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Abstract
The paper discusses the dynamical characteristics
of solutions to a model with quadratic term. More
precisely, an exponential-type fuzzy difference
equation is proposed as follows

an+1 =
D + Pe−an

T + a2
n−1

, n = 0, 1, · · · ,

here D,P, T and a0, a−1 belong to positive fuzzy
numbers. This model can be used to characterize
the diffusion modeling of a class of infectious
diseases with uncertainty, such as the transmission
prediction of dengue fever, monkeypox, and other
infectious diseases. In addition, by highlighting the
advantages of using Stefanini’s the generalization
of division of fuzzy number (it is also known as
g-division) and constructing a Lyapunov function,
we primarily obtain the dynamical characteristics of
the model discussed above, such as convergence of
single positive equilibrium and persistence, global
asymptotical stability and boundedness of positive
solutions. Furthermore, some numerical examples
are provided to confirm the theoretical findings.
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1 Introduction

Difference equations (DEs) are also called discrete
dynamical systems. Difference equations are
widely applied in various fields, including control
engineering, biology, computer science, economics,
ecology, and demography, etc. (see, for example, [1–6]
and the references therein). Many differential
equations need to be discretized into difference
equations for analysis. Therefore, many researchers
have shown considerable interest in the theory of
DEs. In the past decades, the research on DEs has
greatly advanced in both depth and breadth. In
terms of depth, it involves not only the existence of
solutions but also studies on stability, convergence and
asymptotic behavior of positive equilibrium. Some
researchers have also studied the oscillatory behavior,
periodicity, the rate of convergence, bifurcation
and chaos in certain models. In terms of breadth,
the research reflects an expansion of the forms
of difference equations and its system, including
linear and nonlinear forms, exponential-type and
logarithmic-type, maximum-type and various orders
of equations (see [7–16, 38, 40], and the references
therein).
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Particularly, as far as the exponential-type difference
equations and their system are concerned, this is due
to the fact that many population models are related
to exponential-type difference equations, so many
scholars are greatly interested in studying convergence,
stability of positive solutions to these models,
also discussing their uniqueness, boundedness and
existence, etc. Give a few examples.

For example, EI-Metwally et al. [8] discussed the
periodicity feature, asymptotic behaviour, existence
and boundedness of solutions, along with stability of a
single positive equilibrium for the ordinary DE below

xn+1 = α+ βxn−1e
−xn , n ∈ N, (1.1)

here x−i, (i=0,1) α, β belong to nonnegative real
numbers.

Papaschinopoulos et al. [9] discussed the asymptotic
characteristics, the persistence, the boundedness of
positive solutions of two exponential-type crisp DEs
below

xn+1 = a+ bxn−1e
−yn , yn+1 = c+ dyn−1e

−xn , (1.2)

here a, b, c, d, x−i, y−i ∈ R+ (i=0,1) [37].

In 2006, Ozturk et al. [10] examined the boundedness,
periodic nature and convergence of solutions to a
second-order ordinary DE with an exponential term

xn+1 =
α1 + α2e

−xn

α3 + xn−1
, n ∈ N, (1.3)

here xi, i = −1, 0 are nonnegative real numbers and
α1, α2, α3 ∈ R+.

In 2013, Bozkurt [11] has discussed an
exponential-type crisp difference equation

xn+1 =
αe−xn + βe−xn−1

γ + αxn + βxn−1
, (1.4)

here xi, i = −1, 0 belong to any positive numbers and
parameters α, β, γ ∈ R+. In their research, the author
has obtained the local and global behaviour on the
model’s positive solutions discussed above.

However, as science and technology continue to
advance, the relationships we face are becoming
increasingly complex. Although difference equations
can effectively describe numerous practical problems
in real-life, they become quite challenging to study
when dealing with issues related to fuzzy uncertainty
or imprecision. In this context, fuzzy difference
equations (FDEs) can address this shortcoming and

effectively describe practical problems related to
uncertainty or imprecision. Indeed, FDEs belong to
one of the types of crispDEs, they are currently applied
in fields such as population prediction, strategic
decision-making and control systems etc. In addition,
in the analysis of fuzzy difference equations, one
may generally regard the model initial conditions and
parameters as fuzzy numbers and it goes without
saying that the solutions are represented by fuzzy
sequences. Especially in the recent two decades,
fuzzy difference equations have received attention and
discussion from an increasing number of scholars,
leading to great interest in their theoretical research,
and exponential-type fuzzy DEs in particular.

Wang et al. [14] examined the dynamical behaviour of
a first-order fuzzy DE with exponential form

xn+1 = A+Bxne
−Cxn , n ∈ N, (1.5)

here x0, A, B, C ∈ <+
F .

In 2020, Zhang et al. [15] have discussed dynamics of
a second-order FDE with form

xn+1 =
A+Be−xn

C + xn−1
, n ∈ N, (1.6)

here A,B,C, x−i, i ∈ {0, 1} belong to <+
F .

It is noteworthy that the forms of difference equations
can be linear or nonlinear. In the study of low-order
nonlinear difference equations, some scholars are
concerned with the form with quadratic terms. The
formal expansion makes the research on difference
equations deeper and more comprehensive, providing
valuable references for the study of difference
equations. Here are a few examples.

In 2020, Bešo et al. [17] have discussed the recursive
sequence with a quadratic term as follows

xn+1 = γ + δ
xn
x2
n−1

, n = 0, 1, · · · , (1.7)

here γ, δ and x0, x−1 belong to R+.

In [18], Khyat et al. investigated the following
recursive sequence defined below with two quadratic
terms

xn+1 = a+
x2
n

x2
n−1

, n ∈ N, (1.8)

In fact, the authors obtained the single positive fixed
point x = a + 1, and they found it is globally
stable if model (1.8) satisfies the relation a >

√
2.

Furthermore, these authors determined the direction
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of the Neimark-Sacker bifurcation. Here the parameter
a and initial conditions x−1, x0 belong to R+.

In 2022, Zhang et al. [19] conducted research on the
fuzzy DE below

xn+1 = A+
Bxn
x2
n−1

, n ∈ N, (1.9)

where x−1, x0, A, B ∈ <+
F .

It is also worth mentioning that the determination
of initial conditions and parameters in difference
equations depends on statistical methods. For dealing
with the properties of fuzzy difference equation
models, we usually employ common techniques and
methods for handling crisp difference equations, such
as iteration, inequality techniques, matrix theory,
mathematical induction, and proof by contradiction,
etc. It is helpful for addressing the qualitative
behaviour of the most complex FDE models to use
these approaches. Additionally, many scholars have
explored variousmethods and techniques for studying
fuzzy DEs, and the effectiveness of these methods has
led to rapid development in the field such as finance,
biologic models and population models, etc. Now let
us make a historical flash back.

The concept of FDEs was first proposed by
Lakshmikantham et al. [20] in 2002, who constructed
the Lyapunov function to analyze the basic
theory of fuzzy difference equation models and
obtained comparison theorems for these models.
Papaschinopoulos et al. [21] have studied global
behaviors of FDE model xn+1 = A+ B

xn
by employing

Zadeh extension principle, in which A and B
and initial conditions x0 belong to positive fuzzy
numbers. At the same time, Mondal et al. [22] using
Lagrange’s multiplier method researched a linear
fuzzy difference equation of order two. Stefanini [23]
proposed a new method for studying some linear
FDE models by employing a generalization of division
of fuzzy numbers (it is also known as g-division).
Khastan [24] has researched fuzzy logistic difference
equations by utilizing the basic theory of Hukuhara
Difference (H-Difference) of fuzzy numbers. In view
of this, by employing these methods, many scholars
have extended the study of various types of fuzzy
difference equations and have derived many effective
conclusions. For more details see ([25–33], and the
references therein).

To the best of our knowledge, exponential-type
fuzzy DEs are a special type of FDEs, as far as
FDEs are concerned, it is a well-known fact that

the parameters and initial conditions belong to
positive fuzzy numbers, while it’s solutions presents
sequence of positive fuzzy numbers. However, due
to the particular nature of the exponential form,
we generally cannot obtain an explicit solution but
can only express its implicit solution. Nevertheless,
by using the Existence and Uniqueness Theorem of
equation’s solutions, it can still prove the existence
and uniqueness of positive solutions for FDEs that
correspond to a system of crisp DEs in our study.

Based on the points discussed above, this article aims
to study the dynamics of solutions for second-order
exponential-type FDE with quadratic terms using the
g-division

an+1 =
D + Pe−an

T + a2
n−1

, n ∈ N, (1.10)

here D,P, T , a−i ∈ <+
F , i ∈ {0, 1}. This model

can be applied to the transmission prediction in
the diffusion modeling of infectious diseases with
uncertainty, such as dengue fever and monkeypox.
In this context, an represents the number of infected
individuals at a certain time, e−an reflects the nonlinear
infection probability of susceptible populations, and
a2
n−1 embodies the historical cumulative effect of

infection transmission (e.g., the time lag of virus
incubation period). The fuzzy parameters D, P ,
and T denote uncertain influencing factors such as
transmission rate and the effect of isolation measures.
For example, in the dengue fever transmission model,
this equation can be used to analyze the fuzzy
evolution trend of the epidemic under different
prevention and control strategies, thereby assisting
public health decision-making.

In a nutshell, based on previous research, this paper
studies existence of positive solutions for quadratic
FDE models by utilizing the g-division, Existence and
Uniqueness Theorem for solutions of equations, the
Lyapunov function and matrix theory etc. It also
researches stability of unique equilibrium. Indeed, the
core method of this paper is the generalized division
of fuzzy numbers (g-division). Recently, numerous
significant works published on the application of
g-division (see [15, 19, 21, 27] and the references
therein).

Researchers have found that g-division can overcome
the disadvantages of the expansion of fuzzy intervals
when applying the Zadeh Extension Principle, which
can lead to increased fuzzy intervals. As a
result, the finding of properties of FDEs has
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become more accurate and the results have become
more representative. Consequently, scholars are
increasingly interested in this method. In addition,
the exponential-type difference equations date back
to population dynamics, in a sense, due to the
presence of certain fuzzy imprecise (or uncertain)
phenomena in population dynamics, the role of
exponential-type fuzzy difference equations becomes
particularly important. In this context, our study offers
new insights into population dynamics and paves the
way for further investigation into exponential fuzzy
difference equations. It offers valuable implications
for the research on population dynamics models
and provides new perspectives for the potential
applications of fuzzy difference equation models.

Here, we provide a summary of the research approach
and content of this paper, the detailed specifics are
outlined below. In Section 2, we mainly introduce
several important concepts related to this paper. In
Section 3, we mainly investigated the dynamics of the
exponential FDE model (1.10) with quadratic terms
using g-division, inequality techniques, and matrix
theory, etc. In Section 4, we analyzed the solutions
of the fuzzy DE model (1.10) and showed that they
are non-oscillatory under certain initial conditions and
conditions related to equilibrium points. We provide
a few examples demonstrating the effectiveness of
theoretical findings we have obtained in Section 5. In
Section 6, we summarize some important findings of
this article.

