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Abstract

This paper deals with continuous piecewise linear
differential systems with three zones separated
by two parallel straight lines (for short, CPWL3).
The number of limit cycles of CPWL3 systems
with two degenerate subsystems is not clear. In
the paper, we provide a complete study on the
maximum number of limit cycles by geometric
techniques when the continuous piecewise linear
systems with three zones have two degenerate
subsystems. During our analysis, we also detect
some bifurcation phenomena, such as boundary
equilibrium bifurcation, scabbard bifurcation,
grazing bifurcation, heteroclinic bifurcation and
Hopf bifurcation.
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1 Introduction and main results

Limit cycle problem is one of the most important
problems in the qualitative theory of differential
systems, which is known as the Hilbert’s 16th problem.
This problem is unsolved even for the quadratic
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polynomial differential systems, many scholars pay
attention to the special situations, such as Liénard
systems see [1, 2], Zy-equivariant systems see [3, 4],
Hamiltonian systems see [5, 6].

During the past two decades, there are many works
concerned with the dynamics of the piecewise linear
differential systems (for short, PWL systems) which
occur naturally in mechanics, electronics, economy and
so on [7, 8]. PWL systems seem to have almost the
same dynamics of nonlinear differential systems, such
as limit cycles, homoclinic and heteroclinic orbits and
SO on.

There exist many results on limit cycles for the
PWL system with two zones separated by a straight
line(for short, PWL2 system). Freire et al. [9]
proved that the continuous PWL2 system has at most
a limit cycle. Han and Zhang [10] revealed the
discontinuous PWL2 system can have two limit cycles
via Hopf bifurcation. Freire et al. [11] presented a
Liénard-like canonical form for discontinuous PWL2
system with seven parameters. According to the
type of equilibria of the subsystems, PWL2 system
can be classified into 15 types: FF,FC,FN,FN’,
FS,CC,CN,CN',CS,NN,NN', NS, N'N’, N'S and
SS, where F, S,C, N, N’ denote focus, saddle, center,
node with different eigenvalues and node with equal
eigenvalues, respectively. According to the known
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results, such as [13-16], Llibre [12] summarized the
maximum number of known limit cycles of these types
was the shown in Table 1.

Table 1. The known results on the lower bounds for the
maximum number of limit cycles of the discontinuous

PWL2 system.
F C N N S
F 3 2 3 3 3
c - 0 1 1 1
N - - 2 2 2
N - - -2 2
s - - - - 2

Recently, Chen and Liu [18] showed that PWL system
with type N'N’ has at most one limit cycle, and the
upper bound can be reached. Carmona et al. [17]
proved that the maximum number of limit cycles of
PWL2 system is less than or equal to 8. Combined with
Table 1, the maximum number of limit cycles of PWL2
system is probably three.

Lots of works showed that the shape of the switch
monifold affects the number of limit cycles. Denote
the PWL system with two zones, where the switch
line is the positive z-axis and the positive y-axis, by
PWLxy system. Liang et al. [19] proved that PWLxy
system has at least three limit cycles. Sun and Du [20]
showed that PWLxy system of type NV can have four
limit cycles. Zhao et al. [21] proved that PWLxy of
type SC has at least three limit cycles. Alves etal. [22]
showed that PWLxy system of type C'C can have two
limit cycles and presented the possible bifurcation for
a particular PWLxy system. Wei et al. [23] proved that
PWLxy system of type SS has at least five limit cycles.
The authors [24] proved the existence of PWL with two
zones having four, five, six and seven limit cycles. The
authors [25] showed that PWL system with two zones
can have n limit cycles for any given positive integer
n. Gasull [26] proposed to research the maximum
number £,, of limit cycles of PWL system with two
zones separated by a branch of an algebraic curve of
degree n. Andrade et al. [27] proved that £, > 4,
L3>8,L,>Tforn>4even,and £, > 9forn > 4
odd.

Let z = (z,y)', R;,R. and R, are open
nonoverlapping regions separated by two parallel
straight lines 3, and ¥, and R,UY;UR.UY, UR, = R%.
The general piecewise linear differential systems with
three zones (for short, PWL3 systems) separated by

4

two parallel lines can be written as

Az + b, z¢€ R,
z=1< Az+b., z€R, (1.1)
ATZ + b7“7 VS R?”7

where A, = (afj)gxg are 2 x 2 constant matrices, and
b, = (b%,b5)T are constant vectors of R?, k = [, ¢, 7.

Many scholars are interested in the number of limit
cycles of the system (1.1). Berbache et al. [28] showed
that system (1.1) of type boundary focus-Hamiltonian
linear saddle-boundary focus has at most four crossing
limit cycles, and system (1.1) of type boundary
focus-Hamiltonian linear saddle-boundary center has
at most three crossing limit cycles. Via the first-order
Melnikov function, considering a particular system
(1.1) with two centers and a double heteroclinic loop,
Liu et al. [29] proved that 2 limit cycles can appear
near two centers and the double heteroclinic loop,
respectively. Li et al. [30] showed that system (1.1)
with either boundary focus-center-boundary focus or
boundary focus-center-center types has at most three
limit cycles. Xiongetal. [31] obtained that system (1.1)
has at least seven limit cycles via Melnikov method.

As far as we know, the maximum number of limit
cycles for a general discontinuous PWL3 system (1.1)
is unknown and there are more than one hundred
cases according to the type of equilibria of the three
subsystems. We call that system is degenerate if the
determinant of its linear part vanishes. In the present
paper, we focus on the continuous PWL3 system with
two degenerate subsystems.

According to [32], the general continuous PWL3
system (1.1) can be transformed into

%: miz +niy + c1 + o |kiz + koy + di|
+ag kx4 koy + da|

= max + noy + c2 + P1 |k1x + koy + di|
+02 |k1x + kay + do| ,

U

dy

dt

(1.2)

where ’041| + ‘51‘ > 0,’042‘ + ’52’ > O,|]€1| + ‘kQ‘ >

0,dy # ds. If 7’L1]€% —mykiks — MQ]{:% +nokiks # 0, then
system (1.2) can be written as Lienaréd form:

dx dy
E_F(x)_ya E_g(x)_a’ (13)
where
tr(x —1)+t.,, x>1,
F(x) =< tex, —1<z <1,
ti(zx+1)—te, x<-—1,
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Table 2. The maximum number of known limit cycles of continuous PWL3 system (1.3).

