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Abstract
Releasing amount of natural enemy generally
depends on its population data, while impulsive
releasing natural enemy usually brings about
a time delay after the data is observed in the
practical pest management. Therefore, it is very
important for pest managers to assess the impact
of the time delay in pest management. In this
paper, we construct a pest-natural enemy model
with time delay in impulsive releasing natural
enemy. We prove that the pest-free periodic
solution of model (2.1) is globally attractive with
ητ < ζy∗(1−e−λτ )

λ . We also prove that model
(2.1) is permanent with ητ > ζy∗(1−e−λτ )

λ . Further
influence of the time delay in impulsive releasing on
dynamical behaviors of model (2.1) is investigated
by numerical simulations. Our results provide
reliable tactics for pest management.
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1 Introduction
Biological control refers to the method of using one
organism against another. Biological control can
be roughly divided into three categories: insect
control, bird control and bacteria control. It
is a way to reduce the population density of
pests such as weeds and pests. It utilizes the
interrelationship of biological species with one or
one class of organisms. Its biggest advantage is
that it does not pollute the environment, which
wins out over pesticides and other non-biological
pest control methods [1]. Lacey [2] demonstrated
practical use of entomopathogenic microorganisms
for pest control, including tables describing which
pathogens are available commercially. Amarathunga
et al. [3] proposed a comprehensive predator-prey
population dynamic simulation model of the insect
pest Western Flower Thrips (WFT) and its predator
Orius in strawberries. Barclay [4] indicated that the
release of sterile hosts alone was more efficient than
release of parasitoids alone in controlling the hosts if
population regulation was in the parasitoids. Liu et
al. [5] investigated the complexity of a predator-prey
dynamical model with impulsive releasing predator.
Furthermore, time delays are usually introduced into
modeling predator-prey systems, for example, Jiao et
al. [6] investigated a delayed predator–prey model
with impulsive perturbations onpredator. Jiao et al. [7]
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also investigated a delayed predator–prey model with
prey impulsively diffusing between two patches. Wu
et al. [8] conducted two impulsive perturbations in a
stage-structured ecological aquaculture management
model. They just discussed the time delays in the
differential equations of their models. While few
researchers devoted to assess the impact of the time
delay in impulsive items. For instance, Pei et al. [9]
proposed impulsive selective harvesting in a logistic
fishery model with time delay. Lawson et al. [10]
presented a logistic population model with pulse
delayed harvesting. But their studies limited to single
population dynamical models.

2 Model formulation
With regards to time delay in impulsive releasing

natural enemy on pest management, we construct a
pest-natural enemymodelwith time delay in impulsive
releasing natural enemy.

dx(t)

dt
= x(t)(η − ωx(t))− ζx(t)y(t)

1 + γx(t)
,

dy(t)

dt
=
cζx(t)y(t)

1 + γx(t)
− λy(t),

 t ∈ (nτ, (n+ 1)τ ]

4x(t) = 0,

4y(t) = µmax

1+ϑy(t−lτ) ,

 t = (n+ 1)τ, 0 < l < 1,

(2.1)
where x(t) is the number of the pest at time t. y(t)
is the number of natural enemy at time t. η > 0
is the growth coefficient of pest on (nτ, (n + 1)τ ].
ω > 0 is the intraspecific competition coefficient
of pest on (nτ, (n + 1)τ ]. ζx(t)

1+γx(t) is the Holling II
type functional response on (nτ, (n + 1)τ ]. c > 0 is
the conversion rate from pest into natural enemy on
(nτ, (n + 1)τ ]. λ > 0 is the death coefficient of the
natural enemy on (nτ, (n+ 1)τ ]. Releasing amount of
natural enemy generally depends on its population
data, while impulsive releasing natural enemy usually
brings about a time delay after the data is observed in
the practical pest management. Therefore, It is very
important for pest managers to assess the impact of
the time delay in pest management. Therefore, the
pest managers make decisions to releasing natural
enemy at time t = (n + 1)τ, they firstly require to
observe the number of the natural enemy at time
t = (n+ 1− l)τ(0 < l < 1). Then, impulsive releasing
amount of the natural enemy at time t = (n + 1)τ
is decided by µmax

