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Abstract

The paper discusses the dynamical characteristics
of solutions to a model with quadratic term. More
precisely, an exponential-type fuzzy difference
equation is proposed as follows

D + Pe%n
T + a?

n—1

tni1 = , n=0,1,---,

here D, P,T and ag,a_; belong to positive fuzzy
numbers. This model can be used to characterize
the diffusion modeling of a class of infectious
diseases with uncertainty, such as the transmission
prediction of dengue fever, monkeypox, and other
infectious diseases. In addition, by highlighting the
advantages of using Stefanini’s the generalization
of division of fuzzy number (it is also known as
g-division) and constructing a Lyapunov function,
we primarily obtain the dynamical characteristics of
the model discussed above, such as convergence of
single positive equilibrium and persistence, global
asymptotical stability and boundedness of positive
solutions. Furthermore, some numerical examples
are provided to confirm the theoretical findings.
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1 Introduction

Difference equations (DEs) are also called discrete
dynamical systems. Difference equations are
widely applied in various fields, including control
engineering, biology, computer science, economics,
ecology, and demography, etc. (see, for example, [1-6]
and the references therein). Many differential
equations need to be discretized into difference
equations for analysis. Therefore, many researchers
have shown considerable interest in the theory of
DEs. In the past decades, the research on DEs has
greatly advanced in both depth and breadth. In
terms of depth, it involves not only the existence of
solutions but also studies on stability, convergence and
asymptotic behavior of positive equilibrium. Some
researchers have also studied the oscillatory behavior,
periodicity, the rate of convergence, bifurcation
and chaos in certain models. In terms of breadth,
the research reflects an expansion of the forms
of difference equations and its system, including
linear and nonlinear forms, exponential-type and
logarithmic-type, maximum-type and various orders
of equations (see [7-16, 38, 40], and the references
therein).
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Particularly, as far as the exponential-type difference
equations and their system are concerned, this is due
to the fact that many population models are related
to exponential-type difference equations, so many
scholars are greatly interested in studying convergence,
stability of positive solutions to these models,
also discussing their uniqueness, boundedness and
existence, etc. Give a few examples.

For example, EI-Metwally et al. [8] discussed the
periodicity feature, asymptotic behaviour, existence
and boundedness of solutions, along with stability of a
single positive equilibrium for the ordinary DE below

Tnt1 =+ Iﬁxnfle_m",n €N, (11>

here z_;, (i=0,1) «, belong to nonnegative real
numbers.

Papaschinopoulos et al. [9] discussed the asymptotic
characteristics, the persistence, the boundedness of
positive solutions of two exponential-type crisp DEs
below

Tpt1 = a+bTp_1€7Y", ypi1 = c+ dyp—1e” ", (1.2)

herea,b,c,d, z_;,y_; € RT (i=0,1) [37].

In 2006, Ozturk et al. [10] examined the boundedness,
periodic nature and convergence of solutions to a
second-order ordinary DE with an exponential term

a1 + age™

Tpl = ,n € N, (13)
a3+ Tp—1
here z;,7 = —1,0 are nonnegative real numbers and
a1,an,03 € RT.
In 2013, Bozkurt [11] has discussed an
exponential-type crisp difference equation
ae P 4 BeTFn-1
x = , 14
T amg + B (14)
here z;,7 = —1, 0 belong to any positive numbers and

parameters «, 3, v € R*. In their research, the author
has obtained the local and global behaviour on the
model’s positive solutions discussed above.

However, as science and technology continue to
advance, the relationships we face are becoming
increasingly complex. Although difference equations
can effectively describe numerous practical problems
in real-life, they become quite challenging to study
when dealing with issues related to fuzzy uncertainty
or imprecision. In this context, fuzzy difference
equations (FDEs) can address this shortcoming and
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effectively describe practical problems related to
uncertainty or imprecision. Indeed, FDEs belong to
one of the types of crisp DEs, they are currently applied
in fields such as population prediction, strategic
decision-making and control systems etc. In addition,
in the analysis of fuzzy difference equations, one
may generally regard the model initial conditions and
parameters as fuzzy numbers and it goes without
saying that the solutions are represented by fuzzy
sequences. Especially in the recent two decades,
fuzzy difference equations have received attention and
discussion from an increasing number of scholars,
leading to great interest in their theoretical research,
and exponential-type fuzzy DEs in particular.

Wang et al. [14] examined the dynamical behaviour of
a first-order fuzzy DE with exponential form

Tyl = A+ Bzpe 9% n e N, (1.5)

here x¢, A, B, C € 3‘%}

In 2020, Zhang et al. [15] have discussed dynamics of
a second-order FDE with form

A+ Be ¥n

€N,
C+ Tn—1

Tptl = N (1.6)

here A, B,C,z_;,i € {0,1} belong to R}..

It is noteworthy that the forms of difference equations
can be linear or nonlinear. In the study of low-order
nonlinear difference equations, some scholars are
concerned with the form with quadratic terms. The
formal expansion makes the research on difference
equations deeper and more comprehensive, providing
valuable references for the study of difference
equations. Here are a few examples.

In 2020, Beso et al. [17] have discussed the recursive
sequence with a quadratic term as follows
Tn+1 :’7—1_5;7”7“:0717 )

(1.7)

n—1
here v, § and z, x_1 belong to R™.

In [18], Khyat et al. investigated the following
recursive sequence defined below with two quadratic

terms
2

T
$n+1:a+27nan€Na
Tp—1

(1.8)

In fact, the authors obtained the single positive fixed
point = a + 1, and they found it is globally
stable if model (1.8) satisfies the relation a > V2.
Furthermore, these authors determined the direction
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of the Neimark-Sacker bifurcation. Here the parameter
a and initial conditions x_1, xo belong to RT.

In 2022, Zhang et al. [19] conducted research on the
fuzzy DE below

Bz,
,n

Tpi1 = A+ €N, (1.9)

2
Tn—1

where r_1,x9, A,B € §R}

It is also worth mentioning that the determination
of initial conditions and parameters in difference
equations depends on statistical methods. For dealing
with the properties of fuzzy difference equation
models, we usually employ common techniques and
methods for handling crisp difference equations, such
as iteration, inequality techniques, matrix theory,
mathematical induction, and proof by contradiction,
etc. It is helpful for addressing the qualitative
behaviour of the most complex FDE models to use
these approaches. Additionally, many scholars have
explored various methods and techniques for studying
fuzzy DEs, and the effectiveness of these methods has
led to rapid development in the field such as finance,
biologic models and population models, etc. Now let
us make a historical flash back.

The concept of FDEs was first proposed by
Lakshmikantham et al. [20] in 2002, who constructed
the Lyapunov function to analyze the basic
theory of fuzzy difference equation models and
obtained comparison theorems for these models.
Papaschinopoulos et al. [21] have studied global
behaviors of FDE model z,,41 = A + % by employing
Zadeh extension principle, in which A and B
and initial conditions xy belong to positive fuzzy
numbers. At the same time, Mondal et al. [22] using
Lagrange’s multiplier method researched a linear
fuzzy difference equation of order two. Stefanini [23]
proposed a new method for studying some linear
FDE models by employing a generalization of division
of fuzzy numbers (it is also known as g-division).
Khastan [24] has researched fuzzy logistic difference
equations by utilizing the basic theory of Hukuhara
Difference (H-Difference) of fuzzy numbers. In view
of this, by employing these methods, many scholars
have extended the study of various types of fuzzy
difference equations and have derived many effective
conclusions. For more details see ([25-33], and the
references therein).

To the best of our knowledge, exponential-type
fuzzy DEs are a special type of FDEs, as far as
FDEs are concerned, it is a well-known fact that

the parameters and initial conditions belong to
positive fuzzy numbers, while it’s solutions presents
sequence of positive fuzzy numbers. However, due
to the particular nature of the exponential form,
we generally cannot obtain an explicit solution but
can only express its implicit solution. Nevertheless,
by using the Existence and Uniqueness Theorem of
equation’s solutions, it can still prove the existence
and uniqueness of positive solutions for FDEs that
correspond to a system of crisp DEs in our study.

Based on the points discussed above, this article aims

to study the dynamics of solutions for second-order

exponential-type FDE with quadratic terms using the

g-division

D + Pe™ %
T + a?

n—1

. nEN, (1.10)

Ap+1 =

here D,P,T, a_; € R},i € {0,1}. This model
can be applied to the transmission prediction in
the diffusion modeling of infectious diseases with
uncertainty, such as dengue fever and monkeypox.
In this context, a,, represents the number of infected
individuals at a certain time, e %" reflects the nonlinear
infection probability of susceptible populations, and
a?2_, embodies the historical cumulative effect of
infection transmission (e.g., the time lag of virus
incubation period). The fuzzy parameters D, P,
and T denote uncertain influencing factors such as
transmission rate and the effect of isolation measures.
For example, in the dengue fever transmission model,
this equation can be used to analyze the fuzzy
evolution trend of the epidemic under different
prevention and control strategies, thereby assisting
public health decision-making.