NND, NN'D, NFD, NEN/,
NNN, NNN’, NN'N’, NN'N,
ENFE, ENN/, ENN, EN'E,  DND, DFD, DN'D, FND, SDS, SCS, DNN, N'CN/,
FN'N’, FN'N, NEN, FFE, FN'D, FFD, N'ND, N'N'D, FCF, CSC, N'SN/, DSD,
FSF FFN, FFN/, FDF, FSS, N'FD, N'EN, N'FN’, N'NN,  NSN, N'CN’, DCD, SDN/,
FDS, FDD, FEN, FNN’,  N'NN’, N'N'N’, N'N'N, SNS, SDN, SSN’, SSN, DN'D,
FFC, NFS, SFS FDN, DFF, ECF, FCN, FCS, SSS, NSN'
NCN, NSN, SCS, SN'S,
NCN, NCS, FDN’, DFN’
3 2 1 0
dr(z—1)+de, x>1, boundary equilibrium bifurcation, scabbard bifurcation,
g(x) = q dex, —1<z <1, grazing bifurcation, heteroclinic bifurcation and Hopf
di(zx+1)—de, x<-1. bifurcation. System (1.3) of types DDF and DDC' has

Limit cycles of system (1.3) have been studied by
many scholars. When the subsystem of system (1.3)
is degenerate, the result of two limit cycles is obtained
in [33]. For the general case, more results with two
limit cycles are found in [35, 36]. There are examples

of system (1.3) having three limit cycles, see [32, 37].

We denote the degenerate subsystem of system (1.3)
by D. According to the known results, the maximum
number of known limit cycles of system (1.3) is given
in Table 2.

We do not know the maximal number of limit cycles of
system (1.3) with two degenerate subsystems. In this
paper, we study the number of limit cycles of system
(1.3) with two degenerate subsystems. For system
(1.3) with two degenerate subsystems, these types
FDD,CDD,SDD,NDD,N'DD can be reduced
to these types
Therefore, we only need to consider these types
DDF,DDC,DDS,DDN,DDN’. Our main results
are as follows.

Theorem 1.1. System (1.3) of types DND, DN'D, and
DF D has at most a limit cycle.

Theorem 1.2.  System (1.3) of  types
DCD,DSD,DDN,DDS, and DDN' does not have
limit cycles.

Theorem 1.3. System (1.3) of type D DF' has at most two
limit cycles and the number is reached.

Theorem 1.4. System (1.3) of type DDC' has at most a
limit cycle.

Remark 1.1. For PWL3 system with two degenerate
subsystems, we find the following bifurcation phenomena:
System (1.3) of types DND,DN'D, and DFD has

DDF,DDC,DDS, DDN, DDN'.

boundary equilibrium bifurcation, scabbard bifurcation,
grazing bifurcation and Hopf bifurcation.

Let
tr, x*>1,
d(x) =4 t, —1<z<l1,
t, x<-—1.

According to [34], for any limit cycle I of system (1.3),
if

7{ o(x)dt < 0(>0), (1.4)
r

then I' is stable (unstable). If the possible limit cycle
I' satisfies expression (1.4), then system (1.3) has at
most one limit cycle. Based on the above result, two
methods we employed in this paper are as follows:

(1) When t; < 0,t. > 0,t, > 0, assume that system
(1.3) has one limit cycle I', with Coppel transformation
(z,y) = (w,y), where w = F(z), we try to compare
the values of §... ¢(z)dt and ... ¢(x)dt, and then we
determine whether §. ¢(x)dt is less than zero. Here
I'* (I'**) is the part of I restricted to x < —1 (z > —1).
Using the same ideas, we can deal with the case ¢; <
0,t. <0,t, > 0and thecaset; > 0,t. < 0.

(2) When t;t, > 0, assume that I'; and I'y are the
innermost two limit cycles of system (1.3), we try
to prove §. d(z)dt < ¢ ¢(x)dt or §, ¢(x)dt <
frl ¢(z)dt. If one of the above expression holds, then
system (1.3) has at most two limit cycles.

The above methods are also effective for system (1.3)
with other types.

This paper is organized as follows. We study the limit
cycle of types DND, DFD, DN'D of system (1.3) in
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Section 2. The nonexistence of limit cycles of types
DCD,DSD,DDN,DDS, DDN' is given in Section
3. We investigate the limit cycle of types DDF and
DDC type of system (1.3) in Section 4 and Section 5
respectively. In Section 6, we give some examples of
these types to illustrate the maximum number of limit
cycles can be reached.

2 Proof of Theorem 1.1

Let € satisfies 0 < € < 1. We use ¢ many times.

According to Lemma 5.7 in [34], we can prove the
following lemma.

Lemma 2.1. The amplitude of a stable (unstable) limit
cycle of system (1.3) is increasing (decreasing) as one of
t;, te, t, increases.

From the terminology in [34], a limit cycle involving
two(three) zones is called a small limit cycle(large limit
cycle). In this section, we assume that the left and right
subsystems of system (1.2) are degenerate, and the
central subsystem is either node or focus types.

Set

G := {(a,dy,de, dy, 1y, te,tr) € R
dy=0,d. >0,t. #0,t, >0,d, =0},
Go := {(edy,de, dy 1y, te,tr) € R
dy=0,d.>0,t. #0,t, =0,d, =0},
Gy = {(a,dj,dc, dy 1y, e, ty) € R
d; =0,d. > 0,t. #0,t, <0,d, =0}.

In the parameter regions §;-G3, with the
transformation (z,y) — (x — 1,y — t.), the left
and central subsystems of system (1.3) can be
transformed as

dr - dy .
where
~ tex, 0<x <2,
F(z) = { tix, x <0,
R dex, 0<z <2,
9x) = { 0, w<o.

By Theorem 4 in [33], we study the dynamics of the
left and central subsystems of system (1.3).

Lemma 2.2. The infinite equilibria of system (1.3) in the
Poincaré disc of system (1.3) are showed in Figure 1 if t;t, <
0,—de <a<dcort; <0,t, <0,—d. < a < dp.

M, e
M
1 \ P1
(a)t; < 0,t, >0
M
1 P
P.
M, ?
(b) t; > 0,t, <0
Mo
M
1 P1
Py

(c)t; <0,t <0

Figure 1. The infinite equilibria in the Poincaré disc of
system (1.3) with ¢, < 0, —d. < a < d. or
t; <0,t. <0,—d. < a < d.
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Proof. We apply Poincaré compactification (see
Chapter 5 in [38]) to prove the results.

In the chart U, perform the Poincaré transform = =
1y 2,v > 0, then the right subsystem of
system (1.3) becomes

—a)v,

O 2 o _
{u—u + (tp — te) uv — tyu + (de (2.6)

b= —t,v + (t, — t) v? + uv.