1+ϑy(t−lτ) . That is to say, after time
interval ((n+1− l)τ, (n+1)τ ], the successful releasing
amount of natural enemy is µmax

1+ϑy(t−lτ) ,which depends
on the observed number of natural enemies at time
t = (n+ 1− l)τ. µmax ≥ 0 is the maximum releasing

ability of the natural enemy at time t = (n + 1)τ,
and ϑ > 0 is the shape parameter. Obviously, the
releasing amount of natural enemy is zero when the
observed amounts of the natural enemy tend to the
infinite, and the releasing amount of natural enemy is
µmax when observed amount of natural enemy tends
to eradication. It is easy to see that this pattern of
releasing natural enemy is more effective than constant
releasing natural enemy for pest management. τ is the
period of the impulsive releasing natural enemy.

Let φ(t) = (φ1(t), φ2(t)) be a continuous function on
[−lτ, 0], we assume that all solutions of model (2.1)
satisfy the initial conditions as follows

(x(t), y(t)) = (φ1(t), φ2(t)) > 0, t ∈ [−lτ, 0],

(x(0+), y(0+)) = (x+
0 , y

+
0 ).

3 Main results
In this paper, we make notation as

R0 =
λητ

ζy∗(1− e−λτ )
.

Lemma 3.1. There exists a constant K > 0 such that
x(t) ≤ K, y(t) ≤ K for each solution (x(t), y(t)) of
model (2.1)with all t large enough.

Proof. Defining V (t) = cx(t) + y(t), and when t ∈
(nτ, (n+ 1)τ ],we have

D+V (t) + λV (t) = −cω
(
x(t)− λ+ η

2ω

)2

+
c(λ+ η)2

4ω

≤ c(λ+ η)2

4ω
.

When t = (n + 1)τ, V ((n + 1)τ+) = cx((n +
1)τ+) + y((n + 1)τ+) = cx((n + 1)τ) + y((n + 1)τ) +

µmax

1+γy((n+1−l)τ ≤ V ((n+ 1)τ) + µmax.

By lemma 2.2 in [11] and for t ∈ (nτ, (n+ 1)τ ], we get

V (t) ≤ V (0) exp(−λt) +
c(λ+η)2

4ω

λ
(1− exp(−λt))

+
µmax exp(−λ(t− τ))

1− exp(λτ)
+
µmax exp(λτ)

exp(λτ)− 1

→ c(λ+ η)2

4ωλ
+ µmax, as t→∞.

So V (t) is uniformly ultimately bounded. Hence, there
exists a constant K > 0 such that x(t) ≤ K, y(t) ≤ K
for t large enough. This completes the proof.
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If x(t) = 0, we obtain the subsystem of model (2.1)
dy(t)

dt
= −λy(t), t ∈ (nτ, (n+ 1)τ ],

y(t+) = y(t) +
µmax

1 + ϑy(t− lτ)
, t = (n+ 1)τ.

(3.2)
For t ∈ (nτ, (n+ 1)τ ], we can get the analysis solution
of system (3.1) between impulsive moments

y(t) = y(nτ+)e−λ(t−nτ). (3.3)

So
y(t− lτ) = y(nτ+)e−λ(t−lτ−nτ). (3.4)

According to the impulsive releasing natural enemy
at t = (n + 1)τ, we can easily derive the difference
equation as

y((n+ 1)τ+)) = y((n+ 1)τ) + µmax

1+ϑy((n+1−l)τ)

= e−λτy(nτ+) + µmax

1+ϑe−λ(1−l)τy(nτ+)
.


(3.5)

Furthermore, the positive fixed point of difference
equation (3.4) is computed as

y∗ =
−(1− e−λτ ) +

√
(1− e−λτ )2 + 4µmaxϑe−λ(1−l)τ (1− e−λτ )
2ϑe−λ(1−l)τ (1− e−λτ )

.

(3.6)

Lemma 3.2. The positive fixed point y∗ of difference
equation (3.4) is globally asymptotically stable.

Proof. Making notation as

F (y(nτ+)) = e−λτy(nτ+) +
µmax

1 + γe−λ(1−l)τy(nτ+)
,

we can easily obtain that

∂F (y(nτ+)

∂y(nτ+)
|y(nτ+)=y∗

= e−λτ − µmaxϑe
−λ(1−l)τ

(1 + ϑe−λ(1−l)τy∗)2
< e−λτ < 1.

