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Abstract

Releasing amount of natural enemy generally
depends on its population data, while impulsive
releasing natural enemy wusually brings about
a time delay after the data is observed in the
practical pest management. Therefore, it is very
important for pest managers to assess the impact
of the time delay in pest management. In this
paper, we construct a pest-natural enemy model
with time delay in impulsive releasing natural
enemy. We prove that the pest-free periodic
solution of model (2.1) is globally attractive with

Cy*(1—eT)
I

We also prove that model
(2.1) is permanent with n7 > M Further
influence of the time delay in impulsive releasing on
dynamical behaviors of model (2.1) is investigated
by numerical simulations. Owur results provide

reliable tactics for pest management.
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1 Introduction

Biological control refers to the method of using one
organism against another. Biological control can
be roughly divided into three categories: insect
control, bird control and bacteria control. It
is a way to reduce the population density of
pests such as weeds and pests. It utilizes the
interrelationship of biological species with one or
one class of organisms. Its biggest advantage is
that it does not pollute the environment, which
wins out over pesticides and other non-biological
pest control methods [1]. Lacey [2] demonstrated
practical use of entomopathogenic microorganisms
for pest control, including tables describing which
pathogens are available commercially. Amarathunga
et al. [3] proposed a comprehensive predator-prey
population dynamic simulation model of the insect
pest Western Flower Thrips (WFT) and its predator
Orius in strawberries. Barclay [4] indicated that the
release of sterile hosts alone was more efficient than
release of parasitoids alone in controlling the hosts if
population regulation was in the parasitoids. Liu et
al. [5] investigated the complexity of a predator-prey
dynamical model with impulsive releasing predator.
Furthermore, time delays are usually introduced into
modeling predator-prey systems, for example, Jiao et
al. [6] investigated a delayed predator—prey model
with impulsive perturbations on predator. Jiaoetal. [7]
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also investigated a delayed predator—prey model with
prey impulsively diffusing between two patches. Wu
et al. [8] conducted two impulsive perturbations in a
stage-structured ecological aquaculture management
model. They just discussed the time delays in the
differential equations of their models. While few
researchers devoted to assess the impact of the time
delay in impulsive items. For instance, Pei et al. [9]
proposed impulsive selective harvesting in a logistic
fishery model with time delay. Lawson et al. [10]
presented a logistic population model with pulse
delayed harvesting. But their studies limited to single
population dynamical models.

2 Model formulation

With regards to time delay in impulsive releasing
natural enemy on pest management, we construct a
pest-natural enemy model with time delay in impulsive
releasing natural enemy.

da(t) _ ooy Sa(ty()
a = HOw e O) - .
dy(t) _ cCa(t)y(t) 2o
at — T+7a(t) ’
Az(t) =0,
Ay(t):%7 t=mn+1)r,0<l<1,

(2.1)
where z(t) is the number of the pest at time t. y(¢)
is the number of natural enemy at time ¢. n > 0
is the growth coefficient of pest on (n7, (n + 1)7].
w > 0 is the intraspecific competition coefficient
of pest on (nt,(n + 1)7]. 1frf”yg()t) is the Holling II
type functional response on (n7, (n + 1)7]. ¢ > 0 is
the conversion rate from pest into natural enemy on
(nT,(n + 1)7]. A > 0 is the death coefficient of the
natural enemy on (n7, (n + 1)7]. Releasing amount of
natural enemy generally depends on its population
data, while impulsive releasing natural enemy usually
brings about a time delay after the data is observed in
the practical pest management. Therefore, It is very
important for pest managers to assess the impact of
the time delay in pest management. Therefore, the
pest managers make decisions to releasing natural
enemy at time ¢ = (n + 1)7, they firstly require to
observe the number of the natural enemy at time
t=(n+1-10)7(0 <!l <1). Then, impulsive releasing
amount of the natural enemy at time ¢ = (n + 1)1
is decided by #ﬁih) That is to say, after time
interval ((n+1—1)7, (n+1)7], the successful releasing
amount of natural enemy is #{;im, which depends
on the observed number of natural enemies at time
t=(n+1—DT. tmer > 0 is the maximum releasing

ability of the natural enemy at time ¢ = (n + 1)7,
and ¥ > 0 is the shape parameter. Obviously, the
releasing amount of natural enemy is zero when the
observed amounts of the natural enemy tend to the
infinite, and the releasing amount of natural enemy is
Hmaz When observed amount of natural enemy tends
to eradication. It is easy to see that this pattern of
releasing natural enemy is more effective than constant
releasing natural enemy for pest management. 7 is the
period of the impulsive releasing natural enemy.