System (2.6) has two equilibria P (0,0) and P(t,,0)
on v = 0. The eigenvalues of P, are —t, and —t,, so
P, is a stable node for ¢, > 0 and an unstable node for
t, < 0. The local structure of P; is shown in Figure 1(a)
for t, > 0 and in Figure 1(b)—(c) for t, < 0. The
eigenvalues of P, are ¢, and 0. Translating P, to the
origin O by the transformation

tr(ty —te) +d. — «

U =u — v + Ty, v =y,
tr
system (2.6) is changed into
S de— 2
U1 = truy — Luqvr + uf,
. dc a, 2 (27>
V1 = Uui1v1 — i U1

Substituting u; = 0 into the second equation of
system (2.7), we have v; = dct 2p2.  According
to Theorem 7.1 of Chapter 2 in [38] the origin of
system (2.7) is a saddle-node. The local structure of
P, (saddle-node) is shown in Figure 1(a) for ¢, > 0
and in Figure 1(b)—(c) for ¢, < 0.

In the chart V;, make the Poincaré transform x =
%, y = 3, v < 0, then the left subsystem of system (1.3)
is transformed into

—(de + @) v — tju + (te — t)) uv + u?,

{ 0= —tw + (t. — ;) v* + uw. (28)

System (2.8) has two equilibria M; (0, 0) and M»(t;,0)
on v = 0. The eigenvalues of M; are —t; and —t;, so
M, is a stable node for ¢; > 0 and an unstable node for
t; < 0. Thelocal structure of M; is shown in Figure 1(b)
for t; > 0 and in Figure 1(a), (c) for {; < 0. The
eigenvalues of M5 are ¢; and 0. Similar to the analysis
in the chart Uy, M> is a saddle-node. Its local structure
is shown in Figure 1(b) for ¢, > 0 and in Figure 1(a), (c)
for t; < 0.

In the charts Us and V3, by the transformation x =
“y = 1 for -1 < 2 < 1 system (1.3) can be
transformed as

9 ’ (2.9)

U= —dou? + tou + ouv — 1
U = —d.uv + av’.

It is easy to verify that there is no infinite equilibria
of system (1.3) in the the charts U; and V5. By the
aforementioned analysis, we know that the infinite
equilibria of system (1.3) in the Poincaré disc, as shown
in Figure 1. [

If system (1.3) admits a limit cycle I, then the interior
reg1on of I should contain an equilibrium. For & < —1
or & > 1,system (1.3) does not admit limit Cycles since
system (1.3) has no equilibria. Hence we only cons1der
the case —1 < 7+ < 1 in the following. For -1 < & <
1, system (1.3) has a equilibrium E.(F, tgf‘) E isa
focus for t2 — 4d. < 0, a node with equal eigenvalues
for t% —4d. = 0, and a node with different eigenvalues
for t2 — 4d. > 0.

Lemma 2.3. In the parameter region G, system (1.3)

admits at most a limit cycle.
Proof. In the parameter region G;, we have d; = 0, d. >

0,tc # 0,t, > 0,d, = 0. We divide the proof into two
cases.

Case 1: t; < 0. By the transformation (z,y) —
oyt tgf‘), system (1.3) can be changed into

(z +

S =F@) -y L=g@), 1)
where

b+t —tp + ¢ - L0 > &
F’(a:): tex, —1——<a:<1——c

tix 4+t — te +tl“—t3§, r<—1—%,
and

de—a, x>1-—

g(x) = dex, —1——<x<1——

—d. — a, x<—1—$

For convenience, set E(z, y)

+ Jo a(
For t. > 0, assume that system (1.3) has a large
limit cycle I’Ol, which is shown in Figure 2, where

ABC’DHPQI € TY. Let E(z,y) = % +
fo z)dz. By the sign of g( ), we have y4 > yp >
yc > yp and yg > yp > yg. We claim yp > 0. In fact,
if yp <0, then

dE -
= F@)le) = 0(£ 0)

and 0 = fFo dE = fro

contradlctlon

)g(z)dt > 0. This is a
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(a) zy-plane

)

(b) wy-plane
Figure 2.T¢ .

Letw = w(x) = F(z),and &1 (w) (Z2(w)) be thebranch
of the inverse of w(x) for z > —1 (x < —1). With the
transformation (z,y) — (w,y), system (2.10) can be
transformed into:

It follows that

%1(’(0) — ’7‘2(1[)) = {

1
dc (T dc ’
dcw + dC+a t

)

Heali-t)
tca

<w <t — ke

The equation 7; (w) —T (w) = 0 has the unique solution

2
teldete) and wy € [ te — tco‘ e — tg—ﬂ

wy = — detg

Suppose that each orbit segment of I'} on the zy
plane is transformed into their image arc segments
with the same notations on the half wy plane
respectively, as exhibited in Figure 2(b). Denote y =
yl( ), yg( ), 1( ) and z2(w) by the orbit segments

1AB, BC’D PQI,DHP in the wy-plane, respectively.
Set u(w) = y1(w) — y2(w) to obtain

du  Fi(w) To(w) A
do  w—y(w) w—y2(w) = a(w)u+ gz w),
u (2.12)
where ¢ (w) (w—y1(u71—;)((wu?—y2(w)) and ga(w) =

%ﬁu()w). From the Variation of Constants Formula,

it yields that

utw) = e [ wio)as) vt

where U(w) := ug + [ q2(s) exp (f q1(s dg) ds with
uy =ya—yc > 0. U'(w) > 0forw < wlandU( ) <0
for w > wy since U'(w) = ga(w) exp f q1(s)ds) and
71(—tc tflf‘) — To(—t. — tf) < 0. Therefore, the
equation u(w) = y1(w) — y2(w) = 0 has at most a
solution for w > —t. — % since U(0) = wuyp > 0.
Similarly, the equation v(w )C = z1(w) — z2(w) = 0 has

at most a solution for w > —t,. — téf‘ too.