While
∂F (y(nτ+)

∂y(nτ+)
|y(nτ+)=y∗

= e−λτ − µmaxϑe
−λ(1−l)τ

(1 + ϑe−λ(1−l)τy∗)2

> −1 + 2e−λτ > −1.

Obviously,

|∂F (y(nτ
+)

∂y(nτ+)
|y(nτ+)=y∗ | < 1,

Then, the positive fixed point y∗ of difference equation
(3.4) is locally stable. For the uniqueness of the positive
fixed point y∗ of difference equation (3.4), the positive
fixed point y∗ of difference equation (3.4) is globally
asymptotically stable.

Similar to reference [7], we have the following lemma.

Lemma 3.3. System (3.1) has a positive periodic
solution ŷ(t), which is globally asymptotically stable
with

ŷ(t) = y∗e−λ(t−nτ), t ∈ (nτ, (n+ 1)τ ], (3.7)

and y∗ is defined as (3.5).

Considering following auxiliary differential equation
dy(t)

dt
> ay(t), t ∈ (nτ, (n+ 1)τ ],

y(t+) = y(t) +
µmax

1 + ϑy(t− lτ)
, t = (n+ 1)τ.

y(0+) = y+
0 ,

(3.8)
and its comparative differential equation

de(t)

dt
= ae(t), t ∈ (nτ, (n+ 1)τ ],

e(t+) = e(t) +
µmax

1 + ϑe(t− lτ)
, t = (n+ 1)τ.

e(0+) = y+
0 .

(3.9)
Similar to (3.4),we get

e((n+ 1)τ+)) = e((n+ 1)τ) + µmax

1+γe((n+1−l)τ)

= eaτe(nτ+) + µmax

1+γea(1−l)τ e(nτ+)


(3.10)

We may make notation as

e((n+ 1)τ+))
∆
= F (a)

= eaτe(nτ+) +
µmax

1 + γea(1−l)τe(nτ+)
.

(3.11)
Then,

∂F (a)

∂a
= τeaτe(nτ+)

− ϑµmax(1− l)e−alτ

(1 + γea(1−l)τe(nτ+)ϑµmax(1− l)e−alτ )2

> eaτ (1− ϑµmax(1− l)e−alτ ).
(3.12)
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Therefore, we can easily obtain the following lemma.

Lemma 3.4. If ϑµmax(1 − l)e−alτ < 1 and y(0+) >
e(0+), then y(nτ)+) > e(nτ)+).

Proof. From (3.11) and ϑµmax(1 − l)e−alτ < 1, we
gain that e((n+ 1)τ)+) is increasing function of a. For
y(0+) > e(0+), then we can easily have y(nτ)+) >
e(nτ)+).

Lemma 3.5. If ϑµmax(1 − l)e−alτ < 1, then y(t) ≥
e(t), t ∈ (nτ, (n + 1)τ ], where e(t) is the solution of
(3.8).

Proof. From lemma 3.4., and the solutions of (3.7)
(3.8) are respectively continuous and differentiable on
(nτ, (n+ 1)τ ], this completes the proof.

Theorem 3.6. If ϑµmax(1− l)eλlτ < 1, and

R0 < 1, (3.13)

holds, the pest-free periodic solution (0, ŷ(t)) of model
(2.1) is globally attractive.

Proof. The pest-free periodic solution (0, ŷ(t)) of
model (2.1) will be proved to be globally attractive
in the next step. For any ε > 0 small enough, we have

ω = e
∫ τ
0 η−ζ(ŷ(t)−ε)dt < 1.

From model (2.1), we know that dy(t)
dt ≥ −λy(t). Then,


dy2(t)

dt
= −λy2(t), t ∈ (nτ, (n+ 1)τ ],

y2(t
+) = y2(t) +

µmax

1 + ϑy2(t− lτ)
, t = (n+ 1)τ,

y2(0
+) = y(0+).