2 Preliminary and definitions

To demonstrate the validity of the findings in this
paper, we will first cite a few important basic concepts
from previous research in this section.

Definition 2.1. [34] If functionW : R→ [0, 1] satisfies
properties (i)-(iv):
(i) W is normal, that is, ∃a ∈ R withW (a) = 1;
(ii) W is fuzzy convex, that is, ∀x ∈ [0, 1] and a1, a2 ∈ R,
one has

W (xa1 + (1− x)a2) ≥ min{W (a1),W (a2)};

(iii)W is upper semi-continuous;
(iv) The support of W , suppW =

⋃
ϑ∈(0,1][W ]ϑ =

{a : W (a) > 0} is compact.

Then it is known as a fuzzy number.

For ϑ ∈ (0, 1], the ϑ−cuts of fuzzy number W is
denoted by [W ]ϑ = {a ∈ R : W (a) ≥ ϑ}, and for

ϑ = 0, the support of W is defined by suppW =
[W ]0 = {a ∈ R|W (a) > 0}. One has the [W ]ϑ is a
closed interval. If suppW ⊂ (0,∞), then the fuzzy
number is known as positive. Indeed, W is a trivial
fuzzy number (a positive real number), that is [W ]ϑ =
[W,W ], ϑ ∈ (0, 1].

Assume that E,F ∈ <+
F satisfy [E]ϑ =

[EL,ϑ, ER,ϑ], [F ]ϑ = [FL,ϑ, FR,ϑ], ϑ ∈ [0, 1], and
for k > 0, then the operations of addition E+F, scalar
product kE, division E

F and multiplication EF for fuzzy
numbers E and F are defined as follows:

[E + F ]ϑ = [EL,ϑ + FL,ϑ, ER,ϑ + FR,ϑ], (2.1)

[kE]ϑ = [kEL,ϑ, kER,ϑ], (2.2)[
E

F

]
ϑ

=
(

min {EL,ϑFL,ϑ
,
EL,ϑ
FR,ϑ

,
ER,ϑ
FL,ϑ

,
ER,ϑ
FR,ϑ
}, max {EL,ϑFL,ϑ

,
EL,ϑ
FR,ϑ

,
ER,ϑ
FL,ϑ

,
ER,ϑ
FR,ϑ
}
)
,

[F ]ϑ 6= 0,

(2.3)

[EF ]ϑ =


(min {EL,ϑFL,ϑ, EL,ϑFR,ϑ, ER,ϑFL,ϑ, ER,ϑFR,ϑ},

max {EL,ϑFL,ϑ, EL,ϑFR,ϑ, ER,ϑFL,ϑ, ER,ϑFR,ϑ}}).
(2.4)

All fuzzy numbers, along with addition and scalar
multiplication defined in (2.1) and (2.2), form a
collection denoted by <F (where <+

F represents
positive fuzzy numbers).

The definition of the metric space can be given as:

Definition 2.2. [34] Let E,F ∈ <F , the definition of
distance is given as follows:

D(E,F ) = sup
ϑ∈[0,1]

max{|EL,ϑ − FL,ϑ|, |ER,ϑ − FR,ϑ|}.

(2.5)
Similarly, the norm of a set E in fuzzy space is defined as
follows:

‖E‖ = sup
ϑ∈(0,1]

max{|EL,ϑ|, |ER,ϑ|}.

It is evident that the metric space (<F , D) is complete.

Definition 2.3. [23] Let E,F ∈ <F with ϑ-cuts [E]ϑ =
[EL,ϑ, ER,ϑ], [F ]ϑ = [FL,ϑ, FR,ϑ], 0 /∈ [F ]ϑ, ∀ϑ ∈ [0, 1].
Then the g-division ÷g is an operational rule used for
calculating fuzzy number U = E ÷g F with ϑ−cuts
[U ]ϑ = [UL,ϑ, UR,ϑ](where [U ]−1

ϑ = [1/UR,ϑ, 1/UL,ϑ])
defined by

[U ]ϑ = [E]ϑ ÷g [F ]ϑ ⇐⇒


(i) [E]ϑ = [F ]ϑ[E]ϑ,
or
(ii) [F ]ϑ = [E]ϑ[U ]−1

ϑ ,
(2.6)
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if U represents a proper fuzzy number (where UL,1 ≤ UR,1,
UL,ϑ is nondecreasing, UR,ϑ is nonincreasing).

Remark 2.1. Based on the reference [23], let the fuzzy
numbers E and F is positive, while U ∈ <+

F , if E ÷g F =
U ∈ <+

F exists, then case (i) and (ii) may occur
Case (i). if EL,ϑFR,ϑ ≤ ER,ϑFL,ϑ,∀ϑ ∈ [0, 1], then
UL,ϑ =

EL,ϑ
FL,ϑ

, UR,ϑ =
ER,ϑ
FR,ϑ ,

Case (ii). if EL,ϑFR,ϑ ≥ ER,ϑFL,ϑ,∀ϑ ∈ [0, 1], then
UL,ϑ =

ER,ϑ
FR,ϑ

, UR,ϑ =
EL,ϑ
FL,ϑ .

Definition 2.4.(see [21, 27]) Assume there existsQ,H ∈
R+ satisfy

supp an ⊂ [Q,∞)(resp. supp an ⊂ (0, H]), n ∈ N+,

then sequence of positive fuzzy numbers {an} is persistent
(resp. bounded).

If Q > 0, H > 0 satisfy

supp an ⊂ [Q,H], n ∈ N+.

Then sequence {an} is bounded and persistence.

Furthermore, if there exists sequence ‖an‖, n ∈ N+, is
an unbounded norm, then sequence {an}, n ∈ N+ is
unbounded.

Definition 2.5. [2] a ∈ <+
F is known as a positive

equilibrium of the model (1.10) if it satisfies

a =
D + Pe−a

T + a2

Let an, a ∈ <+
F , n ∈ N, an → a as n → ∞ if

limn→∞D(an, a) = 0.

Definition 2.6. (see [35]) If u−(ϑ) and u+(ϑ) satisfy
the condition [u]ϑ = [u−(ϑ), u+(ϑ)] and the following
three properties, where u ∈ <F , ϑ ∈ (0, 1], so we know
u−(ϑ), u+(ϑ) are functions defined on the interval (0,1].

(i) u−(ϑ) is nondecreasing and left continuous;

(ii) u+(ϑ) is nonincreasing and left continuous;

(iii) u−(1) ≤ u+(1).

This definition implies that for any functions f(ϑ) and g(ϑ)
defined on the interval (0,1], if they satisfy the properties
(i)-(iii) above, then ∃ u∈ <F satisfies [u]ϑ = [f(ϑ), g(ϑ)]
for ϑ ∈ (0, 1].

Lemma 2.1. (see [2]) Let differentiable functions f: I2
b ×

I2
c → Ib and g: I2

b × I2
c → Ic be continuous, the following

discrete dynamical system
bn+1 = f(bn, bn−1, cn, cn−1),

cn+1 = g(bn, bn−1, cn, cn−1)
n = 0, 1, 2, · · · ,(2.7)

has a unique solution (bi, ci)
+∞
i=−1, where the initial

conditions (bi, ci) ∈ Ib × Ic for i= -1, 0.

Consider the system (2.7), (b, c) is called it’s equilibrium
point (or fixed point ) if it satisfies

b = f(b, b, c, c), c = g(b, b, c, c).

Lemma 2.2. (see [36]) Let functions f: Ib× Ic → Ib and
g: Ib× Ic → Ic be continuous, where Ib× Ic= [s,t]×[u,v]
be real intervals, for initial conditions (bi, ci) ∈ Ib×Ic, i=-1,
0, consider the system (2.7), if the following propositions
(i)-(iii) are correct.

(i) f(b,c) is nonincreasing in both arguments b, c.

(ii) g(b,c) is nonincreasing in both arguments b, c.

(iii) Let us assume (m1,M1,m2,M2) ∈ Ib×Ic is a solution
of the following system

M1 = f(m1,m2), m1 = f(M1,M2),

M2 = g(m1,m2), m2 = g(M1,M2),
(2.8)

such that m1 = M1 and m2 = M2. Thus, the system
(2.7) has unique positive equilibrium (b, c) such that
limn→∞(bn, cn) = (b, c). The equilibrium (b, c) is also
called global attractor if limn→∞(bn, cn) = (b, c).

Lemma 2.3. (see [16, 32]) Suppose a recursive sequence
an+1 = f(an), n ∈ N , lead to a denotes a equilibrium of
function f. Then we say that a is locally asymptotically stable
if any root of the Jacobian matrix Jf about equilibrium a
lie inside the open unit disk |λ| < 1. If at least one of these
roots has a modulus greater than one, then the equilibrium
a is unstable.

Definition 2.7. [34]A triangular fuzzy number is a triplet
Z = (ξ, ζ, η) with the membership function

Z(a) =



0, a ≤ ξ;
a−ξ
ζ−ξ , ξ ≤ a ≤ ζ;

1, a = ζ;
η−a
η−ζ , ζ ≤ a ≤ η;

0, a ≥ η.
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The ϑ-cuts of Z = (ξ, ζ, η) are defined by [Z]ϑ =
{a ∈ R : Z(a) ≥ ϑ} = [ξ + ϑ(ζ − ξ), η − ϑ(η − ζ)] =
[ZL,ϑ, ZR,ϑ], ϑ ∈ [0, 1]. From which we know [Z]ϑ are
closed intervals. Moreover, the function Z is known as
a positive fuzzy number if the suppZ ⊂ (0,∞).

Theorem 2.1. STACKING THEOREM [34] Let {Zϑ :
ϑ ∈ [0, 1]} represents a not empty, convex and compact
subset family of Rn satisfies the following properties:

(i) ∪Zϑ ⊂ Z0.

(ii) Zϑ2 ⊂ Zϑ1 , if ϑ1 ≤ ϑ2.

(iii) Zϑ = ∩t≥1Zϑt if ϑt ↑ ϑ > 0.

Then we have u∈ RnF such that [u]ϑ = Zϑ, for ∀ϑ ∈ (0, 1]
and [u]0 = ∪0<ϑ≤1Zϑ ⊂ Z0.

3 Main results
3.1 Existence of positive solution of the model

(1.10)
In this section, the existence of the solutions to an
exponential-type fuzzy model (1.10) of order two is
discussed. Firstly, the following lemma is presented,
the lemma provided below is crucial for the derivation
of Theorem 3.1.