It follows from Green formula that

0= ¢ ila)de— (Pla) =)y

_//A F'(z)dzdy
] ]

where A is the interior region surrounded by Fgl in
Figure 2(a), A; is the region surrounded by the BP
and PIB, A, is the region surrounded by the PB and

, 1=1,2, (2.11) BDPin Figure 2(b).
dw w—vy
where In the following, we call yp > yr. If yp < yy, then
de—a sy fea [fa, dwdy — [[5, dwdy < 0. This is a contradiction.
fi(w) = F(E(w) = 4w e’ ur
dggﬂ —te— L2 <<t - tca Let k = =, with the scaling (w,y) — (kw, ky), the
4 ‘ ‘ * second equation of system (2.11) is changed into
an
) s —d, —« te dy _ Tolkw) (2.13)
To(w) = 7(Z2(w)) = ; ,W > —te — I dw  k(w—1)
l c



ICJK

Journal of Mathematics and Interdisciplinary Applications

The orbit segment CDH of equation (2.11) is changed
into the orbit segment A1 H; of equation (2.13), and

/N de = /N #d(kw)
CDHW—Y A TH, k(w —y)

1
_ /N 1w
A TH, W —Y

Denote y3(w) and z3(w) by the orbit segments Al
and TH, respectively, recall that y;(w) and z(w)
represent the orbit segments I'A and QI, then ys(w) <
y1(w), z1(w) < z3(w) for 0 = wa < w < wr. By
calculation, we have

/ _dw
QIAW —Y

dw

/ dw
CDH W —Y

_/ +/ _dw_
QIAW—Y  JALhH WY
dw

=L o

+/;gw—y3(m

dw dw
+/@w 21(w) +/1’1?1 w— za(w)
:/xl y3(w) — ( ) e
ea (W—y1(w)) (w—ys(w))
Zl(w)_z?’( ) __aqw<o.

(w —

+/ 21(w)) (w — 23(w))

From y;(w) > ya(w), z1(w) < z2(w) for wp < w <
wa = 0, it yields that

1 1
/,4“éw—yl(w)dw+/§6w—y2(w)dw:
A () — g (w)
/wB (0~ y2(w)) (w — yo(w) ™ =

Similarly,

1 1
[t we
ap w — z1(w) PO w— 22(w)

Therefore,
- 1 1
Flz)dt= | ——dw+ |  ——dw
Fgl IABW—Y BCD W —Y
d 1
+ /N —_4 /N = dw
CDH W —Y HPQ W —Y
d
+ /N <o
QIA W —Y

By fFO z)dt = frﬂ F'(x)dt, it follows that that

system (1. 3) has at most a large limit cycle. From

Theorem 4 in [33], system (1.3) admits at most a small
limit cycle. If system (1.3) has at least two limit cycles,
where F}Jl and 1%1 are the innermost two limit cycles,
then 1%1 is internal unstable and large, which implying
fFQ F'(xz)dt > 0. This is a contradiction. Hence

system (1.3) has at most a limit cycle. Similarly, we can
prove that system (1.3) admits at most a limit cycle for
te < 0.

Case 2: t; > 0. We claim that system (1.3) does not

have no limit cycles for ¢, > 0. If system (1.3) has a

limit cycle I'}, then we have frg F'(x)dt > 0, which
1

implies I is unstable. However, I‘gl is semi-stable or

stable since system (1.3) has an unstable equilibrium

E., which imply frg F'(x)dt < 0. This lead to a
1

contradiction.

In the following we consider the case t. < 0. Assume
that system (1.3) has two large limit cycles '}, and T ,
which are illustrated in Figure 3, where A;, B;, C;, D; €
Igei=1,2.

B

sl

Doy

Figure3.T¢ and T} .

Denote y = y;(z) by the orbit segment m fori=1,2.
Obviously y1(z) < y2(x). We obtain that

/N F'(z)dt — /N F'(z)dt
AQBQ AlBl

TRy tc B, tc
- / F(x) —y2<a:>d””‘/% F@) — ()"
_ /IB1 te (y2(z) — y1(2))
— (@) (F(z) — 1 (2))
i.e.,

(o) dx > 0,

/N Fl(a)dt > /N F(a)dt. (2.14)
AQBQ AlBl
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Similarly, we have

/N F'(z)dt > /N F'(z)dt.
Co Do C1Dy

For t; > 0, assume that the orbit starting from B; (B>)
needs time ¢;(¢2) to intersects the y-axis first. Note
that y = at + Cj for x < —1(C) is a constant). From
|B1C1| < |B2Cy|, it follows that t; < t3 and

/N F(a)dt > /N F(a)dt.
BQCQ Blcl

Similarly, we have

/N Fl(a)dt > /N F(a)dt.
D2A2 DlAl
From (2.14)-(2.17), it yields that

J

If t; = 0, then

(2.15)

(2.16)
(2.17)

F(a)dt > / F(2)dt.

r

(2.18)

5 4
g1 g1

/N F(a)dt = /N F)dt=0.  (219)

ByCs BG4
The inequality (2.18) holds for ¢, = 0 since the
inequalities (2.14),(2.15) and (2.17) hold for ¢; = 0.
If system (1.3) has two limit cycles v; and 72, then v
is semi-stable or unstable since F. is stable. If 7 is
semi-stable, then fixing ¢;,t,, d;, d., d,, o, 71 becomes
an unstable limit cycle 71 and a stable limit cycle
Y12 as t. — t. — €, where 717 lies in the interior
region surrounded by 7j2, that is, f%2 F'(z)dt <
f«m F'(x)dt, which is contradiction. If v, is unstable,
then ~, is internal stable, i.e., f72 F'(z)dt < 0.
Then we have [ F'(z)dt < [ F'(z)dt. Thisis a
contradiction. Therefore, system (1.3) admits at most
a limit cycle. O

Lemma 2.4. In the parameter region Gy, system (1.3)
%%?.S frl; %Oesf)grlgr’%{étce%cllggion Go,wehaved; = 0,d. >
0,t. #0,t, = 0,d, = 0. We divide the proof into two
cases.

Case 1: ¢; < 0. For t. < 0, we claim that system (1.3)
has no limit cycles. In fact, if system (1.3) has a limit
cycle T'g , then ng F'(z)dt < 0 implies I'y, is stable.
This is a contradiction since system (1.3) has a stable
equilibrium.

In the following we consider t. > 0. Assume
that system (1.3) has two large limit cycles I'g,

10

and F22, which is illustrated in Figure 4, where
Aiy2, Biy2,Cita, Digo € I',,i =1,2.

Iy

Figure4.T} and T'Z, .

Denote y = y;+2(z) by the orbit segment A; ;2 B; 2 for
i =1,2, then y3(z) < ya(x). Therefore,

TB, t
| Fla)dt - /N F'(z)dt = / S —
[4434 AgB3 QZA4 F(IE) - y4(:17)

/ - L
- ————dx
. F@) = 5@

te (ya(z) — y3(z))

zBS
= dx < 0,
/acA3 (F(z) — ya(z)) (F(z) — y3(z))
ie,
/N F/(a)dt < /N F(a)dt. (2.20)
AyBy A3B3
Similarly, we have
/N Fl(a)dt < /N F(a)dt. (2.21)
Cy4Dy C3Ds

Similar to the proof of Lemma 2.3, we can prove

/N Fl()dt < /N F'(z)dt, (2.22)
B4Cy B3Csg
and
/N F'(z)dt = /N F'(z)dt = 0. (2.23)
D4A4 D3A3

From (2.20)-(2.23), we obtain

/F F’(x)dt</

I

F'(z)dt.