In a nutshell, based on previous research, this paper
studies existence of positive solutions for quadratic
FDE models by utilizing the g-division, Existence and
Uniqueness Theorem for solutions of equations, the
Lyapunov function and matrix theory etc. It also
researches stability of unique equilibrium. Indeed, the
core method of this paper is the generalized division
of fuzzy numbers (g-division). Recently, numerous
significant works published on the application of
g-division (see [15, 19, 21, 27] and the references
therein).

Researchers have found that g-division can overcome
the disadvantages of the expansion of fuzzy intervals
when applying the Zadeh Extension Principle, which
can lead to increased fuzzy intervals. As a
result, the finding of properties of FDEs has
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become more accurate and the results have become
more representative. Consequently, scholars are
increasingly interested in this method. In addition,
the exponential-type difference equations date back
to population dynamics, in a sense, due to the
presence of certain fuzzy imprecise (or uncertain)
phenomena in population dynamics, the role of
exponential-type fuzzy difference equations becomes
particularly important. In this context, our study offers
new insights into population dynamics and paves the
way for further investigation into exponential fuzzy
difference equations. It offers valuable implications
for the research on population dynamics models
and provides new perspectives for the potential
applications of fuzzy difference equation models.

Here, we provide a summary of the research approach
and content of this paper, the detailed specifics are
outlined below. In Section 2, we mainly introduce
several important concepts related to this paper. In
Section 3, we mainly investigated the dynamics of the
exponential FDE model (1.10) with quadratic terms
using g-division, inequality techniques, and matrix
theory, etc. In Section 4, we analyzed the solutions
of the fuzzy DE model (1.10) and showed that they
are non-oscillatory under certain initial conditions and
conditions related to equilibrium points. We provide
a few examples demonstrating the effectiveness of
theoretical findings we have obtained in Section 5. In
Section 6, we summarize some important findings of
this article.

2 Preliminary and definitions

To demonstrate the validity of the findings in this
paper, we will first cite a few important basic concepts
from previous research in this section.

Definition 2.1. [34] If function W : R — [0, 1] satisfies
properties (i)-(iv):

(i) W is normal, that is, 3a € R with W (a) = 1;

(ii) W is fuzzy convex, that is, Vx € [0, 1] and a1, az € R,
one has

W(zar + (1 —z)az) > min{W(a1), W(az)};

(iii) W is upper semi-continuous;
(iv) The support of W, suppW = UyeoyWls =
{a: W(a) > 0} is compact.

Then it is known as a fuzzy number.

For ¥ € (0,1], the ¥—cuts of fuzzy number W is
denoted by W]y = {a € R : W(a) > 9}, and for
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¥ = 0, the support of W is defined by suppW =
(Wlo = {a € R|W(a) > 0}. One has the [W]y is a
closed interval. If suppWW C (0,00), then the fuzzy
number is known as positive. Indeed, IV is a trivial
fuzzy number (a positive real number), that is [IW]y =
(W, W1],9 € (0,1].

Assume that E,F € R} satisfy [Ely
[EL,197 ER,19]7 [F]ﬁ [FL,I% FR,ﬁ}vﬁ € [07 1]/ and
for k > 0, then the operations of addition E+F, scalar
product kE, division % and multiplication EF for fuzzy
numbers E and F are defined as follows:

[E+ Fly = [Ery + Frg, Epy + Fryl,
[k:E]’ﬂ = [kEL,ﬂa k;ER,’ﬁL

(2.1)
(2.2)

Epy Ery Erw Egrpy

E _ - rELy Ery Ery Erp
|:f:|79 - (HHH{FL;W Fro’ FL,;7 Fry }’ III&X{ Fro’ Fro’ FLo’ Fro ) ’
[F}ﬂ # Oa
(2.3)

(min{Er 9Fr9, ELyFre, EroFr9, ErRoFRo}

max{Er 9Fr9,Fr9Fr9, ErR9FL 9, ERoFR9}})-

[EF)y = {
(2.4)

All fuzzy numbers, along with addition and scalar
multiplication defined in (2.1) and (2.2), form a
collection denoted by Rp (where R} represents
positive fuzzy numbers).

The definition of the metric space can be given as:

Definition 2.2. [34] Let E,F € Rp, the definition of
distance is given as follows:

}.

(2.5)
Similarly, the norm of a set E in fuzzy space is defined as
follows:

D(E,F) = sup max{|Ery — Fry|,|Ery — Fry
¥€[0,1]

|E|| = sup max{|ELyl|, |[Eryl|}-
¥€(0,1]

It is evident that the metric space (Rp, D) is complete.

Definition 2.3. [23] Let E, F' € Rp with 9-cuts [E]y =
[Erw, Erol, [Flo = [FLw, Fro), 0 & [Fly, V0 € [0,1].
Then the g-division <, is an operational rule used for
calculating fuzzy number U = E +, F with ¥—cuts

[Uly = [ULg,Urgl(where [U]y" = [1/Ury,1/ULy])

defined by
(i) [Ely = [Flg[E]s,
[Uly = [Ely +4 [Fly < { or
(@) [Flo = [Els[U]",
(2.6)
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if U represents a proper fuzzy number (where Ur, 1 < Ug 1,
UL 9 is nondecreasing, U y is nonincreasing).

Remark 2.1. Based on the reference [23], let the fuzzy
numbers E and F is positive, while U € ?R;,C, ifE <4 F =
U € R} exists, then case (i) and (ii) may occur

Case (1) ifEL ﬁFRﬁ < ERﬂgFL,g,Vﬁ € [0, 1], then
UL,19 FL PR UR19 FI}%,I:?’

Case (Zl) @fEL ﬁFRﬁ > ER’ﬂFL,ﬂ,v19 € [O, 1], then
ULy = 7o Urw = 515

Definition 2.4.(see [21, 27]) Assume there exists ), H €
R satisfy

Q. (0,H]),n € N,

supp a, C [Q, 00)(resp. supp a, C

then sequence of positive fuzzy numbers {a,,} is persistent
(resp. bounded).

IfQ > 0,H > 0 satisfy

supp a, C [Q, H],n € N*.

Then sequence {ay,} is bounded and persistence.

Furthermore, if there exists sequence ||ay|,n € N7, is
an unbounded norm, then sequence {a,},n € N7t is
unbounded.

Definition 2.5. [2] @ € R} is known as
equilibrium of the model (1.10) if it satisfies

a positive

D+ Pe @
a=————

T + a2

Let ap,a € Ri,n € N,a, — aasn — oo if
lim,, 00 D(ay,a) = 0.

Definition 2.6. (see [35]) If u_(0) and u. () satisfy
the condition [u]y = [u—_(V),us+ (V)] and the following
three properties, where u € Rp,9 € (0, 1], so we know
u—_ (1), uy () are functions defined on the interval (0,1].

(i) u—

(if) u4 (V) is nonincreasing and left continuous;

(dii) u—(1) < uy(l).

(9) is nondecreasing and left continuous;

This definition implies that for any functions f () and g(v)
defined on the interval (0,1], if they satisfy the properties
()-(iii) above, then 3 ue Ry satisfies [uly = [f(V), g(I)]
for ¥ € (0,1].

Lemma 2.1. (see [2]) Let differentiable functions f: I? x
12 — Iyand g: I? x 12 — I.. be continuous, the following
discrete dynamical system

= f(bn7 bn—lv c’rLa Cn—l))
n=01,2,---

bn+1
,(2.7)

Cn+1 = g(bna bn—l’ Cn, Cn—l)

has a unique solution (b;, ci);iofl, where the initial
conditions (b;, ¢;) € I x 1. for i=-1, 0.

Consider the system (2.7), (b, ) is called it's equilibrium
point (or fixed point ) if it satisfies

b= f(b,b,c,¢), ¢= g(b,b,c,c).

Lemma 2.2. (see [36]) Let functions f: I, x 1. — Ij and
g: Iy x I. — 1. be continuous, where I, x I.= [s,t]x[u,0]
be real intervals, for initial conditions (b;, ¢;) € Iy x I, i=-1,
0, consider the system (2.7), if the following propositions
(i)-(iii) are correct.

() f(b,c) is nonincreasing in both arquments b, c.
(ii) g(b,c) is nonincreasing in both arguments b, c.

(iii) Let us assume (mq, My, ma, My) € Iy x 1. isa solution
of the following system

M,y :f(m17m2)7 :f(M17M2)7

mi
(2.8)

My = g(mi,mg), mg = g(M;, M>),

such that my = M and ma = Ms. Thus, the system
(2.7) has unique positive equilibrium (b,¢) such that
limy, 00 (b, ¢n) = (b,€). The equilibrium (b,c) is also
called global attractor if limy, oo (by, ¢,) = (b, ).