Lemma 3.1. [27] Let f : R+ ×R+ ×R+ ×R+ → R+

be continuous, A,A0, A1, A2 ∈ <F . Then

ϑ = f([A]ϑ, [A0]ϑ, [A1]ϑ, [A2]ϑ),

ϑ ∈ (0, 1].
(3.1)

Theorem 3.1. Consider model (1.10), in which
D,P ∈ <+

F . Then for a−1, a0 ∈ <+
F , then the fuzzy

model (1.10) exists unique positive solution an.
Proof. Let {an} denote a sequence of positive fuzzy
numbers such that the fuzzy model (1.10) holds true
with initial conditions a−1, a0. To take into account the
ϑ−cuts, for ϑ ∈ (0, 1], one has


[D]ϑ = [DL,ϑ, DR,ϑ], [P ]ϑ = [PL,ϑ, PR,ϑ],

n = 0, 1, 2, · · ·
[T ]ϑ = [TL,ϑ, TR,ϑ], [an]ϑ = [an,L,ϑ, an,R,ϑ].

(3.2)

From (1.10), (3.2) and applying Lemma 3.1, one has

ϑ = [an+1,L,ϑ, an+1,R,ϑ] =

[
D + Pe−an

T + a2
n−1

]
ϑ

=
[D]ϑ + [P ]ϑ × [e−an ]ϑ

[T ]ϑ + [a2
n−1]ϑ

=
[DL,ϑ + PL,ϑe

−an,R,ϑ , DR,ϑ + PR,ϑe
−an,L,ϑ ]

[TL,ϑ + a2
n−1,L,ϑ, TR,ϑ + a2

n−1,R,ϑ]
.

(3.3)
Based on the g-division of fuzzy numbers, and noting
Remark 2.1, we can easily deduce that either case (i)
or case (ii) occurs.
Case (i)

ϑ =[an+1,L,ϑ, an+1,R,ϑ]

=

[
DL,ϑ + PL,ϑe

−an,R,ϑ

TL,ϑ + a2
n−1,L,ϑ

,

DR,ϑ + PR,ϑe
−an,L,ϑ

TR,ϑ + a2
n−1,R,ϑ

]
.

(3.4)

Case (ii)

ϑ =[an+1,L,ϑ, an+1,R,ϑ]

=

[
DR,ϑ + PR,ϑe

−an,L,ϑ

TR,ϑ + a2
n−1,R,ϑ

,

DL,ϑ + PL,ϑe
−an,R,ϑ

TL,ϑ + a2
n−1,L,ϑ

]
.

(3.5)

Suppose Case (i) occurs, that is, DL,ϑ+PL,ϑe
−an,R,ϑ

DR,ϑ+PR,ϑe
−an,L,ϑ ≤

TL,ϑ+a2n−1,L,ϑ

TR,ϑ+a2n−1,R,ϑ
, for n = 0, 1, · · · , from (3.3), one gets, for

β ∈ (0, 1]

an+1,L,ϑ =
DL,ϑ + PL,ϑe

−an,R,ϑ

TL,ϑ + a2
n−1,L,ϑ

,

an+1,R,ϑ =
DR,ϑ + PR,ϑe

−an,L,ϑ

TR,ϑ + a2
n−1,R,ϑ

.

(3.6)

Thus, we can suppose that for arbitrary initial
conditions (aj,L,ϑ, aj,R,ϑ), j = −1, 0, ϑ ∈ (0, 1], from
which it has a unique solution (an,L,ϑ, an,R,ϑ). Next, we
will demonstrate that [an,L,ϑ, an,R,ϑ], ϑ ∈ (0, 1], where
(an,L,ϑ, an,R,ϑ) is the solution of system (3.5) with
initial conditions (aj,L,ϑ, aj,R,ϑ), j = −1, 0, determines
the solution an of (1.10) with initial conditions a−1, a0

such that

[an]ϑ = [an,L,ϑ, an,R,ϑ], ϑ ∈ (0, 1], n = 0, 1, 2, · · · .
(3.7)
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From [19], and since aj ∈ <+
F , j = −1, 0, for ϑ1, ϑ2 ∈

(0, 1] with ϑ1 ≤ ϑ2, we have

0 < aj,L,ϑ1 ≤ aj,L,ϑ2 ≤ aj,R,ϑ2 ≤ aj,R,ϑ1 , j = −1, 0.
(3.8)

We claim that

an,L,ϑ1 ≤ an,L,ϑ2 ≤ an,R,ϑ2 ≤ an,R,ϑ1 , n = 0, 1, 2, · · · .
(3.9)

Working inductively. From (3.7), we can deduce that
(3.8) holds true for n = 0, 1, · · · . Assume (3.8) holds
true for n ≤ k, k ∈ N+. According to (3.5) and (3.7),
for n=k+1, then we can get

ak+1,L,ϑ1 =
DL,ϑ1 + PL,ϑ1e

−ak,R,ϑ1

TL,ϑ1 + a2
k−1,L,ϑ1

≤
DL,ϑ2 + PL,ϑ2e

−ak,R,ϑ2

TL,ϑ2 + a2
k−1,L,ϑ2

= ak+1,L,ϑ2 =
DL,ϑ2 + PL,ϑ2e

−ak,R,ϑ2

TL,ϑ2 + a2
k−1,L,ϑ2

≤
DR,ϑ2 + PR,ϑ2e

−ak,L,ϑ2

TR,ϑ2 + a2
k−1,R,ϑ2

= ak+1,R,ϑ2

=
DR,ϑ2 + PR,ϑ2e

−ak,L,ϑ2

TR,ϑ2 + a2
k−1,R,ϑ2

≤
DR,ϑ1 + PR,ϑ1e

−ak,L,ϑ1

TR,ϑ1 + a2
k−1,R,ϑ1

= ak+1,R,ϑ1 .

Therefore, (3.8) satisfies. Moreover, from (3.5)we have

a1,L,ϑ =
DL,ϑ + PL,ϑe

−a0,R,ϑ

TL,ϑ + a2
−1,L,ϑ

,

a1,R,ϑ =
DR,ϑ + PR,ϑe

−a0,L,ϑ

TR,ϑ + a2
−1,R,ϑ

, ϑ ∈ (0, 1].

(3.10)

Since the initial conditions aj ∈ <+
F , j ∈ {−1, 0}, and

parameter D, P, T ∈ <+
F , then a0,L,ϑ, a0,R,ϑ,

a−1,L,ϑ and a−1,R,ϑ are left continuous. Then from
(3.9), one gets that a1,L,ϑ, a1,R,ϑ are also left continuous,
in the same way as the proof of (3.8), one gets
an,L,ϑ, an,R,ϑ, n ∈ N+ are left continuous.

Now, we show supp an =
⋃
ϑ∈(0,1][an,L,ϑ, an,R,ϑ] is

compact. Noting
⋃
ϑ∈(0,1][an,L,ϑ, an,R,ϑ] is bounded.

Additionally, since aj , j = −1, 0 and D,P, T ∈ <+
F ,

let positive integersMD, ND, NP ,MP ,
MT , NT ,Mj , Nj , j = −1, 0 satisfy, for ∀ϑ ∈ (0, 1],

[DL,ϑ, DR,ϑ] ⊂ [MD, ND],

[PL,ϑ, PR,ϑ] ⊂ [MP , NP ],

[TL,ϑ, TR,ϑ] ⊂ [MT , NT ],

[aj,L,ϑ, aj,R,ϑ] ⊂ [Mj , Nj ], j = −1, 0.

(3.11)

Hence, it follows from (3.9) and (3.10) that

⊂
[
MD +MP e

−N0

NT +N2
−1

,
ND +NP e

−M0

MT +M2
−1

]
,

ϑ ∈ (0, 1].

(3.12)

From which, it follows that⋃
ϑ∈(0,1]

[a1,L,ϑ, a1,R,ϑ] ⊂
[
MD +MP e

−N0

NT +N2
−1

,
ND +NP e

−M0

MT +M2
−1

]
,

ϑ ∈ (0, 1].
(3.13)

Therefore, it follows from (3.12) that⋃
ϑ∈(0,1][a1,L,ϑ, a1,R,ϑ] is compact and⋃
ϑ∈(0,1][a1,L,ϑ, a1,R,ϑ] ⊂ (0,∞). Deducing inductively

it can easily get that
⋃
ϑ∈(0,1][an,L,ϑ, an,R,ϑ] is compact,

and⋃
ϑ∈(0,1]

[an,L,ϑ, an,R,ϑ] ⊂ (0,∞), n = 1, 2, · · · . (3.14)

Hence, from (3.8), (3.13), and since [an,L,ϑ, an,R,ϑ] are
left continuous, one has [an,L,ϑ, an,R,ϑ] determines a
sequence of positive fuzzy numbers {an} lead to (3.6)
is valid.

We shall now show that for arbitrary initial conditions
a−1, a0, the sequence an determines the solution of the
model (1.10). Since for ∀ϑ ∈ (0, 1], one has

ϑ = [an,L,ϑ, an,R,ϑ]

=

[
DL,ϑ + PL,ϑe

−an,R,ϑ

TL,ϑ + a2
n−1,L,ϑ

,
DR,ϑ + PR,ϑe

−an,L,ϑ

TR,ϑ + a2
n−1,R,ϑ

]

=
[DL,ϑ + PL,ϑe

−an,R,ϑ , DR,ϑ + PR,ϑe
−an,L,ϑ ]

[TL,ϑ + a2
n−1,L,ϑ, TR,ϑ + a2

n−1,R,ϑ]

=
[D]ϑ + [P ]ϑ × [e−an ]ϑ

[T ]ϑ + [a2
n−1]ϑ

=

[
D + Pe−an

T + a2
n−1

]
ϑ

,

(3.15)
from which we can conclude for arbitrary initial
conditions a−1, a0, the sequence an makes certain the
solution of the model (1.10).

Additionally, for arbitrary initial conditions a−1, a0, if
fuzzy equation (1.10) also has another positive fuzzy
solution an, from which we obtain for n ∈ N+

[an]ϑ = [an,L,ϑ, an,R,ϑ], ϑ ∈ (0, 1]. (3.16)

Then from (3.6) and (3.14), one has [an]ϑ = [an]ϑ, n =
0, 1, 2, · · · , ϑ ∈ (0, 1], so for n = 0, 1, · · · we can deduce
that an = an.

Assuming Case (ii) holds, we omit it’s proof since it
can be proven similarly based on Case (i). Therefore,
Theorem 3.1 is proved. This completes the proof.
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3.2 Dynamics of fuzzy difference equation (1.10)

To discuss the dynamical properties of the model
(1.10), it is necessary to consider the corresponding
ordinary difference equation system. We will examine
the two previously mentioned cases, i.e., Case (i) and
Case (ii) by using the generalized division of fuzzy
numbers.

In the following, we need to present the following
several Lemmas, which are essential for our
subsequent discussion if Case (i) holds.