2 1
) [
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For t. > 0, the central subsystem of system (1.3) has an

unstable equilibrium, thus I', is either semi-stable or

stable. If '}, is semi-stable, then I}, becomes a stable

limit cycle ' and an unstable limit cycle T'}? as t. —

t. — ¢, where I'yy lies in the interior region surrounded

by I't?, which implies fr}f "(z)dt > an (x)dt.
2

This is impossible. Similarly, if Fl G, 18 stable, then F22 is
internal unstable, i.e., fré F'(z)dt >0 > fré F'(z)dt.

2 2
This is a contradiction. Therefore, system (1.3) admits
at most a limit cycle.

Case 2: ¢; > 0. Fort; > 0 and t. < 0, similar to Lemma
2.3, we can prove that system (1.3) admits at most a
limit cycle. For ¢; = 0 and t. < 0, assume that system
(1.3) has a limit cycle I'}, then fF3 (z)dt < 0.

However, the central subsystem of system (1.3) has
a stable equilibrium, thus FgQ is internally unstable,
which implies frg F'(x)dt > 0. This is a contradiction.

Therefore, system (1.3) does not admit limit cycles.

For ¢; > 0 and t. > 0, from Theorem 4 in [33], system

(1.3) doesn’t admit small limit cycles. If system (1.3)

has a large limit cycle I'f,, then frg F'(z)dt > 0.
2

However, E, is an unstable equilibrium, thus F4g2 is
internal stable, which implies fr‘l F'(z)dt < 0. This

is a contradiction. Therefore, system (1.3) does not
admit limit cycles. O

Lemma 2.5. In the parameter region Gs, system (1.3)
admits at most a limit cycle.

Proof. In the parameter region G3, we have d; = 0,d. >
0,t. #0,t. <0,d, = 0. We divide the proof into two
cases.

Case 1: t; < 0. For t. < 0, if system (1.3) has a
limit cycle I'g, then frg F'(z)dt < 0. System (1.3)
3

has a stable equilibrium E. for t. < 0, thus F0g3 is
semi-unstable or unstable, i.e, fro F'(z)dt > 0. This

is a contradiction. Therefore, systern (1.3) has no limit
cycles.

For t. > 0, suppose that system (1.3) has at least
two limit cycles, where F(lj and 1% are the innermost
two limit cycles and I'j;, lies in the interior region
surrounded by T'3,. Similar to the proof of Lemma
2.3, we have frl F'(z)dt > fl‘é F'(x)dt. The central

subsystem of system (1.3) has an unstable equilibrium
E., thus I‘l is stable or semi-stable. We can assume
Fg is stable Otherwise, we can perturb such the stable
limit cycle from semi-stable limit cycle. Thereby we

have fFéB F'(z)dt < 0. From fF§3 F'(z)dt < 0, it yields

that FéB is stable. This is a contradiction. Therefore,
system (1.3) has at most a limit cycle.

Case 2: ¢; > 0. For t. > 0, assume that system (1.3)
has a large limit cycle I'}, as shown in Figure 5, where
As, Bs,Cs, Ds, I5, Js, H5, Q5 S F3 Letw = F(.CE) and
21(w)(22(w)) be the inverse functlon of w(z) for x >
1(z < 1). With Coppel transformation (z,y) — (w,y),
system (2.10) can be transformed into the following
system,

d T
dy _n(w) (2.24)
dw w—y
where
</ de — t.au
1 (w) == 7(21(w)) = Ct . ow <t 2—,
T C
o(w) == 7 (21 (w)) = dtcéu’ —te = s
ATV T e < —t — t;lf

By computation, we have

dew de—a

- —t,— L <y <t —
< < _ t2 t bl c d. —= — vc d.
TQ(U)) _Tl(w) - —d.—a Tdcfa Ct tear ©
—4, T 4o W < —t. — . -

Thus the equation 7»(w) — 71 (w) = 0 has at most a
solution.

Suppose that each orbit segment of 1“23 on the zy plane
is transformed into their image arc segments with the
same notations on the half wy plane respectively, as
showed in Figure 5. Denote (zp,ypr)((wp,yp)) by
the coordinate of the point P in the zy(wy) plane,
where P € {A5, Bs,Cs, Ds, I5, Js, Hs, Q5} By the sign
of g(x) in system (2.10), we have yp, > ya; > Yo,
and yp, < yr, < yj;. Let hi(w), hg( ), p (/)_\ild
p2(w) represent the orbit segments H, 5Q5A5, AsBsCs,

I 5J5Hs and C5D5I5, respectively. Similar to the proof
of Lemma 2.3, we can prove that the equations h; (w) —
ho(w) = 0 and p;(w) — p2(w) = 0 have at most a
solution, and yp, < yc;.

11
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D5 I5 J5

(a) zy-plane

D Y=w
; > w
o |
H5 CB :
Js als
Ds
Dyg

b) wy-plane
FlgureS( F)3 P

From hi(w) < ho(w) for 0 = wp, < w < wy,, it
follows that

F'(z)dt = /N F'(x)dt + /N F'(x)dt
Q545 AsBs

—

Qs5A5Bs5
/ dw / dw
=/ + [

QsAs W —Y AsBs W — Y

/w35 dw /“’35 dw

a wag w — ha(w) U’As w — hy(w)
85 ha(w) — hy(w)
= dw < 0.
/wA5 (w — ha(w)) (w — hi(w))

(2.25)

12

Similarly, we have

/N F'(x)dt < 0.
DsI5Js

With the scaling (w,y) — (kw,ky), the second
equation of system (2.11) is transformed into

(2.26)

dy To(kw)
dw ~ Fw—y) (2.27)
where k = —2. Therefore, B5C’5D5 of system (2.11)

is changed 1nto B(5H 5D of system (2.27), that is,

1 1
/N dw—/N L
BsCsDs W — Y BgHsDg W — Y

Denote h3(w) and p3(w) by the orbit segment BsHs
and HsDsg respectively. Then hi(w) < hz(w) and

p3(w) < p1(w) for wy, < w < wg, = 0. Therefore,
we have

/N F(:c)dt+/N F'(x)dt
B5Q5D5 J5H5Q5

/ / dw
BsCsD Js

HsQs WY

(2.28)

/ / dw
BgHsDg W — w—y JsHsQs W — Y
/ Qs /wQ5 dw
wry, W h1 wr, W hs(w)
wes dw was dw
e [
e 0= 03(0) w0 pr(w)
WQs h _
-/ ()~ hy(w)
wy, (W —hi(w)) (w — h(w))
p3(w) — p1(w)

(= ps(@)) (w — pr)) <

’LUQ5
+
WH
that is,

—_—

BsQ5Ds

From (2.25), (2.26) and (2.29), we have

/ F'(z)dt < 0.
F3
g3

For t. < 0, if system (1.3) has a limit cycle Fg3, we
similarly prove that the inequality (2.30) holds.