Lemma 2.3. (see [16, 32]) Suppose a recursive sequernce
ant+1 = flan),n € N, lead to @ denotes a equilibrium of
function f. Then we say that @ is locally asymptotically stable
if any root of the Jacobian matrix Jy about equilibrium @
lie inside the open unit disk |\| < 1. If at least one of these
roots has a modulus greater than one, then the equilibrium
a is unstable.

Definition 2.7. [34] A triangular fuzzy number is a triplet
Z = (&, ¢, n) with the membership function

O? agg’

=5, <a<g
Z(a'): 1, a=(;

n—a

e (<a<mn;

0, a>n.
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The Y-cuts of Z = (,(,n) are defined by [Z]y =
{aeR:Z(a) 29} =[{+9(C—&,n—dn—] =
(Z19,ZRrv],0 € 0, 1]. From which we know [Z]y are
closed intervals. Moreover, the function Z is known as
a positive fuzzy number if the suppZ C (0, c0).

Theorem 2.1. STACKING THEOREM [34] Let {Zy :
Y € [0,1]} represents a not empty, convex and compact
subset family of R™ satisfies the following properties:

(i) UZy C Zy.
(ii) Z,92 C Z,gl, if ¥ < Vo

(iii) Zy = ﬂtleqgt if 0: 79 >0.

Then we have u € R}, such that [uly = Zy, for V0 € (0,1]
and [u]o = Uo<w<1Zy C Zo.

3 Main results

3.1 Existence of positive solution of the model
(1.10)

In this section, the existence of the solutions to an
exponential-type fuzzy model (1.10) of order two is
discussed. Firstly, the following lemma is presented,
the lemma provided below is crucial for the derivation
of Theorem 3.1.

Lemma3.1. [27] Let f: RT x R* x Rt x RT — R*
be continuous, A, Ag, A1, As € Rp. Then

9 = f([Aly, [Aolo, [A1]s, [A2]s),

9 € (0,1]. (31)

Theorem 3.1. Consider model (1.10), in which
D,P € Rf. Then for a_y,a9 € R}, then the fuzzy
model (1.10) exists unique positive solution a,.

Proof. Let {a,} denote a sequence of positive fuzzy
numbers such that the fuzzy model (1.10) holds true
with initial conditions a_1, ag. To take into account the
Y—cuts, for ¥ € (0, 1], one has

[D]s = [Dr9, DR.s];
n=0,1,2, -

[T]ﬁ = [TL,ﬂa TR,ﬂ]a

[Ply = [Pr,9, Pryl,
(3.2)

[an]ﬁ = [an,L,ﬁy an,R,ﬁ]-

34

From (1.10), (3.2) and applying Lemma 3.1, one has

D + Pe 9n
9 = [Gn41,0,95 Gns1,R 9] = [%L
[D]y + [Py x [e™"]g
[Ty + [a} ]9
[Dro + PrLge »??, Dy + Prye” L]

2 2
[TLJ9 + an—l,L,ﬁ’ TRvﬁ + an—LR,ﬁ]

(3.3)
Based on the g-division of fuzzy numbers, and noting
Remark 2.1, we can easily deduce that either case (i)
or case (ii) occurs.

Case (i)
9 =[0n41,0,9, Ant1,R,0]
Dy g + P ge 4mi2
2
TLv’ﬂ + anfl,L,ﬁ

Dpy + Prge *™t0
. :
TR?’B + a’n*l,R,’ﬂ

I

(3.4)

Case (ii)

9 :[an—l-l,L,ﬂa an+1,R,19]
Dpy + Prye b0
2
Try + a5 1 gy

Dy + Ppge™ "m0
- .
Tro+a,_q 19

)

(3.5)

Dy g+Ppge” B0
Dp g+Prge” “mL? —

Suppose Case (i) occurs, that is,

2
Tro+a, 119

PR a— forn =0,1,---, from (3.3), one gets, for
B e (0,1]
Dy + Ppge” 80
Op41,L,9 =
" T+ a?z—l,L,ﬂ 7
i (36)
Dpy + Pgye” "t
Un+1,R9 =

2
Try + 0, 1 py

Thus, we can suppose that for arbitrary initial
conditions (a; 19,05 rv),] = —1,0,9 € (0,1], from
which it has a unique solution (a,, 1, 9, an, r9). Next, we
will demonstrate that [a,, 1,9, an v,V € (0,1], where
(@n,19,0n Rrv) is the solution of system (3.5) with
initial conditions (a; 1.9, a;Rr9),J = —1,0, determines
the solution a,, of (1.10) with initial conditions a_1, ag
such that

[an]ﬁ = [an,L,ﬂu an,R,ﬂL 9 S (07 ]-]7 n = 07 17 27 Tt
(3.7)
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From [19], and since a; € %;,j = —1,0, for 91,9, €
(0, 1] with Y1 < Y2, we have
0 <ajr9, <ajr9, <ajRre, <ajre,J=—10.
(3.8)
We claim that

Un, L9 < Qn Loy < An Ry < An R, =0,1,2,--.
(39)

Working inductively. From (3.7), we can deduce that
(3.8) holds true forn = 0,1, ---. Assume (3.8) holds
true forn < k,k € N*. According to (3.5) and (3.7),
for n=k+1, then we can get
Dy, + Py, e *f"
TL7191 + a‘z‘fl,L,ﬂl
DL7192 + PL7192 e Ok, R,99
Tp9, + ai—l,L,ﬂg
DL’192 =+ PLﬂg2 e~ Ok, R, 92
Tr9, + aj_1, 1,9,
DR7192 + PRﬂer_akvLa%
TR7192 + a%*l,R,ﬁQ
DRﬂg2 + PR,gzefakvLﬁQ
TR, + 0}y o,
DRﬁ1 =+ PRV,glefakvaﬂl

2
TR, + ay_1 pw,
= Qp11,RY,-

ak+1,L,191

IN

- ak)+1,L,192 =

IN

= ak‘-i—l,R,ﬂQ

Therefore, (3.8) satisfies. Moreover, from (3.5) we have

Dy + Ppge™ %R
a1,y =

)

2
T+ 109

Dpy + Pryge™ %010
a1,R9 =

(3.10)

Tro t @,y v € (0,1].
Since the initial conditions a; € ®},j € {-1,0}, and
parameter D, P, T € %;, then ag 1,9, a0,r.9,

a_1,r9 and a_y gy are left continuous. Then from
(3.9), one gets that ay 1.y, a1, g9 are also left continuous,
in the same way as the proof of (3.8), one gets
an,L9, An,Rr9,n € NT are left continuous.

Now, we show supp an = Uye(o1jlan,L.0 an,r0] 18

compact. Noting Uz?e(o,l] [@n,1.9,n Rr9) 1S bounded.

Additionally, since a;,j = —1,0 and D,P,T € %;,

let positive integers Mp, Np, Np, Mp,

My, Nr,M;, N;, j = —1,0 satisfy, for Vo € (0, 1],
[Dr.9, Dry] C [Mp, Npl,
[Pr,9, Pry| C [Mp, Np],
[Tr.9,Trw9] C [MT, NT|,
laj,1.9,a5rs) C [M;, Nj],

(3.11)

j=-1,0.

Hence, it follows from (3.9) and (3.10) that
[MD + Mpe=No Np + Np€M0:|
Np+ N2, 7 Mp+M?2, |7 (312)
¥ € (0,1].

From which, it follows that

MD—i—Mpe_N” Np +Np€_M°:|

U la1,.001,r0] C {

9e0.1] Np + N31 ’ My + le
9 € (0,1].
(3.13)
Therefore, it  follows from (3.12) that
Uﬁe(o,l] [a1,1,9,a1,Rv] is compact and

Use(o,17l@1,2,9, a1,r,9] C (0, 00). Deducing inductively

it can easily get that (. (0.1] [@n. 19, Gn 9] is compact,
and

U [an,L,ﬂa an,R,ﬁ] C (07 OO), n = 17 27 T
9€(0,1]

(3.14)

Hence, from (3.8), (3.13), and since [a,, 1 9, G, R,9] are
left continuous, one has [ay, 19, an r,y| determines a
sequence of positive fuzzy numbers {a,, } lead to (3.6)
is valid.

We shall now show that for arbitrary initial conditions
a_1, ap, the sequence a,, determines the solution of the
model (1.10). Since for V¥ € (0, 1], one has

9 = n,1,9, An,R.9)]
_ | DLy + Prge iy
| Trw+ al 119
[Dpy + Ppoe” R, Dy + Prge™ @l
[Tro+ap 119 Tro + a5 1 gyl
_ [D]p +[Plp x [e"™]g [D + Pe_“"}
[Ty +[a®_ s | T+d? -

n—1

Dpy+ Prye” “mt?
2
TR719 + a’n*l,R,ﬂ

(3.15)
from which we can conclude for arbitrary initial
conditions a_1, ag, the sequence a,, makes certain the
solution of the model (1.10).