Lemma 3.2 Consider the following system with constant
parameters

bn+1 =
α+ βe−cn

γ + b2n−1

, cn+1 =
α1 + β1e

−bn

γ1 + c2
n−1

, n ∈ N,

(3.17)
here α, α1, β, β1, γ, γ1, b−1, b0, c−1, c0 ∈ (0,+∞). If h =

α+βe
−α1+β1

γ1

γ+(α+β
γ

)2
, q = α1+β1e

−α+β
γ

γ1+(
α1+β1
γ1

)2
, H = α+β

γ , Q = α1+β1
γ1

.

Then we can obtain the following correct conclusions.

(i) All positive solutions (bn, cn) of system (3.15) are
bounded and persistent.

(ii) System (3.15) has a unique positive equilibrium (b, c) ∈
[h,H]× [q,Q],

if

γ+3
(
α+β
γ

)2α+βe−α1+β1
γ1

γ+(α+βγ )
2

γ+

α+βe
−α1+β1

γ1

γ+(α+βγ )
2

2
−α

 ln

 β

α+β
γ

(
γ+(α+βγ )

2
)
−α



<

γ1+

ln

 β

α+β
γ

(
γ+(α+βγ )

2
)
−α

2

γ1+3

ln


β

α+βe
−α1+β1

γ1

γ+(α+βγ )
2

γ+
α+βe−

α1+β1
γ1

γ+(α+βγ )
2


2−α





2 ,

(3.18)
and

γ1+3
(
α1+β1
γ1

)2
 α1+β1e

−α+β
γ

γ1+

(
α1+β1
γ1

)2
γ1+

 α1+β1e
−α+β

γ

γ1+

(
α1+β1
γ1

)2


2−α1

 ln

 β1

α1+β1
γ1

(
γ1+

(
α1+β1
γ1

)2)
−α1



<

γ+

ln

 β1

α1+β1
γ1

(
γ1+

(
α1+β1
γ1

)2)
−α1




2

γ+3


ln


β1

α1+β1e
−α+β

γ

γ1+

(
α1+β1
γ1

)2
γ1+

 α1+β1e
−α+β

γ

γ1+

(
α1+β1
γ1

)2


2−α1





2 .

(3.19)

Proof. (i) Suppose system (3.15) has arbitrary positive
solution (bn, cn), according to (3.15), we can deduce
that

bn ≤
α+ β

γ
= H, cn ≤

α1 + β1

γ1
= Q, (3.20)

From (3.15) and (3.18), we conclude for n = 0, 1, 2, · · ·
that

bn ≥
α+ βe

−α1+β1
γ1

γ + (α+β
γ )2

= h,

cn ≥
α1 + β1e

−α+β
γ

γ1 + (α1+β1
γ1

)2
= q.

(3.21)

Then, by combining (3.18) and (3.19), one has

h ≤ bn ≤ H, q ≤ cn ≤ Q.

From the above arguments, it follows that the assertion
is true.

(ii) Consider algebraic system

b =
α+ βe−c

γ + b2
, c =

α1 + β1e
−b

γ1 + c2
. (3.22)

Through transformation and simplification, by virtue
of (3.20), one has

e−c =
b(γ + b2)− α

β
, e−b =

c(γ1 + c2)− α1

β1
. (3.23)

Assume that (b, c) ∈ (h,H] × (q,Q], based on (3.21),
then we can get that

c = ln

[
β

b(γ + b2)− α

]
, b = ln

[
β1

c(γ1 + c2)− α1

]
.

(3.24)
Let c=f(b)=ln

[
β

b(γ+b2)−α

]
, b ∈ (h,H], and denoting

F (b) = ln

[
β1

f(b)(γ1 + f2(b))− α1

]
− b. (3.25)
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Then

f ′(b) =
df(b)

db
= − γ + 3b2

b(γ + b2)− α
, (3.26)

from (3.16), (3.23) and (3.24), we have

F ′(b) =
dF (b)

db
= − f ′(b)(γ1 + 3f2(b))

f(b)(γ1 + f2(b))− α1
− 1

=

γ+3b2

b(γ+b2)−α

(
γ1 + 3

(
ln[ β

b(γ+b2)−α ]
)2
)

ln
[

β
b(γ+b2)−α

](
γ1 +

(
ln
[

β
b(γ+b2)−α

])2
) − 1

≤

γ+3H2

h(γ+h2)−α

(
γ1 + 3

(
ln[ β

h(γ+h2)−α ]
)2
)

ln
[

β
H(γ+H2)−α

](
γ1 +

(
ln
[

β
H(γ+H2)−α

])2
) − 1

=

γ+3
(
α+β
γ

)2
α+βe

−α1+β1
γ1

γ+(α+βγ )
2

γ+

α+βe
−α1+β1

γ1

γ+(α+βγ )
2

2
−α

γ1 + 3

ln

 β

α+βe
−α1+β1

γ1

γ+(α+βγ )
2

γ+

α+βe
−α1+β1

γ1

γ+(α+βγ )
2

2
−α




2
ln

 β

α+β
γ

(
γ+
(
α+β
γ

)2)
−α

γ1 +

(
ln

[
β

α+β
γ

(γ+
(
α+β
γ

)2
)−α

])2
 − 1

< 0.

(3.27)
Therefore, the function F(b)=0 is monotonically
decreasing in the interval [h,H]. Additionally, from
(3.18), (3.19) and (3.23), we can obtain

F (h) = ln

[
β1

f(h)(γ1 + f2(h))− α1

]
− h > 0, (3.28)

if and only if

ln

[
β1

(
ln
[

β
h(γ+h2)−α

](
γ1 +

(
ln
[

β
h(γ+h2)−α

])2
)
− α1

)−1
]
> h,

F (H) = ln

[
β1

f(H)(γ1 + f2(H))− α1

]
−H < 0,

(3.29)
if and only if

ln

[
β1

(
ln
[

β
H(γ+H2)−α

](
γ1 +

(
ln
[

β
H(γ+H2)−α

])2
)
− α1

)−1
]
< H.

Therefore, F (b) has at least a positive solution b ∈
[h,H]. From which we know F(b)=0 has a unique
positive equilibrium b ∈ [h,H]. In the same way, we
can get that F (c) = 0 has a unique positive equilibrium
c ∈ [q,Q] if inequality (3.17) holds true.

Lemma 3.3 Consider the constant parameters system
(3.15), if the positive equilibrium

(b, c) ∈

h =
α+ βe

−α1+β1
γ1

γ + (α+β
γ )2

, H =
α+ β

γ


×

[
q =

α1 + β1e
−α+β

γ

γ1 + (α1+β1
γ1

)2
, Q =

α1 + β1

γ1

]
.

Then we can obtain the following correct conclusions.

(i) If

2(α+β)2

γ3
+ 2(α1+β1)2

γ31
+ 4(α+β)2(α1+β1)2

γ3γ31
+ ββ1

γ1γ
< 1.

(3.30)
Then the positive equilibrium (b, c) of the system (3.15) is
locally asymptotically stable.

(ii) The unique positive equilibrium (b, c) of the system
(3.15) is a global attractor [39, 41]. If

2(α+ β)

γ

α+ βe
−α1+β1e

−α+β
γ

γ1+(
α1+β1
γ1

)2


≥

γ +

α+ βe
−α1+β1

γ1

γ + (α+β
γ )2

22

,

(3.31)

and

2(α1 + β1)

γ1

α1 + β1e
−α+βe

−α1+β1
γ1

γ+(
α+β
γ )2


≥

γ1 +

(
α1 + β1e

−α+β
γ

γ1 + (α1+β1
γ1

)2

)2
2

.

(3.32)

(iii) If (i) and (ii) hold true, then (b, c) is global
asymptotically stable.

Proof. (i) Using statement (ii) of Lemma 3.2, the
linearized equation of the system (3.15) around the
fixed points (b, c) can be expressed below

Zn+1 = DZn, (3.33)

where Zn = (bn, bn−1, cn, cn−1)T , and the Jacobian
matrix D(b,c) of the system (3.15) around the
equilibrium (b, c) can be expressed below

D(b,c) =


0 −2b(α+βe−c)

(γ+b
2
)2

− βe−c

γ+b
2 0

1 0 0 0

− β1e−b

γ1+c2
0 0 −2c(α1+β1e−b)

(γ1+c2)2

0 0 1 0

 .

Then the characteristic polynomial of (3.15) around
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(b, c) is given as follows

f(λ) =λ4 −

(
−2b(α+ βe−c)

(γ + b
2
)2

− 2c(α1 + β1e
−b)

(γ1 + c2)2

+
βe−c

γ + b
2

β1e
−b

γ1 + c2

)
λ2

+
2b(α+ βe−c)

(γ + b
2
)2

2c(α1 + β1e
−b)

(γ1 + c2)2

= 0.
(3.34)

Assuming condition (3.28) holds true, we obtain∣∣∣∣∣−2b(α+ βe−c)

(γ + b
2
)2

− 2c(α1 + β1e
−b)

(γ1 + c2)2
+

βe−c

γ + b
2

β1e
−b

γ1 + c2

∣∣∣∣∣
+

2b(α+ βe−c)

(γ + b
2
)2

2c(α1 + β1e
−b)

(γ1 + c2)2

≤2b(α+ βe−c)

(γ + b
2
)2

+
2c(α1 + β1e

−b)

(γ1 + c2)2

+
βe−c

γ + b
2

β1e
−b

γ1 + c2 +
2b(α+ βe−c)

(γ + b
2
)2

2c(α1 + β1e
−b)

(γ1 + c2)2

≤2b(α+ β)

γ2
+

2c(α1 + β1)

γ2
1

+
ββ1

γ1γ
+

2b(α+ β)

γ2

2c(α1 + β1)

γ2
1

≤2(α+ β)2

γ3
+

2(α1 + β1)2

γ3
1

+
4(α+ β)2(α1 + β1)2

γ3γ3
1

+
ββ1

γ1γ

<1.

(3.35)

Based on Theorem 1.2.1 of book [1], every root of
(3.32) lie inside the unit disk |λ| < 1. Thus (i) has
proven.

(ii) Let

f(b, c) =
α+ βe−c

γ + b2
, g(b, c) =

α1 + β1e
−b

γ1 + c2
. (3.36)

From (3.33), we can deduce that f ′(b) and g′(b) are
both less than zero. Similarly, f ′(c) and g′(c) are also
less than zero. Thus we know functions f(b,c) and
g(b,c) are all nonincreasing in both b and c.

According to Lemma 2.2. and (3.33), we have
M1 = α+βe−m2

γ+m2
1
, m1 = α+βe−M2

γ+M2
1

M2 = α1+β1e−m1

γ1+m2
2

, m2 = α1+β1e−M1

γ1+M2
2

. (3.37)

Additionally, we can present arguments analogous to
those employed in the proof of Theorem 1.16 from [36],
let us assume that

H ≥M1 ≥ m1 ≥ h, Q ≥M2 ≥ m2 ≥ q. (3.38)

From (3.34), we obtain

m1 −M1 =
α(m2

1 −M2
1 ) + βγ(e−M2 − e−m2)

(γ +M2
1 )(γ +m2

1)

+
β(m2

1e
−M2 −M2

1 e
−m2)

(γ +M2
1 )(γ +m2

1)
.