(3.14)

From lemma 3.3, we can easily obtain that ŷ(t) is
the globally asymptotically stable periodic solution of
system (3.13). Referencing [5], we may get y(t) ≥ y2(t)

and y2(t)→ ŷ2(t) = ŷ(t) as t→∞. Then

y(t) ≥ y2(t) ≥ ŷ2(t)− ε = ŷ(t)− ε, (3.15)

for all t large enough. Substituting (3.14) into model
(2.1), we have

dx(t)

dt
≤ x(t)[η − ζ(ŷ(t)− ε)], t ∈ (nτ, (n+ 1)τ ],

x(t+) = x(t), t = (n+ 1)τ.

(3.16)

Integrating (3.15) on (nτ, (n+ 1)τ ], we can also have
x((n+ 1)τ) ≤ x(nτ+)e

∫ (n+1)τ
nτ (η−ζ(ŷ(t)−ε))ds. Therefore,

x(nτ) ≤ x(0+)ωn and x(nτ) → 0 as n → ∞. Thereby
x(t)→ 0 as t→∞.

For 0 < ε ≤ λ
cζ−λγ small enough, there must exist a

t0 > 0 such that 0 < x(t) < ε for all t ≥ t0. From
model (2.1) and the increasing nature of the function
ζx

1+γx ,we derive

−λy(t) ≤ dy(t)

dt
≤ −(λ− cζε

1 + γε
)y(t). (3.17)

From lemma 3.5., it is well to know that y2(t) ≤ y(t) ≤
y3(t) and y2(t)→ ŷ(t), y3(t)→ ŷ3(t) as t→∞, where
y2(t) and y3(t) are respectively the solutions of system
(3.8) and


dy3(t)

dt
= −(λ− cζε

1 + γε
)y3(t), t ∈ (nτ, (n+ 1)τ ],

y3(t
+) = y3(t) +

µmax

1 + ϑy3(t− lτ)
, t = (n+ 1)τ,

y3(0
+) = y(0+),

(3.18)

According to lemma 3.3., we are aware of the periodic
solution ŷ3(t) of (3.17) being globally asymptotically
stable, where

ŷ3(t) = y∗3e
−(λ− cζε

1+γε
)τ
, t ∈ (nτ, (n+ 1)τ ], (3.19)

with

y∗3 =

−
(
1− e−

(
λ− cζε

1+γε

)
τ
)

2ϑe
−
(
λ− cζε

1+γε

)
(1−l)τ

(
1− e−

(
λ− cζε

1+γε

)
τ
)

+

√(
1− e−

(
λ− cζε

1+γε

)
τ
)2

+ 4µmaxϑe
−
(
λ− cζε

1+γε

)
(1−l)τ

(
1− e−

(
λ− cζε

1+γε

)
τ
)

2ϑe
−
(
λ− cζε

1+γε

)
(1−l)τ

(
1− e−

(
λ− cζε

1+γε

)
τ
) .

(3.20)

From lemma 3.5., and for ε1 > 0 small enough, there
exists a t1, t > t1 such that

ŷ2(t)− ε1 < y(t) < ŷ3(t) + ε1.

Let ε→ 0, we have

ŷ(t)− ε1 < y(t) < ŷ(t) + ε1,
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for t large enough. This indicates y(t)→ ŷ(t) as t→∞.

Theorem 3.7. If ϑµmax(1− l)eλlτ < 1, and

R0 > 1, (3.21)

holds, model (2.1) is permanent.

Proof. According to lemma 3.1, it is easy to know that
there is a constantK > 0 such that x(t) ≤ K, y(t) ≤ K
for t large enough. From the proof procedure of
theorem 3.5., and for any ε2 > 0, we obtain that
y(t) > ŷ(t) − ε2 for all t large enough. Then y(t) ≥
y∗e−λ(t−nτ) − ε2 > y∗ − ε2 = m2 with t large enough.
Thus, we only need to findm1 > 0 such that x(t) ≥ m1

for t large enough. We will do it in the following.

By condition (3.20) of this theorem, we can select 0 <
m3 <

λ
cζ−λγ , ε1 > 0 small enough such that

δ = (η−ωm3−ζε1)τ−
ζz∗

λ− cζm3

1+γm3

(1−e−(λ− cζm3
1+γm3

)τ
) > 0,

where z∗ is defined as (3.5).We will prove x(t) < m3

can not hold for t ≥ 0. Otherwise,
dy(t)

dt
≤ −(λ− cζm3

1 + γm3
)y(t), t ∈ (nτ, (n+ 1)τ ],

y(t+) = y(t) +
µmax

1 + ϑy(t− lτ)
, t = (n+ 1)τ.