Additionally, for arbitrary initial conditions a_1, ay, if
fuzzy equation (1.10) also has another positive fuzzy
solution @,,, from which we obtain forn € N*

[Tn]ﬂ = [an,L,ﬂaan,Rﬁ]a S (07 ” (316)

Then from (3.6) and (3.14), one has [a,]y = [an]y,n =
0,1,2,---,9 € (0,1],soforn = 0,1, - - we can deduce
that a,, = a,,.

Assuming Case (ii) holds, we omit it’s proof since it
can be proven similarly based on Case (i). Therefore,
Theorem 3.1 is proved. This completes the proof.
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3.2 Dynamics of fuzzy difference equation (1.10) 5 ’
Y+ | In 1 5
To discuss the dynamical properties of the model tih <71+<a17+151> > o
(1.10), it is necessary to consider the corresponding < 2
ordinary difference equation system. We will examine
the two previously mentioned cases, i.e., Case (i) and 8
.. . . NP v+3 | In 5

Case (ii) by using the generalized division of fuzzy _atB _atB
numbers e LR —o

| Py ey

71 o Y1+ eT1

In the following, we need to present the following
several Lemmas, which are essential for our
subsequent discussion if Case (i) holds.

Proof. (i) Suppose system (3.15) has arbitrary positive

Lemma 3.2 Consider the following system with constant solution (by, ¢,), according to (3.15), we can deduce

parameters that
o+ Be o1+ e~ bn bnéa::ﬁ:hn Cngal,;Bl:Qa (3.20)
bn+1:+T7 Cn—s—l:%y n € N,
T O RE (3.17) From (3.15) and (3.18), we conclude forn = 0,1,2, - - -
here aaala675177771717—171)070—1700 € (07+OO) Ifh‘ = that _o1+by
_ait+8 _atB a+pfe m
a+Se 71 — aj+pie v — L#’B Q — a1+61 bn 2 —a+,82 = h,
yH(eEE)2 yi+(2LEL)2? v no v+ (57) (3.21)
Then we can obtain the following correct conclusions. _atB '
oot pre v ¢
(i) All positive solutions (by,c,) of system (3.15) are ot (a%ﬁl)z
bounded and persistent. Then, by combining (3.18) and (3.19), one has
Ez)g?sierf; (5]15) has a unique positive equilibrium (b, ¢) € h<b,<H, q<cn<Q.
. From the above arguments, it follows that the assertion
if is true.
( %)2 (ii) Consider algebraic system
y+3( et
a1+B1 a1+B1 \ 2 —c —b
atfe 1 atfe N —olm 3 _a+ Be ! + pre
{ m{(*52) (W+< () ) ) 11 {“¢<v+<“:>2>a} Pt rE T e (3:22)
Through transformation and simplification, by virtue
) of (3.20), one has
Vl+<h‘[ 55 B b(y + b 2
QT "/+<QT) )70( e—C: (’y+ )_a’ e—b: C(’Yl_'_c )_al 3.23
< ey g B (3-23)
5 Assume that (b,¢) € (h, H] x (¢, Q)], based on (3.21),
73|I — o 18] _aythy \ 2 then we can get that
atfe 71 atBe 1
w+(232)” ( ( +(247) ) ) 8 By
EUREN S H PN B |
‘ b(y + %) — c(n+¢?) —a
and (3.24)

Let c=f(b)=In [b(

ﬁ)_a} ,b € (h, H], and denoting

(252
{ﬂ (w(aﬁﬁgﬁi) )% m{al% T } F(b) = ln[ b } —b. (325
()T e (252) 2 (e (54) ) o FO)G1+ 20) — aa
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Then
ron df(b) v + 3b?
PO == = "o 107 = (3.26)
from (3.16), (3.23) and (3.24), we have
sy AF0) _ f'(b) (1 +3f%(D))
PO= "0 = T+ o) -
ap2 2
s (3 (nli]) ) B

In | sr5eya (’“ + (in [b<v+§2>a])2>
(043 (wlyeefirs))’)
<

i eir=s] (1 + (i)

~+3H?
h(y+h?)—a

-1

<0.
(3.27)
Therefore, the function F(b)=0 is monotonically
decreasing in the interval [h,H]. Additionally, from
(3.18), (3.19) and (3.23), we can obtain

Sl }
F(h)=1n —h>0, (3.28
0 =n | s = (328)
if and only if
9 -1
In {51 (111 o] <'Yl + (in [srams) ) ) - a1> } > h,
b
F(H)=In — H <0,
=1 | s =
(3.29)
if and only if
2 -1
In {61 <1n [W] (71 + (ln {WD ) — a1> } < H.
Therefore, F'(b) has at least a positive solution b €

[h, H]. From which we know F(b)=0 has a unique
positive equilibrium b € [h, H]. In the same way, we
can get that F'(c) = 0 has a unique positive equilibrium
¢ € [q, Q] if inequality (3.17) holds true.

Lemma 3.3 Consider the constant parameters system
(3.15), if the positive equilibrium

B _othy
_ Y1
(5,0) € h:ﬁiﬁ%ﬂ?f, _ath
v+ (557 ) v
- _a+8
y q:a1+51€ g Q:a1+51
v+ (a1+51) "

Then we can obtain the following correct conclusions.
(@) If

2(a+8)? | 2(a+B1)? | 4(a+B)? (a1+ﬁ1) BB1
T+ -3 + R +55 < 1.
(3.30)

Then the positive equilibrium (b, ) of the system (3.15) is
locally asymptotically stable.

(i) The unique positive equilibrium (b,¢) of the system
(3.15) is a global attractor [39, 41]. If

_avj
_(¥1+61€
Q(Oz—i-ﬁ) o+ Be 'Y1+(al~7;51>2
Y
(3.31)
ﬁ _ag+6 \ 2 2
a_|- e 71
> |7+ T atB\a ;
v+ (555)?
and
_ o+
_a+,Be Y1
2(a1 + f1) oy + Bre +(3B)3
71
(3.32)

s VY
ay + pre 7
> (71+ (7 (a1+ﬁ1) ) )

(iii) If (i) and (ii) hold true, then (b,c) is global
asymptotically stable.

Proof. (i) Using statement (ii) of Lemma 3.2, the
linearized equation of the system (3.15) around the
fixed points (b, ¢) can be expressed below

Zni1 = DZ,, (3.33)
where Z, = (by,by_1,¢n,cn1)’, and the Jacobian
matrix Dy of the system (3.15) around the

equilibrium (b, ¢) can be expressed below

0 . 25(06-'(‘7667?) . BeiE 0
(7+5°)2 v+
1 0 0 0
D(E,E) - _ ﬂ16_3 0 0 _26(0(1"!‘61675
y1+e (11+2%)?
0 0 1 0

Then the characteristic polynomial of (3.15) around
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(b, ) is given as follows
i —c
ﬂM=%—<—%W+%3)—
(y+07)?
—C —b
n Be - Bre . 22
y+b N +c

N 20(a + Be°) 2¢(ay + Bre7?)

2¢(a1 + Bre?)
(11 +22)?

(v+05)2 (m+e)?
= 0.
(3.34)
Assuming condition (3.28) holds true, we obtain
C2b(a+ Be”)  2e(ar + Bre®)  Be® Bre?
(7 + )2 m+e)? 4Tt
2b(a + Be %) 2e(ay + Bre?)
+ =2 =22
(y+0)2  (m+e)
2(a+ BeC)  2e(ay + Bre?)
= -2 —2\2
(y+0)2 (n+7¢)
Be® Bre  2b(a+ Be ) 26(an + Bre?)
RE— 2 =) 222
y4b nte (y+0)2  (m+e)
SQB(a;rﬁ) N 2¢(an 2+ B1) N BB1 N 2b(a 2+ B) 2¢(ay 2+ B1)
Y 7 1Y Y 71
2 2 2 2
S%“‘EB) n 2( ‘251) n 4(a + B) 3(0;1 + B1) n BB
Y M st Y1y
<1.
(3.35)

Based on Theorem 1.2.1 of book [1], every root of
(3.32) lie inside the unit disk |A| < 1. Thus (i) has
proven.

(ii) Let

o+ Pe ¢ ap + ,Ble_b
b = — b = - -
Fo.0) = gl = LG
From (3.33), we can deduce that f’(b) and ¢'(b) are
both less than zero. Similarly, f'(c) and ¢'(c) are also

less than zero. Thus we know functions f(b,c) and
g(b,c) are all nonincreasing in both b and c.