Let ¢(t) = (¢1(t), p2(t)) be a continuous function on
[—IT,0], we assume that all solutions of model (2.1)
satisfy the initial conditions as follows

(2(1),y(t) = (¢1(2), ¢2(t)) > 0,

(2(07),5(0%)) = (2¢,v9)-

t e [-Ir,0],

3 Main results

In this paper, we make notation as

ANT
Ry=——-—"7"790#——.
O Gy (1 e

Lemma 3.1. There exists a constant K > 0 such that
z(t) < K,y(t) < K for each solution (z(t),y(t)) of
model (2.1) with all ¢ large enough.

Proof. Defining V(¢) = cxz(t) + y(t), and when t €
(n1, (n + 1)7], we have

DYV + AV () = —cw <$(t) B AQJ;H)z N c(A;n)?

<
- )

When t = (n + 1)r,V((n + D)77) = cz((n +
D) +y((n+1)711) =ce((n+ 1)7) + y((n + 1)7) +

% <V((n+1)7) + tmax-

By lemma 2.2 in [11] and for ¢ € (n7, (n + 1)7], we get

c(A+n)?
V(1) < V(0) exp(~M) + —=— (1 — exp(~A1)
N tmax €XP(—A(t — 7)) fimax €Xp(AT)
1 — exp(A7) exp(A1) — 1
2
%M—i—umax, as t — oo.
4w

So V() is uniformly ultimately bounded. Hence, there
exists a constant K > 0 such that z(t) < K,y(t) < K
for ¢ large enough. This completes the proof.
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If 2(t) = 0, we obtain the subsystem of model (2.1)

dz(:) = -y(t),t € (n7,(n+ 1)7],
y(th) = y(t) + #;X_m,t = (n+1)r.
(3.2)

For ¢t € (n7, (n + 1)7], we can get the analysis solution
of system (3.1) between impulsive moments

+)e—)\(t—n7)‘

y(t) =y(nt (3.3)

So
—A(t—=lr—nT)

e )

y(t —lr) = y(nt (3.4)

According to the impulsive releasing natural enemy
att = (n + 1)7, we can easily derive the difference
equation as

y((n+1)717)) = y((n+1)7) + e

=T —+ Hmax
=€ y(nT ) + 1+1987A(171)7'y(n7—+) .

(3.5)
Furthermore, the positive fixed point of difference
equation (3.4) is computed as

. _(1 _ e*)\T) + \/(1 _ e—/\r)Q 4 4,umaX1967’\(1*l)T(1 _ e”\T)
vy = 20e—A1-D7 (] — ¢—A7)

(3.6)

Lemma 3.2. The positive fixed point y* of difference
equation (3.4) is globally asymptotically stable.

Proof. Making notation as

Hmax

14 ye=20=D7y(nr+)’

F(y(nt*)) = e My(nt*) +

we can easily obtain that

OF (y(nt™)
“oynr) e

-2(1-0)71
= €_>\T - ,Ufmaxﬁf;(l 0 3 <e
(1 + YeA0=O7y)

AT 1.

While

OF (y(nt™)
Ay(ntt) ly(nr+)=y*
Iumax,lge—)\(l—l)r

(1 + ﬁefA(lfl)Ty*)Z

> 142N > 1.

— AT

Obviously,

OF (y(nt™)

oy 1
’ 8y(n7'+) ’y(m—*)fy ‘< )
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Then, the positive fixed point y* of difference equation
(3.4) is locally stable. For the uniqueness of the positive
fixed point y* of difference equation (3.4), the positive
fixed point y* of difference equation (3.4) is globally
asymptotically stable.

Similar to reference [7], we have the following lemma.

Lemma 3.3. System (3.1) has a positive periodic

solution y(t), which is globally asymptotically stable
with

—

y(t) =y e M te (nr,(n+ 7], (37)

and y* is defined as (3.5).