F(x)dt + /N F'(z)dt < 0. (2.29)
Js H Qa

(2.30)

For t. > 0, if system (1.3) has at least two limit cycles,
where F4 and F5 are the innermost two limit cycles,
and F4 hes in the interior region surrounded by T,
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then F4g3 is semi-stable or stable. From Theorem 4 in
[33], system (1.3) has no small semi-stable limit cycle.
If T, is semi-stable, then it is large and fF4 F'(z)dt =

0. This is a contradiction. If F , 18 stable, then F , Is
large and internal unstable, that is, fra F'(z)dt > 0,

which is also a contradiction. Therefore system (1.3)
has at most a limit cycle.

For t. < 0, assume that system (1.3) has a small limit
cycle Fg , then F L 1s unstable. By Lemma 2.1 and
Theorem 4 in [33] the amplitute of I‘ﬁ is increasing
as t. decreases and there exists ¢ such that F6 involve
three zones as t. = t: — e. Therefore, we have
frg F'(x)dt > 0 as t. = t% — e. This is a contradiction.

Hehce, system (1.3) has no limit cycles. O
By Lemma 2.2, all orbits are positively bounded as ¢; <
0,t, < 0. Note that the central subsystem of system
(1.3) has an unstable equilibrium for ¢. > 0. Therefore,
system (1.3) has a limit cycle for ¢; < 0,¢. > 0,¢, < 0.
In Section 6, we give three numerical examples.

3 Proof of Theorem 1.2

When system (1.3) has two denegerate subsystems, if
the left or right subsystem of system (1.3) has a node
or saddle, then system (1.3) has no limit cycles since
the node or saddle has the invariant line. That is to say,
system (1.3) for types DDN, DDS and DDN' has no
limit cycles. If the central subsystem of system (1.3) is
not degenerate for 7 < —1or & > 1, system (1.3) has
no equilibria, then system (1.3) ‘has no limit cycles. For
a = |d|, system (1.3) has a singular line with infinite
length, thus system (1.3) has no limit cycles. Hence
we only consider the case —1 < 7- < 11in the rest part
of this section.

From Chapter 3 in [38], the sum of the indices of all
equilibria surrounded by a limit cycle is 1, and the
index of a saddle is 1. If system (1.3) of type DSD
has a limit cycle, then the index of this limit cycle is
-1. This is a contradiction. Therefore, system (1.3) of
DSD type has no limit cycles. In the following, we
only deal with the type DCD. Set

N = {(a7dl7dc7dT7tlatc;t'r) c R7 N
dl:07d0>07d7‘:07t620},

Lemma 3.1. In the parameter region N, system (1.3) has
no limit cycles.

Proof. Fort. = 0, from Theorem 4 in [33], system (1.3)
has no small limit cycles. From

_{ —y> <0, —1<z<1,
— 0

-y g(x) —a+yf(z)
other,

o=y)  g(@)—atyf(z))
0 o

c c

we have that the vector field (—y, g(x) — a + yf(x)) is
rotated with respect to t.. For ¢;t, < 0, if system (1.3)
has a large limit cycle I';, then it is the hyperbolic large
limit cycle. Otherwise, I'y becomes two limit cycles
ast, = eort., = —e. This is a contradiction with the
uniqueness of limit cycle of system (1.3) as t. # 0.

By Lemma 2.2, the infinite equilibria of system (1.3)
do not change when ¢. changes. If I'; is stable, then
system (1.3) has two limit cycles as t. = —e from
Poincaré-Bendixson Theorem, which contradicts the
uniqueness of limit cycle of system (1.3) as ¢, < 0.
Therefore, system (1.3) has no limit cycles. Similarly,
we can prove that system (1.3) has no limit cycles when
T"; is unstable.

For t;t, > 0, assume that system (2.10) has a large
limit cycle I's. Since system (2.10) is topologically
equivalent to system (1.3), it suffices to study the
properties of limit cycles of system (2.10) to obtain the
corresponding results of system (1.3). If ¢, > 0,¢, > 0
ort; =0,t, > 0, then F(z)g(z) > 0and F(z)j(z) #Z 0,
and 0 = [ dE = [ F(x)g(x)dt > 0. This is a
contradiction. Therefore, system (2.10) has no limit
cycles. Similarly, we can prove that system (2.10) has
no limit cycles for t; < 0,¢, < Oort, < 0,¢ = 0.
If t;, = 0,t, = 0 and system (2.10) has a large limit
cycle I's, then I's is semi-stable. Fix t;,t,,d;,d.,d,,c,
then system (2.10) has two limit cycles for ¢, = € or
t. = —e¢, where ¢ is a sufficiently positive number. This
is a contradiction to the fact that system (2.10) has at
most a limit cycle as t. # 0 by Lemma 2.3. Therefore,
system (1.3) has no limit cycles. O

By Lemma 3.1, system (1.3) for DC'D type has no limit
cycles. This completes the proof of Theorem 1.2.

4 Proof of Theorem 1.3
In this section we consider the case DD F'. Recently, we
[39] proved system (1.3) has at most two limit cycles
in the following parameter region
H = {(a,dj,de,dy, by e ty) € RT
dy=0,d.=0,t, >0,t2 —d, <0}.

Set

Q = {(a7dl7d07d7“7tl7tcytr) S R7 :
dy=0,d.=0,t, <0,t2—d, <0}.

Fixing «, d;, d., d,, 1], t. in the parameter region Q, let
t, = 0, system (1.3) is the DDC type, which is
discussed in the next section. In the parameter region

13
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Q, system (1.3) has a focus E,. (14§, %= +t.). Inwhat
follows, we research the limit cycle of system (1.3) in
the parameter region Q. First, we study the infinite
equilibria of system (1.3). Similar to Lemma 2.2, we

have the following lemma.

Lemma 4.1. In the parameter region Q, the infinite
equilibria for t; < 0, > 0 in the Poincaré disc of system
(1.3) are showed in Figure 6.

—

(a)t; < 0,a>0

(b)t; >0,a>0

Figure 6. The infinite equilibria in the Poincaré disc of
system (1.3).

