is stable(unstable). Otherwise,

we can perturb such three stable or unstable limit
cycles from the semi–stable limit cycle. Then we
have

∫
Γ2
Q
F ′(x)dt <

∫
Γ3
Q
F ′(x)dt, which contradicts∫

Γ2
Q
F ′(x)dt >

∫
Γ3
Q
F ′(x)dt. Therefore, system (1.3)

has at most two limit cycles.
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In the following, we explain that there exists a
parameter condition such that system (1.3) has two
limit cycles. By Lemma 4.1, all orbits of system (1.3)
are positively bounded for tl < 0, α > 0. From
Theorem 4 in [33], there exist t∗∗c > 0 and α∗∗ > 0
such that system (1.3) has an unstable small limit cycle
for tl < 0, tc = t∗∗c , α = α∗∗ in the parameter region
Q1. Therefore, system (1.3) has two limit cycles by
Poincaré–Bendixson Theorem. In Section 6, we provide
a numerical example.

5 Proof of Theorem 1.4
In this section we deal with the case DDC. Set

M :=
{

(α, dl, dc, dr, tl, tc, tr) ∈ R7 :

dl = 0, dc = 0, dr > 0, tr = 0} .

Lemma 5.1. In the parameter regionM, system (1.3) has
at most a limit cycle.

Proof. From Theorem 4 in [33], system (1.3) has no
small limit cycles.

For tltc ≥ 0 and tl + tc 6= 0, assume that system (1.3)
has a large limit cycleΓ0

M, then
∫

Γ0
M
F ′(x)dt 6= 0, which

implies that system (1.3) has at most a large limit cycle.
Therefore, system (1.3) has at most a limit cycle.

For tl > 0, tc < 0, if system (1.3) has at least two large
limit cycles, where Γ1

M and Γ2
M are the innermost two

limit cycles, similar to the proof of Lemma 2.4, we have∫
Γ1
M

F ′(x)dt <

∫
Γ2
M

F ′(x)dt. (5.40)

Thus, Γ1
M is stable and Γ2

M is unstable. Inequality
(5.40) implies that system (1.3) has only two large
limit cycles. By Lemma 2.1, system (1.3) has at least
two limit cycles as tr = −ε, which contradicts the
uniqueness of limit cycle of system (1.3) from the proof
of Lemma 4.2. Therefore, system (1.3) has at most a
limit cycle. Similarly, we can prove that system (1.3)
has at most a limit cycle for tl < 0, tc > 0.

For tl < 0, α > 0, the qualitative properties of infinite
equilibria of system (1.3) in the parameter region Q
is the same as the qualitative properties of infinite
equilibria of system (1.3) in the parameter regionM.
There exists α = α∗ > 0, tl = t∗l < 0, tc = t∗ > 0, dr =
d∗r > 0, tr = −ε such that system (1.3) has two limit
cycles in the parameter region Q. Therefore, system
(1.3) has a limit cycle for α = α∗ > 0, tl = t∗l < 0, tc =
t∗ > 0, dr = d∗r > 0 in the parameter regionM. In
Section 6, we provide a numerical example.

Figure 9. The limit cycle of system (1.3) of DDF type for
(α, dl, dc, dr, tl, tc, tr) = (0.2, 0, 0, 0.2,−1, 1,−0.2).

Figure 10. The limit cycle of system (1.3) of DDC type for
(α, dl, dc, dr, tl, tc, tr) = (1, 0, 0, 0.2,−0.1, 2, 0).

6 Numerical examples
Fix α = 0.1, dl = 0, dc = 0.2, dr = 0, tl = −0.1, tr =
−0.1, and let tc = 0.1(resp. tc = 0.8

1
2 , tc = 1),

then system (1.3) is type DFD (resp. type DN ′D,
type DND) and has a limit cycle, as shown in Figure
8(a)(resp. Figure 8(b), Figure 8(c)). The left and right
subsystems is degenerate, and the central subsystem
has an unstable focusEc(1

2 ,
1
20)(resp. an unstable node
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Ec(
1
2 ,
√

0.2) with equal eigenvalues, an unstable node
Ec(

1
2 ,

1
2) with different eigenvalues).

Taking α = 0.2, dl = 0, dc = 0, dr = 0.2, tl = −1, tc =
1, tr = −0.2, system (1.3) is type DDF . The phase
portrait of system (1.3) is shown in Figure 9. System
(1.3) has two limit cycles, and the left and central
subsystem is degenerate, and the right subsystem has
a stable focus Er(2, 0.6).

Set α = 1, dl = 0, dc = 0, dr = 0.2, tl = −0.1, tc =
2, tr = 0, system (1.3) isDDC type. The phase portrait
of system (1.3) is shown in Figure 10. System (1.3)
has a limit cycle, and the left and central subsystem
is degenerate, and the right subsystem has a center
Er(2, 0.6).
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