Considering following auxiliary differential equation

dy(t
Zi) > ay(t),t € (nr, (n+ 1)1,
+) _ Hmax _ 1
y(0") = yg,
(3.8)
and its comparative differential equation
dzgtt) = ae(t),t € (n1,(n+ 1)7],
+ — Hmax _ 1
e(t™) =e(t) + T ve(t =17 lT)’t (n+1)T.
e(0%) = yg.
(3.9)

Similar to (3.4), we get

e((n+1)7%)) = e((n+1)7) + relims =

= e"Te(nT") + 1+'yea(§tnl€;ie(n7+)
(3.10)
We may make notation as
T\ A
e((n+1)77)) = F(a)
_ art + Hmax
=ee(nt™) T+ ea=Dre(nrT)
(3.11)
Then,
F
88((;) = 1e"e(ntt)

O ptmax (1 — 1) e 7
(1 4+ ve2(=D7e(nT+) 0 pmax (1 — 1)e=47)2
> % (1 — Opiaax (1 — 1)e47).

(3.12)
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Therefore, we can easily obtain the following lemma.

Lemma 3.4. If Vg (1 — e @ < 1 and y(07) >
e(0T), then y(n7)*) > e(nt)™).

Proof. From (3.11) and ¥pmaes(1 — De™ %™ < 1, we
gain that e((n + 1)7)7") is increasing function of a. For
y(07) > e(0"), then we can easily have y(n7)") >
e(nt)™).

Lemma 3.5. If 9pimar(1 — 1)e™ @™ < 1, then y(t) >
e(t),t € (nt,(n + 1)7], where e(t) is the solution of
(3.8).

Proof. From lemma 3.4., and the solutions of (3.7)
(3.8) are respectively continuous and differentiable on
(n7, (n 4 1)7], this completes the proof.

Theorem 3.6. If ¥/t,0.(1 — 1)eMN™ < 1, and

Ro <1, (3.13)

holds, the pest-free periodic solution (0, y/(\t)) of model
(2.1) is globally attractive.

Proof. The pest-free periodic solution (0,37(?)) of
model (2.1) will be proved to be globally attractive
in the next step. For any ¢ > 0 small enough, we have

w = efOT 77‘((9/(1‘/\)—5)(# < 1

From model (2.1), we know that () > —Ay(t). Then,

dya(t
y;t( ) _ —Aya(t), t € (nr, (n+ 1)7],
o Hmax _
B(E) = l0) + =

y2(07) = y(07).
(3.14)

From lemma 3.3, we can easily obtain that y/(t\) is
the globally asymptotically stable periodic solution of
system (3.13). Referencing [5], we may get y(t) > y2(t)

and y2(t) — y2(t) = y(t) as t — oo. Then

(3.15)

for all ¢ large enough. Substituting (3.14) into model
(2.1), we have

dz(t)

—= <a(®)y - (1) - )]t € (nr, (n+ 17,
r(tT) =2(t),t = (n+ 1)

(3.16)

Integrating (3.15) on (n7, (n + 1)7], we can also have
2((n 4+ 1)7) < 2(nrt)ear T 0=¢CwO-)ds Therefore,
z(nt) < z(0")w™ and z(n7) — 0 as n — oc. Thereby
z(t) - 0ast — oo.

For0 < e < = )\ small enough, there must exist a
to > 0 such that 0 < x(t) < e forallt > t;. From
model (2.1) and the increasing nature of the function

Cx ;
Tz We derive

cCe
14 ~e

Jy(t).  (3.17)

From lemma 3.5., it is well to know that ya(t) < y(t) <
ys(t) and ya(t) = y(t), ys(t) — s (?) ) as t — 0o, where
y2(t) and y3(t) are respectively the solutions of system
(3.8) and

e )€ 0,0+ 17
ys(th) = ys(t) + mat = (n+ 1),
y3(0+) = y(o )7

(3.18)

Accordmg to lemma 3.3., we are aware of the periodic

solution yg( ) of (3.17) being globally asymptotically
stable, where

— (A

_ cCe
ys(t) = yse )

Tt e (T, (n+ 1)1, (3.19)

with

_ (1 _ e’(k%y)

Y3 =
3 g9~ (=75 - ’>’< 76*0—%;)7)

2 cCe
\/<1 - 67(A7%)7> + 4pimaxe (A e )(1 br (1 — ef(A*]'fT)T)
g9~ (1) 1 ”T( _E:(A*%)T> ‘

+

(3.20)

From lemma 3.5., and for £; > 0 small enough, there
exists a t1,t > t; such that

yg(t) -1 < y(t) < ys(t) +€1.