In the following, we prove the uniqueness of limit
cycles of system (1.3) as ¢; > 0 in the parameter region
Q.

Lemma 4.2. In the parameter region Q, if t; > 0, then

system (1.3) admits at most a limit cycle.

Proof. Define w = w(x) = F(x). For t. > 0, denote
Z1(w) (Z2(w)) by the branch of the inverse of w(x) for
x > 1 (x < 1). With the transformation (z,y) —

14

(w,y),

system (1.3) can be transformed as

c% ;(i“)y i=1,2, (4.31)
where
oty o 9(@1(w) —a
Tl(w) - ( ( )) F’ (i’l(’w))
_dr( ;)atr7 w < te,
nd (#a(w))
=7 (T2(w gira\Ww)) — @
TZ(M) - ( 2( )) F/ (j2( ))
;—la, w < —t.,
- { —e o <w<t

By computation, we have

Tl(w)—m(w):{%( wotre (i), wete

1
B
il tc)+a( —ti) —te <w < t,.

Consider the equation

71 (w) — T2 (w) =0, (4.32)
d i luti b — ¢ 2a (1 1
and its solutions may be w; = t. — T
_ tra (11 _ .
and wi = t. — o - If w = w; is the

solution of equation (4.32), then w; < —t., i.e, a« >

% = Y. If w = ws is the solution of equation

2 %—%
(4.32), then —t, < wy < t. ie, a < 22?76”1 =
r\tc  tr

Yo, If ¥9 < 04, ie, t. < t;, equation (4.32) has at
most a solution, then we can prove that system (1.3)
admits at most a limit cycle using similar way to the
proof of Lemma 2.3. If ¥o > ¥y, ie, t. > ¢, then
equation (4.32) has two solutions. If system (1.3)
admits at least two limit cycles as (¢, ¢, tr,dr, @) =
(t9,¢9,49.d2, a%), by Lemma 4.1 and stability, then we
can assume that system (1.3) has at least three limit
cycles as (t;, tc, tr, dy, ) = (tlo,t(c),tg,dg, 0), where Y1,
T, and T3 are the innermost three limit cycles, and
T1, T3 are unstable and T is stable. Otherwise, we
can perturb such three stable or unstable limit cycles
from semi-stable limit cycles. By Lemma 2.1, the
amplitude of Y1, Y3 is decreasing(increasing) and T»
is increasing(decreasing) as one of t;, t. increases.

We show that system (1.3) has at most a limit cycle
by the induction method. In the first step, fixing
testr,di, de, dy, o, we look for t; = puy € (t2,1)) such

that Y1 and Y, coincide. Otherwise, system (1.3)
has at least two limit cycles as t; = t0. This is a
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contradiction. In the 2th step, fixing ¢;,t,,d;, d., d;, o,
we try to find t. = v1 € (t2, u1) such that Yo and T3
coincide. If v; does not exist, then system (1.3) has at
least two limit cycles as ¢, = p1, which contradict the
uniqueness of the limit cycle of system (1.3) as t. = p.
In the 3th step, repeat the analysis of the 1th step, there
exists a unique pz such that T and Y5 coincide. After
finite steps, we obtain two sequences y,, and v,,. There

exists t* such that lim p, = lim v, = t*. By the
n—-4o00 n—-4o00

above analysis, system (1.3) has at least two limit cycles
as t. = t; = t*. This is a contradiction. Therefore,
system (1.3) has at most a limit cycle for ¢, < ¢;.

For t. = 0, denote %1 (w) (Z2(w)) by the branch of the
inverse of w(x) for x > 1 (z < —1). By transformation
(xz,y) = (w,y), system (1.3) can be rewritten as

dy _ Ti(w)

dw " w—y’ 1=1,2, (4.33)
where
§ . 9@ (w) -«
Tl(’ll)) - T(.’Ifl(’w)) - F (-fl('ll)))
_ drwt; atr7 w <0,
and
- (0 = (i (w0 g(@2w) —a  «
To(w) = 7(Z1(w)) F' (o (0)) m <O0.
_ drw

The equation 71 (w) — f2(w) = G* — £ + § =0hasa
solution w = wy = tg—f‘ - ttfdi. Similar to the proof of
Lemma 2.5, we can prove that system (1.3) admits at

most a limit cycle.

For t. < 0, denote z;(w) (z2(w)) by the branch of
the inverse of w(z) for z > —1 (x < —1). With
the transformation (z,y) — (w,y), system (1.3) is
transformed as

dy  w(w) .
i — 1=1,2, (4.34)
where
~ N g(z1(w)) —a
Tl(w) =T (.T ('UJ)) Jog (Jl‘l(w))
B f—éw—d;—gtc—%, w < te,
8 te<w<
and
- . L g (r2(w)) —a _a .
To(w) = 7 (z2(w)) = F (a(0) o w < —tg.

Then

71 (w)—T2(w)

a —a(lc—l), e <w < —t,

Therefore, the equation 71 (w) — 72(w) = 0 has at most
a solution. Similar to the proof of Lemma 2.5, we can
prove that system (1.3) has at most a limit cycle. [

Lemma 4.3. In the parameter region Q, if t; < 0, then
system (1.3) has at most two limit cycle.

Proof. For t. < 0, system (1.3) has no limit cycles.
In fact, if system (1.3) has a limit cycle I'%, then we
have fFOQ F'(z)dt < 0, ie, I'y is stable, which is
contradiction to the stability of focus E,. For t. > 0,
assume system (1.3) has at least two large limit cycles
and I'g and ' are the innermost two large limit cycles,
where A;i7, Bit7,Citr, Diy7 € I'g for i = 1,2, as
shown in Figure 7. y

Figure 7.7y and I'g,.