Since M2 ≥ m2, then we can conclude that e−m2 ≥
e−M2 , so it follows that

m1 −M1 ≤
2H(α+ βe−q)

(γ + h2)2 (m1 −M1). (3.39)

From (3.36), if (3.29) holds true, we can deduce that
m1 ≥M1. Since from (3.35), i.e.,m1 ≤M1, so we can
getm1 = M1. Of course, in the sameway, we can easily
show thatm2 = M2 if (3.30) holds true. Thus, based
on Lemma 2.2., the unique positive equilibrium (b, c)
is a global attractor.

(iii) From (i) and (ii), the conclusion is clearly true.
Thus, the Lemma 3.3 has been proven.

Theorem 3.2 Consider FDE (1.10), in which D,P ∈ <+
F ,

and a−1, a0 ∈ <+
F . If

DL,ϑ + PL,ϑe
−an,R,ϑ

DR,ϑ + PR,ϑe
−an,L,ϑ ≤

TL,ϑ + a2
n−1,L,ϑ

TR,ϑ + a2
n−1,R,ϑ

,

ϑ ∈ (0, 1], n = 0, 1, 2, · · · .
(3.40)

Thus we have the following three correct propositions.

(i) All positive solution an of the model (1.10) are bounded
and persistent.

(ii) The exponential-type fuzzy model (1.10) has a single
positive equilibrium a, for ϑ ∈ (0, 1], if

TL,ϑ+3

(
DL,ϑ+PL,ϑ

TL,ϑ

)2

DL,ϑ+PL,ϑe
−
DR,ϑ+PR,ϑ

TR,ϑ

TL,ϑ+

(
DL,ϑ+PL,ϑ

TL,ϑ

)2
TL,ϑ+

DL,ϑ+PL,ϑe
−
DR,ϑ+PR,ϑ

TR,ϑ

TL,ϑ+

(
DL,ϑ+PL,ϑ

TL,ϑ

)2


2
−DL,ϑ



× 1

ln

 PL,ϑ

DL,ϑ+PL,ϑ
TL,ϑ

(
TL,ϑ+

(
DL,ϑ+PL,ϑ

TL,ϑ

)2
)
−DL,ϑ



<

TR,ϑ+

ln

 PL,ϑ

DL,ϑ+PL,ϑ
TL,ϑ

(
TL,ϑ+

(
DL,ϑ+PL,ϑ

TL,ϑ

)2)
−DL,ϑ




2

TR,ϑ+3


ln


PL,ϑ

DL,ϑ+PL,ϑe
−
DR,ϑ+PR,ϑ

TR,ϑ

TL,ϑ+

(
DL,ϑ+PL,ϑ

TL,ϑ

)2
TL,ϑ+


DL,ϑ+PL,ϑe

−
DR,ϑ+PR,ϑ

TR,ϑ

TL,ϑ+

(
DL,ϑ+PL,ϑ

TL,ϑ

)2


2−DL,ϑ





2 ,

(3.41)
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and

TR,ϑ+3

(
DR,ϑ+PR,ϑ

TR,ϑ

)2

DR,ϑ+PR,ϑe
−
DL,ϑ+PL,ϑ

TL,ϑ

TR,ϑ+

(
DR,ϑ+PR,ϑ

TR,ϑ

)2
TR,ϑ+

DR,ϑ+PR,ϑe
−
DL,ϑ+PL,ϑ

TL,ϑ

TR,ϑ+

(
DR,ϑ+PR,ϑ

TR,ϑ

)2


2
−DR,ϑ



× 1

ln

 PR,ϑ

DR,ϑ+PR,ϑ
TR,ϑ

(
TR,ϑ+

(
DR,ϑ+PR,ϑ

TR,ϑ

)2
)
−DR,ϑ



<

TL,ϑ+

ln

 PR,ϑ

DR,ϑ+PR,ϑ
TR,ϑ

(
TR,ϑ+

(
DR,ϑ+PR,ϑ

TR,ϑ

)2)
−DR,ϑ




2

TL,ϑ+3


ln


PR,ϑ

DR,ϑ+PR,ϑe
−
DL,ϑ+PL,ϑ

TL,ϑ

TR,ϑ+

(
DR,ϑ+PR,ϑ

TR,ϑ

)2
TR,ϑ+


DR,ϑ+PR,ϑe

−
DL,ϑ+PL,ϑ

TL,ϑ

TR,ϑ+

(
DR,ϑ+PR,ϑ

TR,ϑ

)2


2−DR,ϑ





2 .

(3.42)

(iii) All positive solution an of the model (1.10) converge
to the single equilibrium a when n is sufficiently large, for
ϑ ∈ (0, 1], if

2(DL,ϑ + PL,ϑ)

TL,ϑ

DL,ϑ + PL,ϑe

−
DR,ϑ+PR,ϑe

−
DL,ϑ+PL,ϑ

TL,ϑ

TR,ϑ+

(
DR,ϑ+PR,ϑ

TR,ϑ

)2


≥

TL,ϑ +

DL,ϑ + PL,ϑe
−
DR,ϑ+PR,ϑ

TR,ϑ

TL,ϑ +
(
DL,ϑ+PL,ϑ

TL,ϑ

)2


2

2

,

(3.43)
and

2(DR,ϑ + PR,ϑ)

TR,ϑ

DR,ϑ + PR,ϑe

−
DL,ϑ+PL,ϑe

−
DR,ϑ+PR,ϑ

TR,ϑ

TL,ϑ+

(
DL,ϑ+PL,ϑ

TL,ϑ

)2


≥

TR,ϑ +

DR,ϑ + PR,ϑe
−
DL,ϑ+PL,ϑ

TL,ϑ

TR,ϑ +
(
DR,ϑ+PR,ϑ

TR,ϑ

)2


2

2

.

(3.44)

Proof. (i) Let’s assume an denotes a positive solution
of the model (1.10), if (3.10) and (3.37) holds true, by

virtue of Lemma 3.2. From (3.5) it follows that

an,L,ϑ ≥
DL,ϑ + PL,ϑe

−
DR,ϑ+PR,ϑ

TR,ϑ

TL,ϑ +
(
DL,ϑ+PL,ϑ

TL,ϑ

)2

≥ MD +MP e
−ND+NP

MT

NT +
(
ND+NP
MT

)2 =: Φ,

an,R,ϑ ≤
DR,ϑ + PR,ϑ

TR,ϑ
≤ ND +NP

MT
=: Φ.

(3.45)

Then from (3.42), we get

[an]ϑ ⊂ [an,L,ϑ, an,R,ϑ] ⊂ [φ,Φ]. (3.46)

From (3.42) and (3.43), we have⋃
ϑ∈(0,1][an,L,ϑ, an,R,ϑ] ⊂ [φ,Φ], and so⋃
ϑ∈(0,1][an,L,ϑ, an,R,ϑ] ⊂ [φ,Φ]. Thus an is bounded

and persistent. It is clear that (i) has been proven.

(ii) If (3.38) and (3.39) are valid, consider the following
system

aL,ϑ =
DL,ϑ + PL,ϑe

−aR,ϑ

TL,ϑ + a2
L,ϑ

,

aR,ϑ =
DR,ϑ + PR,ϑe

−aL,ϑ

TR,ϑ + a2
R,ϑ

, ϑ ∈ (0, 1],

(3.47)

from (3.10), (3.44) and Lemma 3.2 , we can get that

DL,ϑ + PL,ϑe
−
DR,ϑ+PR,ϑ

TR,ϑ

TL,ϑ + (
DL,ϑ+PL,ϑ

TL,ϑ
)2

≤ aL,ϑ ≤
DL,ϑ + PL,ϑ

TL,ϑ
,

(3.48)

DR,ϑ + PR,ϑe
−
DL,ϑ+PL,ϑ

TL,ϑ

TR,ϑ + (
DR,ϑ+PR,ϑ

TR,ϑ
)2

≤ aR,ϑ ≤
DR,ϑ + PR,ϑ

TR,ϑ
.

Assume that the model (1.10) exists a positive solution
an such that [an]ϑ = [an,L,ϑ, an,R,ϑ], for n ∈ N,ϑ ∈
(0, 1]. If (3.37) holds true, we obtain

an+1,L,ϑ =
DL,ϑ + PL,ϑe

−an,R,ϑ

TL,ϑ + a2
n−1,L,ϑ

,

an+1,R,ϑ =
DR,ϑ + PR,ϑe

−an,L,ϑ

TR,ϑ + a2
n−1,R,ϑ

, ϑ ∈ (0, 1].

(3.49)

From (3.38), (3.39) and (3.40), by employing lemma
3.2 and lemma 3.3, we deduce for n = 0, 1, 2, · · ·
that (3.46) exists a unique positive equilibrium
(aL,ϑ, aR,ϑ), ϑ ∈ (0, 1], such that

lim
n→∞

an,L,ϑ = aL,ϑ, lim
n→∞

an,R,ϑ = aR,ϑ. (3.50)
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From (3.42) and (3.45), one has for 0 < ϑ1 ≤ ϑ2 < 1

0 < aL,ϑ1 ≤ aL,ϑ2 ≤ aR,ϑ2 ≤ aR,ϑ1 . (3.51)

Since DL,ϑ, PL,ϑ, TL,ϑ, DR,ϑ, PR,ϑ, TR,ϑ, are left
continuous, based on (3.44), we know aL,ϑ, aR,ϑ are
also left continuous.

Therefore, from (3.10) and (3.45), we obtain

aR,ϑ ≤
ND +NP

NT
=: η. (3.52)

Thus from (3.45) and (3.49), it follows that

aL,ϑ ≥
MD +MP e

−η

NT +
(
ND+NP
MT

)2 =: µ. (3.53)

Then (3.49) and (3.50) imply that [aL,ϑ, aR,ϑ] ⊂ [µ, η],
and so

⋃
ϑ∈(0,1][aL,ϑ, aR,ϑ] ⊂ [µ, η], from which it is

sufficient to demonstrate that
⋃
ϑ∈(0,1][aL,ϑ, aR,ϑ] is

compact, and ⋃
ϑ∈(0,1]

[aL,ϑ, aR,ϑ] ⊂ (0,∞). (3.54)

Then according to Definition 2.6., and from (3.44),
(3.48), (3.51), taking into account aL,ϑ, aR,ϑ, ϑ ∈ (0, 1]
such that a ∈ <+

F satisfies

a =
D + Pe−a

T + a2
, [a]ϑ = [aL,ϑ, aR,ϑ], ϑ ∈ (0, 1]. (3.55)

Therefore, it implies that a is a positive equilibrium of
(1.10).