Lete — 0, we have

—

y(t) —er <ylt) <

—

y(t) + €1,
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for t large enough. This indicates y(t) — y/(t\) ast — oo.

Theorem 3.7. If 9jt,nq0(1 — 1)eMN™ < 1, and

Ro > 1, (3.21)

holds, model (2.1) is permanent.

Proof. According to lemma 3.1, it is easy to know that
there is a constant X' > 0 such that z(t) < K,y(t) < K
for ¢t large enough. From the proof procedure of
theorem 3.5., and for any ¢; > 0, we obtain that
y(t) > y/(t\) — g9 for all ¢ large enough. Then y(t) >
y*e_)‘(t nT) gy > y* — g2 = my with t large enough.
Thus, we only need to find m; > 0 such that z(t) > m,
for t large enough. We will do it in the following.

By condition (3.20) of this theorem, we can select 0 <

mg < ﬁ, €1 > 0 small enough such that
¢z A= 155)T

0= (U—wm:z—C‘fl)T_)\ __cm3 <1_6 Hams ) > 0,
1+yms3

where z* is defined as (3.5). We will prove z(t) < ms
can not hold for ¢ > 0. Otherwise,

(t) < %)y(t),t € (nr, (n+1)7],
y(tJr) y(t) T %,t = (n + 1)7’.
(3.22)

By lemmas 3.3, we have y(t) < z(t) and 2(t) —
z(t),t — oo, where z(t) is the solution of

dz(t) cCmsg
i =0~ T o)
2(t7) = 2(t) + : H%“(lz"_l y t=(n+1)T.
(3.23)
and
2(t) = e ~THg)T ,t € (nr,(n+1)7], (3.24)

is the globally asymptotically stable periodic solution
of (3.22) with

c¢mg
_ <1 _ 67()\7 l+'y1n3)T>
Z*

O ) (1-0)r ( —67(/\7";47%?3)7>

20e
—(A—-Lma 2 7)(1 T —(A—-Lma
1—e T+ymg + 4ﬂqnax79€ T+ym —e T+ymg

29¢ -(A= 1+(m (1= DT( 767()\71227,’[33)7—

+

(3.25)

24

From lemma 3.5. and for any €; > 0, there exists a
T; > 0, when t > T7, we get

y(t) < 2(t) < 2(t) +e1.

From model (2.1), we derive that

P > o)l - wma — (GO + )l
t € (nr,(n+1)7], (3.26)
o(tT) = z(t),t = (n+ 1)7.

We can find Ny € N and Ny7 > T;. For any n > Ny,
(3.25) is integrated on (n7, (n + 1)7], thereby, we gain
that

z((n+ 1)) >

(n+1)7

£(nr+) exp( / (n— wms — C(2(0) + 22))di)

T

= z(n7)e’.

So x((N1+k)7) > 2(N171)er — 00,as k — oo, which
is a contradiction to the boundedness of z(t). Hence,
there exists a t; > 0t > t; such that z(t) > ms.