(3.36)

According to Lemma 2.2. and (3.33), we have

o+Be M2
y+M?E

a+pBe” ™2

M =
1 7+m% )

mi =
(3.37)

ai+pie” M

—my
M, — catbie
2 71+M22

m =
yitmZ 2

Additionally, we can present arguments analogous to

those employed in the proof of Theorem 1.16 from [36],

let us assume that

HZMlzmlzh, QZMQZ?TLQZ(]. (338)

38

From (3.34), we obtain
a(mi — M}) + By(e M2 —e7™2)
(v + MP)(y +m3)
B(mie ™2 — Mie ™)
(v + M7)(y +m3)

Since My > ms, then we can conclude that e=™2 >
e M2 g0 it follows that

2H(a+ pe™9)
IR IVEE

(v +1?)

From (3.36), if (3.29) holds true, we can deduce that
my > M;. Since from (3.35), i.e., m; < Mj, so we can
get my = M. Of course, in the same way, we can easily
show that mo = My if (3.30) holds true. Thus, based

on Lemma 2.2., the unique positive equilibrium (b, )
is a global attractor.

’I’)’Ll—Mlz

mi — Ml (m1 - Ml) (339)

(iii) From (i) and (ii), the conclusion is clearly true.
Thus, the Lemma 3.3 has been proven.

Theorem 3.2 Consider FDE (1.10), in which D, P € R,
and a_1,aq9 € 3‘3}5 If
Dpy+ Ppgenro Ty + ai—l,L,ﬁ
Dpgry + Pryge L0 = Tpy + a?z—l,R,ﬁ,
9e01], n=01,2--.

(3.40)

Thus we have the following three correct propositions.

(i) All positive solution a,, of the model (1.10) are bounded
and persistent.

(if) The exponential-type fuzzy model (1.10) has a single
positive equilibrium a, for ¥ € (0, 1], if

2
Dp9tPrLy
Tr, 9+3 2 :
Lo Tr,9

~_Dro+PRw 2
T Tho
T Dy 9+Pr ge R,9 D
Lo+ D, 1P p) —Dr,y
T Lo tTPL9
L,ﬂJr T 9

1

T
Dy 9+Pr ge B9

Dy g+P 2
L9 tPL9
TLot ( TL,9 )

|: _DrotPRry

Pr.y

2
D +P D +P,
L,9 L,9 L9 L,9
) 5 T > > -D
TL,19 < L,9 TL,'L9 L,9

In

Pry

2
Tro+| In
" PrLotPro (. (PLotPre 2 b
o9 L0 T L

< PR

Pr.y

_DRrot+PRy _Drot+PRy
T, T,
Dro+PrLve R Dp y+Pr e B9
— | T+ 3 Dpo
(DL.19+PL.19) ! T +(DL,19+PL,19>

) L TLw

Tr9+3| In

Tpot

(3.41)
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and virtue of Lemma 3.2. From (3.5) it follows that
2 _ DR,19+PR,19
TR,ﬂ+3(DR¥R7jm9) DL,19 + PL,ﬂe TR0
D 9+tPry _DpogtPrg \ 2 an,L9 = Dy oiP 2
DRy +Prye Lo DRr9+PRve Lo _D Try+ (M)
Dpy+Pry\? R0t Dpy+Pry 2 o 7 Lo
TR”ﬁ( Tryg ) TR*’“( Try ) _Np+Np
Mp + Mpe~ Mz (3.45)
2 2 = ¢7
Np+Np
% 1 NT + ( My )
Dgry+Pry _Np+ Np
N Prg In g € TG < SO =,
Dp 9+PR.9 <T (DR,6+PR,0>2> D R
TR,9 RoF TR,9 B9
’ ’ Then from (3.42), we get
. (] { Pro })2 [an]ﬁ C [an,L,ﬁaan,Rﬂ?] C [¢7 (I)] (346)
Lot|n DRry+PRrw Tr gt Dp g Pro? bpo
< gt (o (PHhgt) ) o .. From  (342) and  (3.43), we  have
Use(o,1)[@n,,9, @n,r.0] - [¢,®], and so
Tp9+3| In 5 Pr.y RIYIY . UﬂE(O,l] I:an7L719’ a”I’L,R,’&] C [QS’ @] Thus (079 IS bounded
DR,1,+p,E_ge TTL.,,)z [TRN[DR,WIE,ES Tn,ﬂf ] by and persistent. It is clear that (i) has been proven.
. v A v (3.42) (ii)If (3.38) and (3.39) are valid, consider the following
system
(iii) Al? posztzve's.olultzonian of the model' ('1.10) converge Dpy + Ppge—aro
to the single equilibrium @ when n is sufficiently large, for apy = 7T +’ 5 ,
. LY a
9 e (0,1], if Do p L’faL ) (3.47)
Ro + Frpe ™"
D 9+PL y ARy = T P} ) (UAS (07 1}7
R e RO T ARy

_ DRy tPRye
Dr9+PRr.v\?
0+ (S o)

2(Drw + Pry) from (3.10), (3.44) and Lemma 3.2 , we can get that

T Dy g+ Pr e TR
Lo _Dpy+Pry
Dry+ Prge  "Ro Dry+ Pry
Dr9+Pr,v\2 S Ly < T
_Dpot+Pro \ 2 2 T+ ( Ty ) Lo
Dpy+ Ppge TR
Try+ 2 7D Y : o (3.48)
Ty o + ( L9 L,ﬁ) _ L,;z L9
J Tr9 Dpry + Prye L9 Dry+ Pry
(3.43) ) 7 <apy < —m—.
Tr o+ (DR.,HPR,ﬁ )2 ' TRy
and R0 Tr,9 ’
_Dpy+PRy Assume that the model (1.10) exists a positive solution
_ Dr,9+Pr,9e TR9 , a, such that [an]ﬁ = [anJm, an,Rﬁ], forn € N,9 €
2(Dry + P, Drot+Pr,y i
( R,;Rﬁ R,9) Do+ Proe e (0, 1]. If (3.37) holds true, we obtain
7 " Dr,g + Ppge 9
+1,L,9 =
" Tro+al 19
2\ 2 o (3.49)
DrytPrLy DRﬂ + PRﬁe A, L,9
DR,19 + PRﬂge 7L, an+1,R9 = 1; ’2 , ve€ (0, 1}.
TRvﬁ + 2 Rv'ﬂ + a?’L*l R ’19
Dg y+Pr.y Y
Tro+~ 1,

(3.44) From (3.38), (3.39) and (3.40), by employing lemma
3.2 and lemma 3.3, we deduce for n = 0,1,2,---
that (3.46) exists a unique positive equilibrium
(ar9,arw), Y € (0,1], such that

Proof. (i) Let’s assume a,, denotes a positive solution

of the model (1.10), if (3.10) and (3.37) holds true, by lim an 9 = apy, im anpry=agy.  (3.50)
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From (3.42) and (3.45), one has for 0 < 1 < 9 < 1

0<aryg, <apg, <arg, < Arw,- (3.51)

Since Dpy,Pry,TL9, Dro, Pro, TRy, are left
continuous, based on (3.44), we know ar, y, ap g are
also left continuous.

Therefore, from (3.10) and (3.45), we obtain

N N
ape < 22T NP _ (3.52)
) NT
Thus from (3.45) and (3.49), it follows that
M Mpe™"
apg> ot Mee " _ (3.53)

2
Nt + (7ND]\;}_TNP)

Then (3.49) and (3.50) imply that [ar, g, arg] C (i, 1),
and so Uye(oyylarv, arw] C |1, 7], from which it is
sufficient to demonstrate that (e 1jlar,9, arv] is
compact, and

U lar.9.aro] € (0,00). (3.54)

9€(0,1]

Then according to Definition 2.6., and from (3.44),
(3.48), (3.51), taking into account ar, g, ar,g,? € (0, 1]
such that a € R}, satisfies

D + Pe™ @
a= —7\

e (3.55)

s [a]ﬂ = [aL,’ﬂaaR,ﬂ]a IS (O) ]-]

Therefore, it implies that @ is a positive equilibrium of
(1.10).

Let’s assume that (1.10) has other positive equilibrium
a, then it is clear that the functions @y : (0,1] —
(0,00), @R : (0,1] = (0,00), such that

_ D+ Pe @

a = Tia2 [5]19 = [5L70,537ﬂ], Y€ (O, 1]. (356)

From (3.44) and (3.53), we can deduce that

Dr.y + Ppge™ R

ary =

Tro+a,
_ Dpr.y + Pryge 0L
dpg = 0 TIRIZ T e (0,1).
TR/& + aR,'L9
It implies that ary = ’C\L/Lﬂg, ARy = 53719,19 S (O, 1].

Hence @ = a. So it is sufficient to demonstrate that
the unique positive equilibrium of fuzzy difference
equation (1.10) is @.