Let’s assume that (1.10) has other positive equilibrium
ã, then it is clear that the functions aL,ϑ : (0, 1] →
(0,∞), aR,ϑ : (0, 1]→ (0,∞), such that

ã =
D + Pe−ã

T + ã2
, [ã]ϑ = [ãL,ϑ, ãR,ϑ], ϑ ∈ (0, 1]. (3.56)

From (3.44) and (3.53), we can deduce that

ãL,ϑ =
DL,ϑ + PL,ϑe

−ãR,ϑ

TL,ϑ + ã2
L,ϑ

,

ãR,ϑ =
DR,ϑ + PR,ϑe

−ãL,ϑ

TR,ϑ + ã2
R,ϑ

, ϑ ∈ (0, 1].

It implies that aL,ϑ = ãL,ϑ, aR,ϑ = ãR,ϑ, ϑ ∈ (0, 1].
Hence a = ã. So it is sufficient to demonstrate that
the unique positive equilibrium of fuzzy difference
equation (1.10) is a.

(iii) From (3.47), if relation (3.40) and (3.41) hold true,
we have

lim
n→∞

D(an, a) = lim
n→∞

sup
ϑ∈(0,1]

{max{|an,L,ϑ − aL,ϑ|,

|an,R,ϑ − aR,ϑ|}} = 0.
(3.57)

As n approach infinity, this implies from (3.54) that
we have shown the convergence of positive solution
for the model (1.10). This concludes the proof of part
(iii). Concluding the proof.

Suppose Case (ii) occurs, that is, DR,ϑ+PR,ϑe
−an,L,ϑ

DL,ϑ+PL,ϑe
−an,R,ϑ ≤

TR,ϑ+a2n−1,R,ϑ

TL,ϑ+a2n−1,L,ϑ
, for n = 0, 1, · · · , from (3.4), one gets, for

ϑ ∈ (0, 1]

an+1,L,ϑ =
DR,ϑ + PR,ϑe

−an,L,ϑ

TR,ϑ + a2
n−1,R,ϑ

,

an+1,R,ϑ =
DL,ϑ + PL,ϑe

−an,R,ϑ

TL,ϑ + a2
n−1,L,ϑ

.

(3.58)

In the following, we need to present two Lemmas,
which are essential for our subsequent discussion if
Case (ii) holds.

Lemma 3.4 Consider difference equations

bn+1 =
α1 + β1e

−bn

γ1 + c2
n−1

,

cn+1 =
α+ βe−cn

γ + b2n−1

, n ∈ N,
(3.59)

here α, α1, β, β1, γ, γ1, b−1, b0, c−1, c0 ∈ (0,+∞). If it
adheres to the subsequent relations

H =
α+ β

γ
, Q =

α1 + β1

γ1
,

H1 =
α+ βe

−α+β
γ

γ + (α1+β1
γ1

)2
, Q1 =

α1 + β1e
−α1+β1

γ1

γ1 + (α+β
γ )2

.

(3.60)
Thus, the propositions below are valid.

(i) All positive solutions (bn, cn) of system (3.56) are
bounded and persistent.

(ii) System (3.56) has a unique positive equilibrium (b, c) ∈
[Q1, Q]× [H1, H], if

(
βe−H1(H + 1) + α

) (
β1e
−Υ (Ψ + 1) + α1

)
< 4H2

1 Υ3

√
α1 + β1e−Υ

Υ
− γ1,

(3.61)
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and(
β1e
−Q1(Q+ 1) + α1

) (
βe−Υ1 (Ψ1 + 1) + α

)
< 4Q2

1Υ3
1

√
α+ βe−Υ1

Υ1
− γ,

(3.62)

where

Υ =

√
α+ βe−H

H
− γ, Ψ =

√
α+ βe−H1

H1
− γ,

Υ1 =

√
α1 + β1e−Q

Q
− γ1, Ψ1 =

√
α1 + β1e−Q1

Q1
− γ1.

(3.63)

Proof. (i) Let (bn, cn) denote an arbitrary positive
solution of (3.56), then we can easily deduce follows
from (3.56) and (3.57) that

bn ≤
α1 + β1

γ1
= Q, cn ≤

α+ β

γ
= H, (3.64)

From (3.56), (3.57) and (3.61), we obtain

bn ≥
α1 + β1e

−α1+β1
γ1

γ1 + (α+β
γ )2

= Q1, (3.65)

cn ≥
α+ βe

−α+β
γ

γ + (α1+β1
γ1

)2
= H1. (3.66)

Then, combining (3.61) with (3.62), one obtains

Q1 ≤ bn ≤ Q, H1 ≤ cn ≤ H.

It is clear from arguments above that the positive
solutions bn, cn are bounded and persists. Thus the
assertion is true.

(ii) Consider the following algebraic equations

b =
α1 + β1e

−b

γ1 + c2
, c =

α+ βe−c

γ + b2
. (3.67)

Transform and simplify the system (3.63), we can
deduce that

c =

√
α1 + β1e−b

b
− γ1, b =

√
α+ βe−c

c
− γ. (3.68)

From (3.64), and setting

F (c) =

√
α1 + β1e−f(c)

f(c)
− γ1 − c, (3.69)

where

f(c) = b =

√
α+ βe−c

c
− γ,

c ∈

[
H1 =

α+ βe
−α+β

γ

γ + (α1+β1
γ1

)2
,
α+ β

γ
= H

]
.

(3.70)

From (3.65) and (3.66), we have

F (c) :

[
H1 =

α+ βe
−α+β

γ

γ + (α1+β1
γ1

)2
,
α+ β

γ
= H

]

7→

[
H1 =

α+ βe
−α+β

γ

γ + (α1+β1
γ1

)2
,
α+ β

γ
= H

]
.

By virtue of (3.66), we have

f ′(c) = −βe
−c(c+ 1) + α

2c2

(
α+ βe−c

c
− γ
)− 1

2

.

(3.71)
From (3.65), (3.66) and (3.67), one has

F ′(c) = βe−c(c+1)+α
2c2

(
α+βe−c

c − γ
)− 1

2 ×

β1e
−
√
α+βe−c

c
−γ
(√

α+βe−c

c − γ + 1

)
+ α1

2
(
α+βe−c

c − γ
)

×

α1 + β1e
−
√
α+βe−c

c
−γ√

α+βe−c

c − γ
− γ1

−
1
2

− 1.

(3.72)

According to (3.68), (3.60) and since c ∈[
H1 = α+βe

−α+β
γ

γ+(
α1+β1
γ1

)2
, α+β

γ = H

]
, and (3.58) holds

true, so we can conclude that
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F ′(c) ≤ βe−H1 (H+1)+α
2H2

1

(
α+βe−H

H − γ
)− 1

2 ×

β1e
−
√
α+βe−H

H
−γ
(√

α+βe−H1

H1
− γ + 1

)
+ α1

2
(
α+βe−H

H − γ
)

×

α1 + β1e
−
√
α+βe−H

H
−γ√

α+βe−H

H − γ
− γ1

−
1
2

− 1

=
βe−H1(H + 1) + α

2H2
1

(
Υ2
)− 1

2 × β1e
−Υ (Ψ + 1) + α1

2Υ2

×
(
α1 + β1e

−Υ

Υ
− γ1

)− 1
2

− 1

=

(
βe−H1(H + 1) + α

) (
β1e
−Υ (Ψ + 1) + α1

)
4H2

1 Υ3

×
(
α1 + β1e

−Υ

Υ
− γ1

)− 1
2

− 1 < 0.

(3.73)

Therefore, the function F(c)=0 is monotonically
decreasing in the interval [H1, H]. Moreover, from
(3.65), we have

F (H1) =

√
α1 + β1e−f(H1)

f(H1)
− γ1 −H1 > 0, (3.74)

if and only if

((
α1 + β1e

−
√
α+βe−H1

H1
−γ
)(

α+βe−H1

H1
− γ)

)− 1
2 − γ1

)− 1
2

> H1,

F (H) =

√
α1 + β1e−f(H)

f(H)
− γ1 −H < 0, (3.75)

if and only if

((
α1 + β1e

−
√
α+βe−H

H
−γ
)(

α+βe−H

H − γ)
)− 1

2 − γ1

)− 1
2

< H.

Therefore, F(c)=0 exists at least one positive solution

in the interval
[
H1 = α+βe

−α+β
γ

γ+(
α1+β1
γ1

)2
, α+β

γ = H

]
. From

which we know F(c)=0 has a single positive
equilibrium c ∈ [H1, H]. In the same way, we can
get that F(b)=0 exists a single positive equilibrium
b ∈ [Q1, Q] if inequality (3.59) holds true.

Lemma 3.5 Let’s consider the constant parameters system

(3.56), let the equilibrium

(b, c) ∈

[
H1 =

α+ βe
−α+β

γ

γ + (α1+β1
γ1

)2
,
α+ β

γ
= H

]

×

Q1 =
α1 + β1e

−α1+β1
γ1

γ1 + (α+β
γ )2

,
α1 + β1

γ1
= Q

 .
Thus the following propositions are true.

(i) If

β1e
−H1

γ1 +Q2
1

+
βe−Q1

γ +H2
1

+
ββ1e

−H1−Q1(
γ +H2

1

) (
γ1 +Q2

1

)
+

4HQ
(
α+ βe−Q1

) (
α1 + β1e

−H1
)(

γ +H2
1

)2 (
γ1 +Q2

1

)2 < 1.

(3.76)

Then the equilibrium of (3.56) is locally asymptotically
stable.

(ii) The equilibrium (b, c) is global asymptotically stable if
it satisfies the following conditions

α1 + β1e
−Q1 < b

(
γ1 +H2

1

)
, α+ βe−H1 < c

(
γ +Q2

1

)
.

(3.77)

Proof. (i) Based on (3.56), we assume (b, c) to be the
unique positive equilibrium, so the linearized equation
of system (3.56) around the equilibrium (b, c) is given
by

Zn+1 = G(b,c)Zn, (3.78)

where Zn = (bn, bn−1, cn, cn−1)T , and the Jacobian
matrix G(b,c) of (3.56) be given below

G(b,c) =


A1 0 0 A2

1 0 0 0
0 B1 B2 0
0 0 1 0

 ,

where A1 = − β1e−b

γ1+c2
, A2 = −

2c
(
α1+β1e−b

)
(γ1+c2)

2 , B1 =

−2b(α+βe−c)(
γ+b

2
)2 , B2 = − βe−c

γ+b
2 .

The characteristic polynomial of G(b,c) about the fixed
point (b, c) is given by

λ4 + η1λ
3 + η2λ

2 − η3 = 0, (3.79)
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where η1 = −(A1 + B2), η2 = A1B2, η3 = A2B1. If
relation (3.71) holds true, we have

3∑
i=1

|ηi| =
β1e
−b

γ1 + c2 +
βe−c

γ + b
2 +

β1e
−b

γ1 + c2 ×
βe−c

γ + b
2

+
2c
(
α1 + β1e

−b
)

(
γ1 + c2

)2 ×
2b
(
α+ βe−c

)(
γ + b

2
)2

≤ β1e
−H1

γ1 +Q2
1

+
βe−Q1

γ +H2
1

+
ββ1e

−H1−Q1(
γ +H2

1

) (
γ1 +Q2

1

)
+

4HQ
(
α+ βe−Q1

) (
α1 + β1e

−H1
)(

γ +H2
1

)2 (
γ1 +Q2

1

)2
< 1.