We call that F(zg,) > F(—1). Otherwise, we have
(F(z) = F(rg.))(9(z) — a) <0,

and
(F(z) = F(zg,))(9(x) —a) £ 0.
Then

0:/_ dE,

= [ (F@) = Fles)(a(@) - )i <0 (i =1.2),
where Ei(z,y) = [;g(s)ds + y; This is a

contradiction.
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(a) t.=0.1

By t = —o, system (1.3) can be transformed into the
form
dx
& =y F@) 435
A (4

Denote y = yg(z) and yy(x) by the orbit segments

AgBg, Ag By respectively, then yg(z) < yg(z) for x4, <
x < x4,. It follows that

/é-\A/i —F'(z)do —/I:i %dm
W RLUCE

s, F@) —uilx)

A yi(x)
’ / Fla) - yi(a)
F(za,) —yi(za,)
F (sz) —Yi (:EBZ)
T g(r) -«
i / (F(2) - ga(2))?
F(za,) = yi(va,)
F(2n,) — i (1)
F (Q:Bl) — Yi (xAz)
F(xp,) —yi(vB,)
i g(r) —a
i / (F(@) - (@)
P —wiea)
rB (

i (LA
F( ,)_yz ‘TAi,)

=In

dx

=In

+ In

dx

i)
i / yi(@) — F (wp)
i glr) —a
" / (F(z) - ()2
F (xA,) —Yi (IA,)
F (xBl) —Yi (xAl)
" (g(@) — o) (F(z) ~ Flrg,)
" / (vi(2) — Fep,)(F(2) - i)

dx

dx

=In

5 dz,

where i = 8,9.
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(b) t. = 0.82
Figure 8. The limit cycle of system (1.3) for («, d;, d¢, dr, t;,t) = (0.1,0,0.2,0,—0.1,—0.1).

(c)te=1

From

F (:L‘Ag) — Y9 (wAg)
F(zB,) —yo (zB,)

<In

)

and

1 1
(us(@)—F(zag)) (F(x)~ys(2))* ~ (vo(2)—F(zag) ) (F(2)~yo(x))*

it yields that

/N —F'(x)do < /N —F'(x)do. (4.36)
BgAg BQAQ
Similarly, we have
/N —F'(z)do < /N —F'(z)do. (4.37)
DgCyg DgCy
Similar to the proof of Lemma 2.3, we have
/N —F'(z)do < /N —F'(z)do. (4.38)
CgBg C9 By
Moreover,
tym
—F':Udcr:/ —F'(z)do = ——————.
/DASA/S ) DyAg ) Vi7 = 4Ad,
(4.39)
From (4.36)-(4.39), for system (1.3), it follows that
F'(x)dt > / F'(z)dt.
T'o T3

If system (1.3) has at least three limit cycles and T'gy, TG
and F?’Q are the innermost three limit cycles. From [9],
system (1.3) has at most a small limit cycle. Thus, I'y
and I'}) are large limit cycles. We can assume that I'g, is
unstable, and ') (I'3)) is stable (unstable). Otherwise,
we can perturb such three stable or unstable limit
cycles from the semi-stable limit cycle. Then we
have fFQQ Fl(z)dt < frgg F'(z)dt, which contradicts
fFQQ F'(z)dt > frg,g F'(z)dt. Therefore, system (1.3)
has at most two limit cycles. O
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In the following, we explain that there exists a
parameter condition such that system (1.3) has two
limit cycles. By Lemma 4.1, all orbits of system (1.3)
are positively bounded for ¢; < 0,a > 0. From
Theorem 4 in [33], there exist t&* > 0 and o™ > 0
such that system (1.3) has an unstable small limit cycle
for t; < 0,t. = t}*, & = o™ in the parameter region
Q1. Therefore, system (1.3) has two limit cycles by
Poincaré-Bendixson Theorem. In Section 6, we provide
a numerical example.

5 Proof of Theorem 1.4
In this section we deal with the case DDC'. Set
M = {(e,dj,de,dr ty, te,tr) € R
d; =0,d.=0,d, >0,t, =0}.

Lemma 5.1. In the parameter region M, system (1.3) has
at most a limit cycle.

Proof. From Theorem 4 in [33], system (1.3) has no
small limit cycles.

For #jt. > 0 and t; + t. # 0, assume that system (1.3)
has alarge limit cycle % then fr% F'(z)dt # 0, which

implies that system (1.3) has at most a large limit cycle.

Therefore, system (1.3) has at most a limit cycle.

For t; > 0,t. < 0, if system (1.3) has at least two large
limit cycles, where I'} , and '3, are the innermost two
limit cycles, similar to the proof of Lemma 2.4, we have

/F F’(m)dt</

r
Thus, '}, is stable and I'3, is unstable. Inequality
(5.40) implies that system (1.3) has only two large
limit cycles. By Lemma 2.1, system (1.3) has at least
two limit cycles as ¢, = —¢, which contradicts the
uniqueness of limit cycle of system (1.3) from the proof
of Lemma 4.2. Therefore, system (1.3) has at most a
limit cycle. Similarly, we can prove that system (1.3)
has at most a limit cycle for ¢; < 0,t. > 0. ]

F'(z)dt. (5.40)

1 2
M M

For t; < 0, > 0, the qualitative properties of infinite
equilibria of system (1.3) in the parameter region Q
is the same as the qualitative properties of infinite
equilibria of system (1.3) in the parameter region M.
There exists « = a* > 0,t; = t] < 0,t. =t, > 0,d, =
dy > 0,t, = —e such that system (1.3) has two limit
cycles in the parameter region Q. Therefore, system
(1.3) has a limit cycle for o« = a* > 0,4, = t] < 0,1, =
t« > 0,d, = d; > 0in the parameter region M. In
Section 6, we provide a numerical example.

Figure 9. The limit cycle of system (1.3) of DDF type for
(a,dy, de,dy, t, e, t,) = (0.2,0,0,0.2,—1,1,—0.2).

101

5_

/

Figure 10. The limit cycle of system (1.3) of DDC type for
(o, dyyde, dryty, te, tr) = (1,0,0,0.2,—-0.1,2,0).

6 Numerical examples

Fixa = 0.1,d; = 0,d, = 0.2,d, = 0,t; = —0.1,t, =
—0.1, and let t, = 0.1(resp. t, = 082, t, = 1),
then system (1.3) is type DF'D (resp. type DN'D,
type DN D) and has a limit cycle, as shown in Figure
8(a)(resp. Figure 8(b), Figure 8(c)). The left and right
subsystems is degenerate, and the central subsystem
has an unstable focus EC(%, 2—10) (resp. an unstable node

17
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Ec(%, v/0.2) with equal eigenvalues, an unstable node
E

(3 %) with different eigenvalues).

Taking o = 0.2,d; = 0,d, = 0,d, = 0.2,t; = —1,t, =
1,t, = —0.2, system (1.3) is type DDF. The phase
portrait of system (1.3) is shown in Figure 9. System
(1.3) has two limit cycles, and the left and central
subsystem is degenerate, and the right subsystem has
a stable focus E,(2,0.6).

Seta = 1,d; = 0,d. = 0,d, = 0.2,t; = —0.1,t, =
2,t, = 0,system (1.3) is DDC type. The phase portrait
of system (1.3) is shown in Figure 10. System (1.3)
has a limit cycle, and the left and central subsystem

is degenerate, and the right subsystem has a center
E.(2,0.6).
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