40

(iii) From (3.47), if relation (3.40) and (3.41) hold true,
we have
lim D(ap,a) = lim sup {max{|a, 9 —aryl,
n—00 =00 9e(0,1]
lan,ry — arw|}} = 0.
(3.57)
As n approach infinity, this implies from (3.54) that
we have shown the convergence of positive solution
for the model (1.10). This concludes the proof of part
(iii). Concluding the proof.

Dpg y+Prge” “mLl:?
—a _—
Dy 9+Pp ge” ‘R0

Suppose Case (ii) occurs, that is,

2
Tro+a, 1 py

Tootal |y’ forn=0,1,---, from (3.4), one gets, for
v € (0,1]
Dpy + Prye” "mt?
Qp+1,L9 =
Trw + ai—l,}w 7
7 (3.58)
Dy g + Ppge” 10
Gp+1,R9 =

p
Trw~+an_ 119

In the following, we need to present two Lemmas,
which are essential for our subsequent discussion if
Case (ii) holds.

Lemma 3.4 Consider difference equations

ai + e
bnt1 = R
1 -
-l (3.59)
o+ Be
Cn+1 = 12 ne N7
v+bn

here «, o, /87 /Bl) Y, V1, b—lu bO) C-1,C S (O) +OO) If it
adheres to the subsequent relations

H:a'i‘ﬁ’ Q:Oé1+51’
Y 7
_hg_w +8 _oathy
o e 7 a1 1€ 7
Hi = a1+B1\2” Q1 - a+By2
7+ (2t n + (222)
(3.60)

Thus, the propositions below are valid.

(i) All positive solutions (by,c,) of system (3.56) are
bounded and persistent.

(i) System (3.56) has a unique positive equilibrium (b, ¢) €

(@1, Q] x [Hy, H], if

(Be*Hl (H+1)+ a) (ﬁle*T (T 4+1)+ al)

-7
<4H§Ts\/0ﬂ+f}e_%

(3.61)
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(3.71)

and where
(Bre™ @ (Q+1) +air) (Be ™ (U1 + 1) + @)
+ Bele (362)
<AQITH [ E— [o+ Bee
@ 1\/ Ty K fle) =b= 75 — 7
where celm = a—l—ieﬂ?ﬂ OH_ﬁ:H].
T+HESF)? T
/a+56 \/a—i—ﬁe Hl_
aj + Bre=@ aj + Bie=@ From (3.65) and (3.66), we have
Ty = [T = [Py
Q Q1
(3.63)
- + /8 _LW —I_ 5 -
a+fe 7«
Proof. (i) Let (by,c,) denote an arbitrary positive Fe)« | Hy = Tyt (a1+51) v =H
solution of (3.56), then we can easily deduce follows at _
from (3.56) and (3.57) that s [ H, = a+pe 7 7 a+p _ gl
(R ]
< L0 o < (a6
! v
From (3.56), (3.57) and (3.61), we obtain
By virtue of (3.66), we have
5 _o1+b
ap + pre M
n = = Q1, (3.65)
1+ ()2
+8 _ _ _1
- e (c+1)+a (a+ fe° 2
en > % — H,. 366) )= 2 P
v+ ()2
Then, combining (3.61) with (3.62), one obtains From (3.65), (3.66) and (3.67), one has
ngbn§Q7H1§cn§H 1
F/(C) _ Be_c(chl)Jra <a+,86_c . 7)_5 %
It is clear from arguments above that the positive 2 ¢
solutions b, ¢, are bounded and persists. Thus the
assertion is true.
(ii) Consider the following algebraic equations /616_‘/%—7 < /a+[ze*6 vt 1> ¥ ay
o]+ Ble_b o+ /86_C a+PBe—¢
= = —1"" 3.67 2\ ———
= = 69 (4= )

a+fBe

deduce that

Transform and simplify the system (3.63), we can " <a1 + fie”

_b —c
. \/W_% b= O 3es)
b c
From (3.64), and setting According to (3.68),
Hy = a+fe

ay + fre /() [
Fle)=|———— -7 —c, 3.69
(c) \/ 70 " (3.69)

a+pfe ¢

[

a+pB

atpfe T otf
a1+B1y2? g

TS

true, so we can conclude that

(3.60)

ey B
-MN
-

(3.72)

N

— 1.

and since ¢

:H], and (3.58) holds

(3.70)



Journal of Mathematics and Interdisciplinary Applications

ICJK

=

“M(HA )+ -
F/(C) < Be 2(H12 )+a (OH—B;

a BefH _
Bre V +T_7 <”o¢+ﬁ;§1 o v+ 1> + o

()

=

a ,BefH -
ar + preVTE
X -7 -1
,/# —

(,3€7H1 (H + 1) + Cl{) (6167’1‘ (\If + 1) + 041)
B 4H3YT3

=

a1 + Ble*T 2
sLres —1<0.
X ( fyl) <0
(3.73)

Therefore, the function F(c)=0 is monotonically
decreasing in the interval [H;, H|]. Moreover, from

(3.65), we have
. a1 + 6le*f(H1)
if and only if
((al + Bre V i 7) (7‘1"’5;{1{1 — 7))_5 — 71) > Hy,
ay + pre~/H)
FH)=\|——F—F————-m1—H<Q, 3.75
if and only if
<<a1 + pre VI _7> (70‘%1;4[ - 7))7 - 71) < H.

Therefore, F(c)=0 exists at least one positive solution

a+p
in the interval [Hl = %, O‘TJFB =H ] From
which we know F(c)=0 has a single positive
equilibrium ¢ € [H;, H]. In the same way, we can
get that F(b)=0 exists a single positive equilibrium
b € [Q1, Q] if inequality (3.59) holds true.

Lemma 3.5 Let’s consider the constant parameters system

42

(3.56), let the equilibrium

r _otf
- o+ pe 7 o+
Gaelm="t0 g
Y (B Ty
fre” 5 a4 p
o1+ pre M al + b
X Ql = a+ﬁ 2 Y = Q *
M+ (557) n
Thus the following propositions are true.
(@) If
Bre ™ Be@ BBre~ -
NAQE v+ HE  (v+H?) (n+@QF)

n 4HQ (a + ﬁe—Ql) (al + 51€_H1) (3.76)

< 1.
(v+H?)® (n+Q3)

Then the equilibrium of (3.56) is locally asymptotically
stable.

(ii) The equilibrium (b, ) is global asymptotically stable if
it satisfies the following conditions

a1+ Bre ¥ <b(m+HY), at+Be M < (v+Q7).
(3.77)

Proof. (i) Based on (3.56), we assume (b, ¢) to be the
unique positive equilibrium, so the linearized equation
of system (3.56) around the equilibrium (b, ¢) is given
by

Zn+1 = G(E’E)Zn> (378)

where Z,, = (by,by_1,cn,cn1)’, and the Jacobian

matrix G #:2) of (3.56) be given below

A1 0 0 A
1 0 0 0
Gean=| o B, B, 0 |
0 0 1 0
_ gt g E(etse?)
where 4; = T Ay = (raa) B, =
_ 25(a+,36;6) _ ,Beiz )
(7—&-52) ’ v+b

The characteristic polynomial of G 4 -, about the fixed
point (b, ) is given by

MmN 4+ A2 —n3 =0, (3.79)
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where 1 = —(41 + By), g2 = A1Bs, 13 = A2By.
relation (3.71) holds true, we have

o Be® Bt Bt et
Z|Th|_ +E2 + *2_'_ _‘_72 x -2
i=1 n v+0b mnTc v+0b

2¢ (oq + ﬁle_g) 2 (a + BG_E)
IR )
(11 +2) (7 + b2)
Breh  pe @ Bpre -

St @ A m T B Q)
AHQ (o + e @) (a1 + Bre™™)
+ 2 2
(v+HP)" (m +QF)

< 1.
(3.80)

Hence, from Remark 1.3.1 of book [8] and inequality

(3.75), we can deduce that the modules |\;| < 1 of the

characteristic equation (3.74). we can conclude that

the equilibrium (b, ¢) is locally asymptotically stable.

(ii) Let Lyapunov function

I‘n:b<b”—lnb”—1> +E(Cf”—1n2”—1).
b b c c
(3.81)

Since b —Inb—1 > 0,Vb > 0, then I';, is a nonnegative
real number. Furthermore, we have

by, bn by,
“ln 2y :ln<1—<1— >>
by, b1 b1 (3.82)
S_(l_ bn )S_bn-‘rl_bn’
bn+1 bn+1
S /A

=1In En :ln<1— (1— Cn ))
Cn, Cn+1 Cn+1

C C — C
< — <1 __n > < _M.
Cn+1 Cn+1

(3.83)

If Suppose that (3.72) holds true, from (3.76), we obtain

by
— I

— (b,
Fn—i—l_rn:b( gl

)

tC (Cnfl —n L 1)
C C
—b<b”_1nb”_1> —z<"’4—1ncf”—1)
b b c c
. - bn—i—l _1. Cn+1
=(bpt+1 — bn) + (cn+1 —cn) — bln —¢ln
n Cn
*bn _bn —tn — tn
S(bn+1 - bn) + (Cn-l—l - Cn) —b + - CC 1 ‘
bn+1 Cn+1

SERRUE] Calver) RICEREAI Coboen)
SN RGEE T

ay + Pretn

_C(’Y+b§il)>

a+ fen

+ (Cn+1 - Cn) (1

Q1§ (y + H?