(3.80)
Hence, from Remark 1.3.1 of book [8] and inequality
(3.75), we can deduce that the modules |λi| < 1 of the
characteristic equation (3.74). we can conclude that
the equilibrium (b, c) is locally asymptotically stable.

(ii) Let Lyapunov function

Γn = b

(
bn

b
− ln

bn

b
− 1

)
+ c

(cn
c
− ln

cn
c
− 1
)
.

(3.81)
Since b− ln b− 1 ≥ 0,∀b > 0, then Γn is a nonnegative
real number. Furthermore, we have

− ln
bn+1

bn
= ln

bn
bn+1

= ln

(
1−

(
1− bn

bn+1

))
≤ −

(
1− bn

bn+1

)
≤ −bn+1 − bn

bn+1
,

(3.82)

− ln
cn+1

cn
= ln

cn
cn+1

= ln

(
1−

(
1− cn

cn+1

))
≤ −

(
1− cn

cn+1

)
≤ −cn+1 − cn

cn+1
.

(3.83)

Suppose that (3.72) holds true, from (3.76), we obtain

Γn+1 − Γn = b

(
bn+1

b
− ln

bn+1

b
− 1

)
+ c

(cn+1

c
− ln

cn+1

c
− 1
)

− b
(
bn

b
− ln

bn

b
− 1

)
− c

(cn
c
− ln

cn
c
− 1
)

=(bn+1 − bn) + (cn+1 − cn)− b ln
bn+1

bn
− c ln

cn+1

cn

≤(bn+1 − bn) + (cn+1 − cn)− bbn+1 − bn
bn+1

− ccn+1 − cn
cn+1

=(bn+1 − bn)

(
1− b

bn+1

)
+ (cn+1 − cn)

(
1− c

cn+1

)
=(bn+1 − bn)

(
1−

b
(
γ1 + c2

n−1

)
α1 + β1e−bn

)

+ (cn+1 − cn)

(
1−

c
(
γ + b2n−1

)
α+ βe−cn

)

≤(H −H1)

(
α1 + β1e

−Q1 − b
(
γ1 +H2

1

)
α1 + β1e−Q1

)

+ (Q−Q1)

(
α+ βe−H1 − c

(
γ +Q2

1

)
α+ βe−H1

)
≤0.

(3.84)
This implies that Γn is monotonically decreasing
sequence of nonnegative real numbers, namely,
limn→∞ Γn ≥ 0, it is clear that limn→∞(Γn+1−Γn) = 0,
sowe can deduce that limn→∞ bn = b and limn→∞ cn =
c, by virtue of the statements of (i), the unique positive
equilibrium (b, c) ∈ [H1, H] × [Q1, Q] is globally
asymptotically stable. Thus, the Lemma 3.5 has been
proven.

Theorem 3.3 Consider FDE (1.10), in which D, P ∈ <+
F ,

and x1, x0 ∈ <+
F . If

DR,ϑ + PR,ϑe
−an,L,ϑ

DL,ϑ + PL,ϑe
−an,R,ϑ ≤

TR,ϑ + a2
n−1,R,ϑ

TL,ϑ + a2
n−1,L,ϑ

,

ϑ ∈ (0, 1], n = 0, 1, 2, · · · .
(3.85)

Thus we have the following several correct propositions.

(i) All positive solution an of the fuzzy model (1.10) are
bounded and persistent.

(ii) the fuzzy model (1.10) exists a unique positive
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equilibrium a. If(
PL,ϑe

−H1,ϑ(Hϑ + 1) +DL,ϑ

) (
PR,ϑe

−Υϑ (Ψϑ + 1) +DR,ϑ

)
< 4H2

1,ϑΥ3
ϑ

√
DR,ϑ + PR,ϑe−Υϑ

Υϑ
− TR,ϑ,

(3.86)
and(
PR,ϑe

−Q1,ϑ(Qϑ + 1) +DR,ϑ

) (
PL,ϑe

−Υ1,ϑ (Ψ1,ϑ + 1) +DL,ϑ

)
< 4Q2

1,ϑΥ3
1,ϑ

√
DL,ϑ + PL,ϑe

−Υ1,ϑ

Υ1,ϑ
− TL,ϑ,

(3.87)
where

Υϑ =

√
DL,ϑ + PL,ϑe−Hϑ

Hϑ
− TL,ϑ,

Ψϑ =

√
DL,ϑ + PL,ϑe

−H1,ϑ

H1,ϑ
− TL,ϑ.

Υ1,ϑ =

√
DR,ϑ + PR,ϑe−Qϑ

Qϑ
− TR,ϑ,

Ψ1,ϑ =

√
DR,ϑ + PR,ϑe

−Q1,ϑ

Q1,ϑ
− TR,ϑ.

Hϑ =
DL,ϑ + PL,ϑ

TL,ϑ
, H1,ϑ =

DL,ϑ + PL,ϑe
−
DL,ϑ+PL,ϑ

TL,ϑ

TL,ϑ + (
DR,ϑ+PR,ϑ

TR,ϑ
)2

,

Qϑ =
DR,ϑ + PR,ϑ

TR,ϑ
, Q1,ϑ =

DR,ϑ + PR,ϑe
−
DR,ϑ+PR,ϑ

TR,ϑ

TR,ϑ + (
DL,ϑ+PL,ϑ

TL,ϑ
)2

.

(iii) All positive solution an of the fuzzy model (1.10) tend
to unique equilibrium a when n is sufficiently large. If

DR,ϑ + PR,ϑe
−Q1,ϑ < b

(
TR,ϑ +H2

1,ϑ

)
,

DL,ϑ + PL,ϑe
−H1,ϑ < c

(
TL,ϑ +Q2

1,ϑ

)
.

(3.88)

Here

H1,ϑ =
DL,ϑ + PL,ϑe

−
DL,ϑ+PL,ϑ

TL,ϑ

TL,ϑ + (
DR,ϑ+PR,ϑ

TR,ϑ
)2

,

Q1,ϑ =
DR,ϑ + PR,ϑe

−
DR,ϑ+PR,ϑ

TR,ϑ

TR,ϑ + (
DL,ϑ+PL,ϑ

TL,ϑ
)2

.

Proof. (i) Suppose that (3.80) and Lemma 3.4 are valid.
Let an denotes a positive fuzzy solution of (1.10), and

from (3.55) and (3.10), we have

an,L,ϑ ≥
DR,ϑ + PR,ϑe

−
DR,ϑ+PR,ϑ

TR,ϑ

TR,ϑ +
(
DL,ϑ+PL,ϑ

TL,ϑ

)2

≥ MD +MP e
−ND+NP

MT

NT +
(
ND+NP
MT

)2 =: Φ, (3.89)

an,R,ϑ ≤
DL,ϑ + PL,ϑ

TL,ϑ
≤ ND +NP

MT
=: Φ.

Then from (3.84), we get

[an]ϑ ⊂ [an,L,ϑ, an,R,ϑ] ⊂ [φ,Φ]. (3.90)

From (3.84) and (3.85), we have⋃
ϑ∈(0,1][an,L,ϑ, an,R,ϑ] ⊂ [φ,Φ], and so⋃
ϑ∈(0,1][an,L,ϑ, an,R,ϑ] ⊂ [φ,Φ]. Thus an is bounded

and persistent.

(ii) Since the proof of Theorem 3.3. is similar to that of
(ii) of Theorem 3.2., we have omitted the proof here.

(iii) By virtue of (iii) of Theorem 3.2., (iii) is proved.
Concluding the proof.

In the next section, the non-oscillatory properties of
positive solutions for the model (1.10) are discussed.
Additionally, since the proof of case (i) is the same as
that of case (ii), we will only consider the proof of case
(i) around equilibrium (b, c). For the proof of case (ii),
we can rely on case (i) to proof it in a similar way, in
view of this, so we omit the proof of case (ii).

4 Nonoscillatory behavior analysis of the FDE
model (1.10)

For this part, our objective is to analyze the
non-oscillatory properties of case (i) about equilibrium
(b, c), in order to study whether it is non-oscillatory
around equilibrium (b, c) of case (i). The following
definition and lemma are needed.

Let {un}, {vn} are sequences of positive numbers, then
the sequence (un, vn) is non-oscillatory about (u,v),
here u,v belong to R+, if there exists t0 ∈ N and p, q ∈
N+, for p, q ≥ τ0 such that

(up − u)(uq − u) ≥ 0, (vp − v)(vq − v) ≥ 0. (4.1)

Next, let’s recall the fuzzy analog of non-oscillatory
define (see [31] and the reference therein).
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Suppose that {yn} represents sequence of positive
fuzzy numbers and y denotes <+

F . Thus the fuzzy
sequence {yn} is non-oscillatory at y, if ∃ τ0, p, q ∈ N+,
for p, q ≥ τ0, satisfying

(a)Min{yp, y} = yp and Min{yq, y} = yq,

(b)Min{yp, y} = y and Min{yq, y} = y.

Lemma 4.1. Let’s consider the system of crisp DEs
(3.15), in which initial conditions b−1, c−1, b0, c0 and
parameters α, α1, β, β1, γ, γ1 are all positive real numbers.
Then solution (bn, cn) of (3.15) is not oscillatory around
equilibrium (b, c) of (3.15) if and only if one of the relations
are valid below.

(i) c0 > c, b0 < b, b−1 > b, c−1 < c,

or (ii) c0 < c, b0 > b, b−1 < b, c−1 > c.
(4.2)

Proof. Let us assume the system (3.15) has positive
solution (bn, cn), if case (i) of (4.1) holds true. It
follows from system (3.15) that

b1 =
α+ βe−c0

γ + b2−1

<
α+ βe−c

γ + b
2 = b,

c1 =
α1 + β1e

−b0

γ1 + c2
−1

>
α1 + β1e

−b

γ1 + c2 = c.

(4.3)

by using mathematical induction, one has for n =
0, 1, · · · ,

bn < b, cn > c. (4.4)

Likewise, suppose that case (ii) of (4.2) is valid, it
becomes evident that for n ∈ N ,

bn > b, cn < c. (4.5)

So from (4.4) and (4.5), it is sufficient to demonstrate
that positive solution (bn, cn) isn’t oscillatory around
equilibrium (b, c) of (3.15). The lemma is proved in
this way.