(3.22)
By lemmas 3.3, we have y(t) ≤ z(t) and z(t) →
z(t), t→∞, where z(t) is the solution of

dz(t)

dt
= −(λ− cζm3

1 + γm3
)z(t), t ∈ (nτ, (n+ 1)τ ],

z(t+) = z(t) +
µmax

1 + ϑz(t− lτ)
, t = (n+ 1)τ.

(3.23)
and

z(t) = z∗e
−(λ− cζm3

1+γm3
)τ
, t ∈ (nτ, (n+ 1)τ ], (3.24)

is the globally asymptotically stable periodic solution
of (3.22) with

z∗ =

−
(
1− e−(λ− cζm3

1+γm3
)τ
)

2ϑe
−(λ− cζm3

1+γm3
)(1−l)τ

(
1− e−(λ− cζm3

1+γm3
)τ
)

+

√(
1− e−(λ− cζm3

1+γm3
)τ
)2

+ 4µmaxϑe
−(λ− cζm3

1+γm3
)(1−l)τ

(
1− e−(λ− cζm3

1+γm3
)τ
)

2ϑe
−(λ− cζm3

1+γm3
)(1−l)τ

(
1− e−(λ− cζm3

1+γm3
)τ
) .

(3.25)

From lemma 3.5. and for any ε1 > 0, there exists a
T1 > 0,when t ≥ T1,we get

y(t) ≤ z(t) ≤ z(t) + ε1.

From model (2.1),we derive that
dx(t)

dt
≥ x(t)[η − ωm3 − ζ(z(t) + ε1)],

t ∈ (nτ, (n+ 1)τ ],

x(t+) = x(t), t = (n+ 1)τ.

(3.26)

We can find N1 ∈ N and N1τ > T1. For any n ≥ N1,
(3.25) is integrated on (nτ, (n+ 1)τ ], thereby, we gain
that

x((n+ 1)τ) ≥

x(nτ+) exp(

∫ (n+1)τ

nτ
(η − ωm3 − ζ(z(t) + ε2))dt)

= x(nτ+)eδ.

So x((N1+k)τ) ≥ x(N1τ
+)ekσ →∞, as k →∞, which

is a contradiction to the boundedness of x(t). Hence,
there exists a t1 > 0 t > t1 such that x(t) ≥ m3.

4 Discussion
In this paper, we construct a pest-natural enemymodel
with impulsive delay releasing natural enemy. The
pest-free periodic solution of model (2.1) is proved
to be globally attractive with R0 < 1. Model (2.1) is
also proved to be permanent with R0 > 1. If x(0+) =
0.5, y(0+) = 0.5, η = 1.1, ω = 0.8, ζ = 3, γ =
1.5, λ = 2, τ = 2, ϑ = 0.5, c = 2, µmax = 1.75,
Figure 1 indicates that the number of natural enemy
will decrease and the number of pest will increase with
respect to parameter l. It shows that, after observing
data of natural enemy, the managers should release
natural enemies on interval l ∈ [0, 0.65) to control
pests in the practical pest management. Obviously,
time delay in impulsive releasing natural enemy plays
an important role on pest-free in model (2.1). This
also show that model (2.1) provides an appropriate
method to describe pest management. Further, if
x(0+) = 0.5, y(0+) = 0.5, η = 0.88, ω = 0.54, c =
0.9, ζ = 1.2, γ = 0.5, λ = 0.5, τ = 2, ϑ = 2, l =
0.7, µmax = 1.8, we get R0 = 1.0650 > 1, then the
system is permanent as shown (a) − (b) in Figure 2.
If η = 0.88, ω = 0.54, c = 0.9, ζ = 1.2, γ = 0.5, λ =
0.5, τ = 2, ϑ = 2, l = 0.7, µmax = 2, we can also get
R0 = 0.9981 < 1, then the periodic solution (0, ỹ(t)
of model (2.1) is globally attractive as shown (c − d)
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(a) Variation of x(t)with respect to l (b) Variation of y(t)with respect to l

Figure 1. The variations of x(t) and y(t)with respect to parameter 0 < l < 1 for x(0+) = 0.5, y(0+) = 0.5, η = 1.1, ω = 0.8,
ζ = 3, γ = 1.5, λ = 2, τ = 2, ϑ = 0.5, c = 2, µmax = 1.75.