<(H — Hy) (0‘1 +ﬂ1§1 —l—ﬁle_(gll + 1)>
—-H _ = 2

+@- Q) (a”eawefgfwl)>

<0.

(3.84)
This implies that I',, is monotonically decreasing
sequence of nonnegative real numbers, namely,
limy, o0 'y, > 0, itis clear that lim,, o (I'p41—1) =0,
so we can deduce that lim,, 0 b,, = band lim,, o ¢, =
¢, by virtue of the statements of (i), the unique positive
equilibrium (b,¢) € [Hy, H] x [Q1,Q)] is globally
asymptotically stable. Thus, the Lemma 3.5 has been
proven.

Theorem 3.3 Consider FDE (1.10), in which D, P € R,
and x1,T0 € ?R; If

_ 2
Dpry+ Ppye ®io  Try~+a,_ 1 py

—a, = 2 )
Dpy+ Ppge™mfo = Try+ag, 41

¥e (0,1, n=0,1,2,--.

(3.85)

Thus we have the following several correct propositions.

(i) All positive solution a,, of the fuzzy model (1.10) are
bounded and persistent.

(ii) the fuzzy model (1.10) exists a unique positive
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equilibrium a. If
(Proe™"?(Hy + 1) + Dr ) (Prge” "

- | D P, —Ty
< 4H12719T§\/ R +T;R,19€

(U9 +1)+ Dpy)

— TR,

(3.86)
and
(Proe @2 (Qy+ 1) + Dry) (Ppge™ 117 (W19 + 1) + D )

Dy g+ Ppge” Y10
< 4@%,19T:1)’,19\/

T1719 - TL,ﬂ7
(3.87)
where
Dpy+ PL e o
= - TL,197
Dy, 9T Py He Hip T
vy L9
Dpy + Ppge=@
Tl,ﬁ = - TR,197
Qv
Dpy + Prge= Q1o
Vig = : : — TRy
Q1
_Dre+PrLy
Dry+ Pry Dry+ Prge 'L
Hﬁ: T ’ Hl,ﬁ: Dr.o+Pry 9 3
Lo Tro+ (T, )
_DRrytPRry
Dgry+ Pry Dry+ Prge "R
Qv = Ti Q19 = D1+ Pro s
R Tro + (=)

(iii) All positive solution a,, of the fuzzy model (1.10) tend
to unique equilibrium @ when n is sufficiently large. If

DR719 + PR’ﬁein’ﬁ <b (TRﬁ + le,ﬂ) ,

(3.88)
Dpy+ Ppge 10 <& (Tpy+ Qig) .

Here
_DpotPrLy
Tr,v

Dy g+ Ppye

DRr9+Prv\9
Tro+ (=5,
Dry+PRry

TR,

Hyy =

)

Dpry+ Prye

Dy, 9+P,
T+ (Pog o)

Qi =

Proof. (i) Suppose that (3.80) and Lemma 3.4 are valid.

Let a,, denotes a positive fuzzy solution of (1.10), and
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from (3.55) and (3.10), we have

_DRryt+PRrw
Dpry+ Prge 'R
an,L,9 =2 b P N2
L,9 L,9
TR,ﬁ + ( TrL.9 )
_Np+Np
M M M.
> MpEVPe T g (389)
Np + (ND+NP>
D P N N
anry < Ly + 4Ly < D+ Np —
’ ) My
Then from (3.84), we get
[an]ﬁ C [amL’g,an,Rﬁ] C [(25, (I)] (390)
From (3.84) and (3.85), we have
Use,1lan,L,9, an,r.9] - [¢,®], and so

Use(o,1jlan, L9, an,ro] C [¢,®]. Thus a, is bounded

and persistent.

(ii) Since the proof of Theorem 3.3. is similar to that of
(ii) of Theorem 3.2., we have omitted the proof here.

(iii) By virtue of (iii) of Theorem 3.2., (iii) is proved.
Concluding the proof.

In the next section, the non-oscillatory properties of
positive solutions for the model (1.10) are discussed.
Additionally, since the proof of case (i) is the same as
that of case (ii), we will only consider the proof of case
(i) around equilibrium (b, ). For the proof of case (ii),
we can rely on case (i) to proof it in a similar way, in
view of this, so we omit the proof of case (ii).

4 Nonoscillatory behavior analysis of the FDE
model (1.10)

For this part, our objective is to analyze the
non-oscillatory properties of case (i) about equilibrium
(b,€), in order to study whether it is non-oscillatory
around equilibrium (b,¢) of case (i). The following
definition and lemma are needed.

Let {uy}, {v,} are sequences of positive numbers, then
the sequence (uy, v,) is non-oscillatory about (u,v),
here u,v belong to R™, if there exists ¢ty € N and p,q €
NT, for p,q > 19 such that

(up —u)(ug —u) 2 0,(vp —v)(vg —v) 20. (41)
Next, let’s recall the fuzzy analog of non-oscillatory
define (see [31] and the reference therein).
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Suppose that {y,} represents sequence of positive
fuzzy numbers and y denotes R}.. Thus the fuzzy
sequence {y, } is non-oscillatory aty, if 3 79, p,q € N,
for p, ¢ > 79, satisfying

(a) Min{yp, y} = yp and Min{yq,y} = yq,
(b) Min{yy,y} =y and Min{y,,y} = y.

Lemma 4.1. Let’s consider the system of crisp DEs
(3.15), in which initial conditions b_y,c_1,bg,co and
parameters o, a1, 3, 51,7, v1 are all positive real numbers.
Then solution (by, cy,) of (3.15) is not oscillatory around
equilibrium (b, ) of (3.15) if and only if one of the relations
are valid below.

(Z) co>7¢, by < 5, b_1> B, c_1 <¢, (4 2)
or (Z’L) co < ¢, by > B, b1 < B, c_1>¢C. .

Proof. Let us assume the system (3.15) has positive
solution (b, ¢,), if case (i) of (4.1) holds true. It
follows from system (3.15) that

a+ e 0 a4 fe” ¢ -
b= v+ b? 72 =b
-1
vt ] (4.3)
oy + Ble—bo a1 + ﬁ16_b _
c1 = 5 > — = C.
Y1 +c2q 7 t+c

by using mathematical induction, one has for n =
07 11 Tty

by < b, ¢, >¢C. (4.4)

Likewise, suppose that case (ii) of (4.2) is valid, it
becomes evident that forn € N,

b, > b, ¢, <FEC. (4.5)

So from (4.4) and (4.5), it is sufficient to demonstrate
that positive solution (b, ¢,,) isn’t oscillatory around
equilibrium (b,¢) of (3.15). The lemma is proved in
this way.

Theorem 4.1. Let’s consider the fuzzy model (1.10), where
initial conditions a_1,ao and parameters D, P, T are all
positive fuzzy numbers. If

— 2

Dy 9+Pp ge “mR0 Tro+a, 1109
— = 2

DR y+Pprge “mL? Tr9+a5,_1 py

, ¥ €(0,1], n € N,

(4.6)
is satisfied. Then solution ay, of fuzzy system (1.10) exhibits
non-oscillation at equilibrium @ if and only if the relation

(i) or relation (ii) is satisfied. Suppose that the relations is

(1) ao,rwy > arw, ao,L9 < arg,
a—1,09 > ary, O—1,R9 < AR,

or

(i1) ao,rw < QR Q0,19 > OL,
a-1,09 <ary, A—1,R9 > ARY-

(4.7)

Proof. Let us assume conditions (4.7) hold true, then
from (3.5), (3.46) and Lemma 4.1, for ny = 0, any u, v
> 0,9 € (0,1] such that

(@u,r9 —ar)(ayLo —ary) >0 and

(4.8)
(au,r9 — aRwY)(Gv,RY — GRY) > 0.

Hence, inequalities (4.8) are equivalent to

{ [min{ay, 1,9, a9}, min{a, gy, are}t] = [Gu,r9, G, R,

[min{av,L,ﬂa aL,ﬂ}: Inin{av,R,ﬁv aR,ﬂH = [av,L,ﬂa av,R,ﬁ} .