4 Discussion

In this paper, we construct a pest-natural enemy model
with impulsive delay releasing natural enemy. The
pest-free periodic solution of model (2.1) is proved
to be globally attractive with Ry < 1. Model (2.1) is
also proved to be permanent with Ry > 1. If z(0") =
0.5, y(0T) = 05, n =11, w = 08, ¢ = 3, v =
1.5, A =2, 7 =29 = 0.5, ¢ = 2, tmar = 1.75,
Figure 1 indicates that the number of natural enemy
will decrease and the number of pest will increase with
respect to parameter /. It shows that, after observing
data of natural enemy, the managers should release
natural enemies on interval [ € [0,0.65) to control
pests in the practical pest management. Obviously,
time delay in impulsive releasing natural enemy plays
an important role on pest-free in model (2.1). This
also show that model (2.1) provides an appropriate
method to describe pest management. Further, if
x(0T) = 0.5, y(07) = 0.5, n = 0.88, w = 0.54, ¢ =
09, ¢ =12 7v=05\A=0517=29=2,1
0.7, tmaz = 1.8, we get Ry = 1.0650 > 1, then the
system is permanent as shown (a) — (b) in Figure 2.
Ifn=088 w=054,¢c=09, (=12, v=05, A =
05, 7=2,9=2,1=0.7, ftmez = 2, we can also get
Ry = 0.9981 < 1, then the periodic solution (0, y(t)
of model (2.1) is globally attractive as shown (¢ — d)
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Figure 1. The variations of z(¢) and y(t) with respect to parameter 0 < I < 1 for z(0%) = 0.5, y(07) = 0.5,7 = 1.1,w = 0.8,
(=3,v=15A=2,7=2,9=0.5,¢c=2, imax = 1.75.
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Figure 2. (a)-(b) Time-series of z(t) and y(t) of system permanence with z(0") = 0.5, y(0%) = 0.5, 7 = 0.88, w = 0.54,
c=09,(=12,7v=05X=0.571=2,9=2,1=0.7, tmax = 1.8; (c)-(d) Time-series of x(t) and y(t) of periodic
solution (0, y(t)) of model (2.1) being globally attractive with n = 0.88, w =0.54,¢=0.9,( =1.2,7y=05 A =0.5717=2,
¥ =2,1=0.7, hmax = 2.
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(a) Bifurcation graph of x(t)
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Figure 3. The bifurcation graphs of fmq. With
2(0F) =05, y(0r) =05,n=14, w=09, c=3, (=13, y=2, A=04, 7=8,9=1, [ =06

R, .~
0 IR, = 1 plane o R, = 1 plane
(a) The variation of Ry with respect to [ withn =1, (b) The variation of Ry with respect to fimax With 7 = 0.26,
w=0.9c¢=055(=05vy=2,A=1,7=2,9=1 w=12,¢=2,(=2,7y=2,12=04,7=1,9=14

Figure 4. (a) The variation of R references to [ withn =1,w =0.9,¢=0.55,( =0.5,7v=2,A=1,7=2,9 =1. (b) The
variation of Ry reference to py. withn =0.26, w =1.2,c=2,(=2,7y=2,A=04,7=1,9 = 4.
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Figure 5. The scatter PRCC value of the Ry to key parameters and the scatter plots of the parameters 7, [, ¢, A, 7, ¥. The
sample size is 2000 and all parameters are varied simultaneously.

in Figure 2. Then, simulation analysis in Figure 2.
indicates that our results are verified to be correct.

In order to explore more rich dynamical properties, we
choose some bifurcation parameters to plot bifurcation
graphs. First, we let z(07) = 0.5, y(07) = 0.5, n =
14, w=09,¢c=3,(=13,vy=2, A=04, 7
8, ¥ =1, | = 0.6 and vary jimaqs form 0 to 5. They can
be seen in Figure 3. We investigate how R, changes
when [ vary simultaneously with z(0") = 0.5, y(0T) =
05,m=1, w=0.9, ¢c=055 (=05 v=2 A=
1, 7 =2, ¥ = 1, we also investigate how R, changes
when iy, vary simultaneously with n = 0.26, w =
1.2,¢=2,¢(=2,vy=2, A=04, 7=1, ¥ = 4. Their
varies can be seen in Figure 4.

Exploring the key parameters which affect the
pest eradication, we conduct sensitivity analysis
by calculating Partial Rank Correlation Coefficient
(PRCC) using LHS method in this part. Takeing
parametersas: n =08, w=1,1=0.5, ( =0.75, v =
2,0 =04, 7 = 2,9 = 2, ¢c = 0.55, pmazr = 2,
then we obtain Figure 5. From Figure 5 we get the
PRCC values of n, A, 7, ¥ about Ry are positive,
which means the decreasing of these parameters can
help eradicate the pest. The PRCC values of ¢, ftmax
about Ry are negative, that is Ry is decreasing with

these parameters. Because the absolute value of PRCC
values of 1, (, A\, 7, fmas are greater than 0.4, the
parameters lays an important role in pest management.
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