0 50 100 150 200 250 300

time

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P
o
p
u
la

ti
o
n
 x

(t
)

(a) Time-series of x(t) (system permanence)
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(b) Time-series of y(t) (system permanence)
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(c) Time-series of x(t) (periodic solution)
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(d) Time-series of y(t) (periodic solution)

Figure 2. (a)-(b) Time-series of x(t) and y(t) of system permanence with x(0+) = 0.5, y(0+) = 0.5, η = 0.88, ω = 0.54,
c = 0.9, ζ = 1.2, γ = 0.5, λ = 0.5, τ = 2, ϑ = 2, l = 0.7, µmax = 1.8; (c)-(d) Time-series of x(t) and y(t) of periodic

solution (0, ỹ(t)) of model (2.1) being globally attractive with η = 0.88, ω = 0.54, c = 0.9, ζ = 1.2, γ = 0.5, λ = 0.5, τ = 2,
ϑ = 2, l = 0.7, µmax = 2.
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(c) µmax = 5, 2τ -period solution
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Figure 3. The bifurcation graphs of µmax with
x(0+) = 0.5, y(0+) = 0.5, η = 1.4, ω = 0.9, c = 3, ζ = 1.3, γ = 2, λ = 0.4, τ = 8, ϑ = 1, l = 0.6.

(a) The variation of R0 with respect to l with η = 1,
ω = 0.9, c = 0.55, ζ = 0.5, γ = 2, λ = 1, τ = 2, ϑ = 1

(b) The variation of R0 with respect to µmax with η = 0.26,
ω = 1.2, c = 2, ζ = 2, γ = 2, λ = 0.4, τ = 1, ϑ = 4

Figure 4. (a) The variation of R0 references to l with η = 1, ω = 0.9, c = 0.55, ζ = 0.5, γ = 2, λ = 1, τ = 2, ϑ = 1. (b) The
variation of R0 reference to µmax with η = 0.26, ω = 1.2, c = 2, ζ = 2, γ = 2, λ = 0.4, τ = 1, ϑ = 4.
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Figure 5. The scatter PRCC value of the R0 to key parameters and the scatter plots of the parameters η, l, ζ, λ, τ , ϑ. The
sample size is 2000 and all parameters are varied simultaneously.

in Figure 2. Then, simulation analysis in Figure 2.
indicates that our results are verified to be correct.

In order to explore more rich dynamical properties, we
choose some bifurcation parameters to plot bifurcation
graphs. First, we let x(0+) = 0.5, y(0+) = 0.5, η =
1.4, ω = 0.9, c = 3, ζ = 1.3, γ = 2, λ = 0.4, τ =
8, ϑ = 1, l = 0.6 and vary µmax form 0 to 5. They can
be seen in Figure 3. We investigate how R0 changes
when l vary simultaneouslywith x(0+) = 0.5, y(0+) =
0.5, η = 1, ω = 0.9, c = 0.55, ζ = 0.5, γ = 2, λ =
1, τ = 2, ϑ = 1, we also investigate how R0 changes
when µmax vary simultaneously with η = 0.26, ω =
1.2, c = 2, ζ = 2, γ = 2, λ = 0.4, τ = 1, ϑ = 4. Their
varies can be seen in Figure 4.

Exploring the key parameters which affect the
pest eradication, we conduct sensitivity analysis
by calculating Partial Rank Correlation Coefficient
(PRCC) using LHS method in this part. Takeing
parameters as: η = 0.8, ω = 1, l = 0.5, ζ = 0.75, γ =
2, λ = 0.4, τ = 2, ϑ = 2, c = 0.55, µmax = 2,
then we obtain Figure 5. From Figure 5 we get the
PRCC values of η, λ, τ, ϑ about R0 are positive,
which means the decreasing of these parameters can
help eradicate the pest. The PRCC values of ζ, µmax
about R0 are negative, that is R0 is decreasing with

these parameters. Because the absolute value of PRCC
values of η, ζ, λ , τ, µmax are greater than 0.4, the
parameters lays an important role in pest management.
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