(4.9)
or

{ [min{a, 9,019}, min{a, r9,arv}] = lary, arys),

min{ay, 19,009}, min{ay ro,ars} = [arw, arvl-
(4.10)
According to (4.9) and (4.10), one has

min{a,,a} = a,, min{a,,a} = a,,
or
min{a,,a} = a, min{a,,a} =a.

(4.11)

From which, it is clear that the solution a, isn’t
oscillatory at equilibrium @. In addition, if case (ii)
holds true, we can prove it in a similar manner to case

(1)-
5 Numerical examples

In this part, to validate the effectiveness of our results,
we also give several numerical examples to support
our theoretical findings.

Example 5.1 To take into account the following
exponential-type FDE

D + Pe 9

2T T heN,
T+a;

An+1 = (51)

we take D, P,T and a_1, ap denote triangular fuzzy
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numbers, such that

2%—6, 3<t<35
D(t) = )
—2t+8, 35<t<d4
(5.2)
4t —2,  05<t<0.75
a_1(t) =
—dt+4, 075<t<1
t—12, 12<t<13
P(t) = ,
—t+14, 13<t<14
(5.3)
t—5  5<t<6
ao(t) =
—t47, 6<t<7
2t—6, 9<t<105
T(t) = . (54)
—2t+8, 105<t<12
From (5.2), we get
9 =[3+0.59,4—0.59],
[a_1]y = [0.5+ 0.259,1 — 0.250] , (5.5)
v € (0,1].
From (5.3) and (5.4), we have
o =1[12+9,14 — v,
=[bH+9,7-19),
ol = | | 56
[T]y = [9 + 1.59,12 — 1.5,
v € (0,1].
Therefore, it follows that
U Dly=34, J Pla=01214, (7)
9€(0,1] 9€(0,1]
U M =19,12], | la-1)s = [0.5,1],
9€(0,1] 9€(0,1]
U las =057 (58)
¥€(0,1]
From (5.1), it results in two second-order

exponential-type difference equations with parameter
v € (0,1],

3+0.59+(12+9)e” “n.R.9
9+1.59+a2 ;1 4
4—0.59+(14—9)e” *n. L0
12—1.59+a? » 0 € (0,1].
e

Qp1,L9 = (5 9)

an+1,R9 = Ro

46

Therefore, if Theorem 3.2 holds true, and satisfying
the positive fuzzy initial conditions a_1=(0.5, 0.75, 1),
ap=(5, 6, 7) and fuzzy parameters D, P, T, then each
positive solution of the model (1.10) is both bounded
and persistent. Additionally, through the statements
of Theorem 3.2, the unique positive equilibrium of the
model (1.10) @ =(0.3255, 0.3192, 0.3149). Moreover,
all positive solution a,, of the model (1.10) converge to
the unique equilibrium @ as n — co. (see Figures 1, 2
and 3)

0.8

¥

||

04

02 | ‘

&

an,L.;/ an‘R‘M

Figure 1. Behavior of the system (5.8).

¥=0
T T T T T T T
nL
6 - -
o nR
=4
©
s 4 1
-
c
© , |
0 C 1 1 1 1 1 1 1 1 1
10 20 30 40 50 60 70 80 90 100
n
9=0.25
8 T T T T
an,L
o AR
c
©
3 4 4
-1
=4
©
2 H -

O 1 1 L 1 1 1 L 1 1
0 10 20 30 40 50 60 70 80 90

n

100

Figure 2. The positive solution of the system (5.8) at ) =0
and 9 = 0.25.

Example 4.2 Let us to take into account the following
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I 2078 | ‘ From (5.3) and (5.4), we have
E4 PR} | 9 = [0.4+0.20,0.8 — 0.20],
%, [agly = [0.5 4+ 9,2.5 — 0], (515)
© 2 [Ty = [1.5 + 29,5.5 — 29], '
0 . \ J . ‘ J . \ J 9 € (0,1].
0O 10 20 30 40 50 60 70 80 90 100
i 1921 Therefore, it follows that
14‘\( :; i Uﬂe(o,l] [D]y = [2,2.4],
S UyeqoPlo = [0.4,0.8],
E"z—’\ Uﬁe(oyl] [T]y = [1.5,5.5], (5.16)
M Uge(o,1la—1]s =[0.8,1.2],
% | 0 20 3 4 s 6 70 8 90 100 Uﬁe(o,l} [aols = [0-5,2.5].

n

Figure 3. The positive solution of the system (5.8) at

¥ =0.75and ¥ = 1.

From

(4.8), it results in two second-order

exponential-type difference equation with parameter

9 € (0,1],
fuzzy difference equation  2.4-0.20+(0.8-0.20)en. L
On+1,L9 = 55-20102_, no
_ D+ Pe N 510 240.204(0.440.29)¢ “n.R.9 (5.17)
Ontl = T+ a%—l el ( ‘ ) ntlRo = 1'5+279+a721—1,L,19 '
here D, P, T and a_1, ag are satisfied Obviously, if Theorem 3.3. holds true, and such that
the positive fuzzy initial conditions a_1=(0.8, 1, 1.2),
5t —10, 2<t<22 ap=(0.5, 1.5, 2.5) and positive fuzzy parameters D,
D(t) = , P, T are satisfied. so by employing Lemma 3.5, we
—5t+12, 22<t<24 can get that the model (1.10) exists unique positive
5t—4, 08<t<1 (5.11) equilibrium @ = (0.4157,0.5186, 0.9499). Furthermore,
a_i(t) = - all positive solution a,, of the model (1.10) converge to
C5t46, 1<t<1.2 the unique equilibrium @ as n — co. (see Figures 4, 5
- and 6)
5t—2, 04<t<06
P(t) - )
—5t+4, 0.6<t<0.8 !
(5.12)
t—05 05<t<15 08 | N
ao(t) = 06 I M i
—t+25, 15<t<25 - /| AANANANA
04 I \_‘x‘
02 /] | L]
1 3 / | / | | ,f"‘ |
" gt =3, 15<t<3.5 5.13) 0.l / VA S
T(t) = . 3 | | “ " “ |
Ly L } ’ ‘x ‘ 10
From (5.2), we get 0 o 2 .
9 =[2+0.29,2.4 —0.29], 3,83 R
[a_1]9 = [0.8 +0.209,1.2 — 0.20] (5.14) Figure 4. Behavior of system (5.16).

9 € (0,1].

47



Journal of Mathematics and Interdisciplinary Applications

ICJK

9=0
3 T T T T
an,L
a
% 2k nR| |
©
o3
=1
o 1 4
0 Il 1 1 Il 1 1 Il 1 1
0 10 20 30 40 50 60 70 80 90 100
n
¥=0.25
T T T T T
2r a |
a
%15 nRI
(]
o3
2 1
j=
®©
0.5 -\/\ i
0 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100

n

Figure 5. The positive solution of the system (5.16) at ¥ =0

and ¥ = 0.25.
9=0.75
2 T T T T T T T T T
an,L
%15 o] |
©
o3
-
o 1
05 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100

9=1
T

051\ I 1 I L L 1 | 1 L ]
0O 10 20 30 40 5 60 70 8 9 100
n
Figure 6. The positive solution of the system (5.16) at
¥ =0.75and 9 = 1.

6 Conclusion

To sum up, in this work, we discussed a second-order

exponential form of FDEs with quadratic term, i.e.,
D+ Pe 91
T‘*‘“%A

function, etc., we study the qualitative behaviors
related to model (1.10), including the existence,
non-oscillatory nature, boundedness and persistence
of positive solutions and the global stability of unique
positive equilibrium @ of (1.10). More precisely, we
find the conclusions below:

i1 = , according to g-division, Lyapunov

DL’19+PL71967H'WR,19
An,L,9 —

(i) Suppose Case (i) is valid, i.e.,

Rr,9+Prve

48

Trotay i1
m, Y € (071], n = 071,2,"' . Then

each positive solutions of the model (1.10) is both
bounded and persistent. Moreover, if the Theorem
3.2 is satisfied, so the model (1.10) has single positive
equilibrium @, and all positive solutions a,, of the
model (1.10) tend to the unique equilibrium @ as
n — 0.

DR,79+PR,19670‘”7L,19
Dr 9+Prge “mR0 =

(ii) If Case (ii) is valid, i.e.,

Tro+al 1 g
TL719+a721—1,L,19 ’
solution of the fuzzy model (1.10) is both bounded
and persistent. Furthermore, if the Theorem 3.3 is
satisfied, then the fuzzy model (1.10) exists single
positive equilibrium @, and any solution z,, of the
model (1.10) converges to the single equilibrium @
as n — oo.

¥ € (0,1], n € N. Thus each positive

(iii) If (4.5) and (4.6) are valid, we have proven the
non-oscillation of the model (1.10) under the Case
(i). Additionally, using the same method as in case
1, we can similarly prove the non-oscillation in case 2.
Therefore, we omit the proof.
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