Theorem 4.1. Let’s consider the fuzzy model (1.10), where
initial conditions a−1, a0 and parameters D, P, T are all
positive fuzzy numbers. If

DL,ϑ+PL,ϑe
−an,R,ϑ

DR,ϑ+PR,ϑe
−an,L,ϑ ≤

TL,ϑ+a2n−1,L,ϑ

TR,ϑ+a2n−1,R,ϑ
, ϑ ∈ (0, 1], n ∈ N,

(4.6)
is satisfied. Then solution an of fuzzy system (1.10) exhibits
non-oscillation at equilibrium a if and only if the relation

(i) or relation (ii) is satisfied. Suppose that the relations is
(i) a0,R,ϑ > aR,ϑ, a0,L,ϑ < aL,ϑ,
a−1,L,ϑ > aL,ϑ, a−1,R,ϑ < aR,ϑ,

or
(ii) a0,R,ϑ < aR,ϑ, a0,L,ϑ > aL,ϑ,
a−1,L,ϑ < aL,ϑ, a−1,R,ϑ > aR,ϑ.

(4.7)

Proof. Let us assume conditions (4.7) hold true, then
from (3.5), (3.46) and Lemma 4.1, for n0 = 0, any u, v
≥ 0, ϑ ∈ (0, 1] such that

(au,L,ϑ − aL,ϑ)(av,L,ϑ − aL,ϑ) > 0 and
(au,R,ϑ − aR,ϑ)(av,R,ϑ − aR,ϑ) > 0.

(4.8)

Hence, inequalities (4.8) are equivalent to


[min{au,L,ϑ, aL,ϑ},min{au,R,ϑ, aR,ϑ}] = [au,L,ϑ, au,R,ϑ],

[min{av,L,ϑ, aL,ϑ},min{av,R,ϑ, aR,ϑ}] = [av,L,ϑ, av,R,ϑ].

(4.9)
or

[min{au,L,ϑ, aL,ϑ},min{au,R,ϑ, aR,ϑ}] = [aL,ϑ, aR,ϑ],

[min{av,L,ϑ, aL,ϑ},min{av,R,ϑ, aR,ϑ}] = [aL,ϑ, aR,ϑ].

(4.10)
According to (4.9) and (4.10), one has

min{au, a} = au, min{av, a} = av,
or

min{au, a} = a, min{av, a} = a.
(4.11)

From which, it is clear that the solution an isn’t
oscillatory at equilibrium a. In addition, if case (ii)
holds true, we can prove it in a similar manner to case
(i).

5 Numerical examples

In this part, to validate the effectiveness of our results,
we also give several numerical examples to support
our theoretical findings.

Example 5.1 To take into account the following
exponential-type FDE

an+1 =
D + Pe−an

T + a2
n−1

, n ∈ N, (5.1)

we take D,P, T and a−1, a0 denote triangular fuzzy
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numbers, such that

D(t) =


2t− 6, 3 ≤ t ≤ 3.5

−2t+ 8, 3.5 ≤ t ≤ 4
,

a−1(t) =


4t− 2, 0.5 ≤ t ≤ 0.75

−4t+ 4, 0.75 ≤ t ≤ 1

(5.2)

P (t) =


t− 12, 12 ≤ t ≤ 13

−t+ 14, 13 ≤ t ≤ 14
,

a0(t) =


t− 5, 5 ≤ t ≤ 6

−t+ 7, 6 ≤ t ≤ 7

(5.3)

T (t) =


2
3 t− 6, 9 ≤ t ≤ 10.5

−2
3 t+ 8, 10.5 ≤ t ≤ 12

. (5.4)

From (5.2), we get

ϑ = [3 + 0.5ϑ, 4− 0.5ϑ] ,

[a−1]ϑ = [0.5 + 0.25ϑ, 1− 0.25ϑ] ,

ϑ ∈ (0, 1].

(5.5)

From (5.3) and (5.4), we have

ϑ = [12 + ϑ, 14− ϑ],

[a0]ϑ = [5 + ϑ, 7− ϑ],

[T ]ϑ = [9 + 1.5ϑ, 12− 1.5ϑ],

ϑ ∈ (0, 1].

(5.6)

Therefore, it follows that

⋃
ϑ∈(0,1]

[D]ϑ = [3, 4],
⋃

ϑ∈(0,1]

[P ]ϑ = [12, 14], (5.7)

⋃
ϑ∈(0,1]

[T ]ϑ = [9, 12],
⋃

ϑ∈(0,1]

[a−1]ϑ = [0.5, 1],

⋃
ϑ∈(0,1]

[a0]ϑ = [5, 7]. (5.8)

From (5.1), it results in two second-order
exponential-type difference equations with parameter
ϑ ∈ (0, 1],

an+1,L,ϑ = 3+0.5ϑ+(12+ϑ)e
−an,R,ϑ

9+1.5ϑ+a2n−1,L,ϑ
,

an+1,R,ϑ = 4−0.5ϑ+(14−ϑ)e
−an,L,ϑ

12−1.5ϑ+a2n−1,R,ϑ
, ϑ ∈ (0, 1].

(5.9)

Therefore, if Theorem 3.2 holds true, and satisfying
the positive fuzzy initial conditions a−1=(0.5, 0.75, 1),
a0=(5, 6, 7) and fuzzy parameters D, P, T, then each
positive solution of the model (1.10) is both bounded
and persistent. Additionally, through the statements
of Theorem 3.2, the unique positive equilibrium of the
model (1.10) a =(0.3255, 0.3192, 0.3149). Moreover,
all positive solution an of the model (1.10) converge to
the unique equilibrium a as n→∞. (see Figures 1, 2
and 3)

Figure 1. Behavior of the system (5.8).

Figure 2. The positive solution of the system (5.8) at ϑ = 0
and ϑ = 0.25.

Example 4.2 Let us to take into account the following
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Figure 3. The positive solution of the system (5.8) at
ϑ = 0.75 and ϑ = 1.

fuzzy difference equation

an+1 =
D + Pe−an

T + a2
n−1

, n ∈ N, (5.10)

here D,P, T and a−1, a0 are satisfied

D(t) =


5t− 10, 2 ≤ t ≤ 2.2

−5t+ 12, 2.2 ≤ t ≤ 2.4
,

a−1(t) =


5t− 4, 0.8 ≤ t ≤ 1

−5t+ 6, 1 ≤ t ≤ 1.2

(5.11)

P (t) =


5t− 2, 0.4 ≤ t ≤ 0.6

−5t+ 4, 0.6 ≤ t ≤ 0.8
,

a0(t) =


t− 0.5, 0.5 ≤ t ≤ 1.5

−t+ 2.5, 1.5 ≤ t ≤ 2.5

(5.12)

T (t) =


1
2 t−

3
4 , 1.5 ≤ t ≤ 3.5

−1
2 t+ 11

4 , 3.5 ≤ t ≤ 5.5
. (5.13)

From (5.2), we get

ϑ = [2 + 0.2ϑ, 2.4− 0.2ϑ] ,

[a−1]ϑ = [0.8 + 0.2ϑ, 1.2− 0.2ϑ] ,

ϑ ∈ (0, 1].

(5.14)

From (5.3) and (5.4), we have

ϑ = [0.4 + 0.2ϑ, 0.8− 0.2ϑ],

[a0]ϑ = [0.5 + ϑ, 2.5− ϑ],

[T ]ϑ = [1.5 + 2ϑ, 5.5− 2ϑ],

ϑ ∈ (0, 1].

(5.15)

Therefore, it follows that⋃
ϑ∈(0,1][D]ϑ = [2, 2.4],⋃
ϑ∈(0,1][P ]ϑ = [0.4, 0.8],⋃
ϑ∈(0,1][T ]ϑ = [1.5, 5.5],⋃
ϑ∈(0,1][a−1]ϑ = [0.8, 1.2],⋃
ϑ∈(0,1][a0]ϑ = [0.5, 2.5].

(5.16)

From (4.8), it results in two second-order
exponential-type difference equation with parameter
ϑ ∈ (0, 1],

an+1,L,ϑ = 2.4−0.2ϑ+(0.8−0.2ϑ)e
−an,L,ϑ

5.5−2ϑ+a2n−1,R,ϑ
,

an+1,R,ϑ = 2+0.2ϑ+(0.4+0.2ϑ)e
−an,R,ϑ

1.5+2ϑ+a2n−1,L,ϑ
.

(5.17)

Obviously, if Theorem 3.3. holds true, and such that
the positive fuzzy initial conditions a−1=(0.8, 1, 1.2),
a0=(0.5, 1.5, 2.5) and positive fuzzy parameters D,
P, T are satisfied. so by employing Lemma 3.5, we
can get that the model (1.10) exists unique positive
equilibrium a = (0.4157, 0.5186, 0.9499). Furthermore,
all positive solution an of the model (1.10) converge to
the unique equilibrium a as n→∞. (see Figures 4, 5
and 6)

Figure 4. Behavior of system (5.16).
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Figure 5. The positive solution of the system (5.16) at ϑ = 0
and ϑ = 0.25.

Figure 6. The positive solution of the system (5.16) at
ϑ = 0.75 and ϑ = 1.

6 Conclusion
To sum up, in this work, we discussed a second-order
exponential form of FDEs with quadratic term, i.e.,
an+1 = D+Pe−an

T+a2n−1
, according to g-division, Lyapunov

function, etc., we study the qualitative behaviors
related to model (1.10), including the existence,
non-oscillatory nature, boundedness and persistence
of positive solutions and the global stability of unique
positive equilibrium a of (1.10). More precisely, we
find the conclusions below:

(i) Suppose Case (i) is valid, i.e., DL,ϑ+PL,ϑe
−an,R,ϑ

DR,ϑ+PR,ϑe
−an,L,ϑ ≤

TL,ϑ+a2n−1,L,ϑ

TR,ϑ+a2n−1,R,ϑ
, ϑ ∈ (0, 1], n = 0, 1, 2, · · · . Then

each positive solutions of the model (1.10) is both
bounded and persistent. Moreover, if the Theorem
3.2 is satisfied, so the model (1.10) has single positive
equilibrium a, and all positive solutions an of the
model (1.10) tend to the unique equilibrium a as
n→∞.

(ii) If Case (ii) is valid, i.e., DR,ϑ+PR,ϑe
−an,L,ϑ

DL,ϑ+PL,ϑe
−an,R,ϑ ≤

TR,ϑ+a2n−1,R,ϑ

TL,ϑ+a2n−1,L,ϑ
, ϑ ∈ (0, 1], n ∈ N. Thus each positive

solution of the fuzzy model (1.10) is both bounded
and persistent. Furthermore, if the Theorem 3.3 is
satisfied, then the fuzzy model (1.10) exists single
positive equilibrium a, and any solution xn of the
model (1.10) converges to the single equilibrium a
as n→∞.

(iii) If (4.5) and (4.6) are valid, we have proven the
non-oscillation of the model (1.10) under the Case
(i). Additionally, using the same method as in case
1, we can similarly prove the non-oscillation in case 2.
Therefore, we omit the proof.
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