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Abstract

The accurate classification of cervical cytology
in Pap smear images remains a critical challenge
in computer-aided diagnosis, largely due to the
inherent uncertainty and subtle morphological
variations among different pathological
categories. To address this, we propose a novel
uncertainty-aware ensemble framework that
integrates statistical quantile analysis with
deep learning for robust and interpretable
classification. Our framework first leverages
three deep convolutional neural networks
DenseNet121, MobileNetV2, and ResNet-50 as
base feature extractors. Instead of employing
naive ensemble strategies, we introduce a
quantile deviation based weighting mechanism
to dynamically assess and integrate the prediction
confidence of each model, explicitly quantifying
performance bias across different probability
quantiles.  This approach not only enhances
ensemble stability but also provides a statistical
measure of model uncertainty.  Subsequently,
the weighted probabilistic outputs are fed into a
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multi-layer perceptron (MLP) for further non-linear
optimization and decision refinement, forming a
hybrid statistical deep learning pipeline. Evaluated
on the publicly available SIPaKMeD dataset, our
framework achieves an average accuracy of 98.10%,
outperforming both individual base models and
existing ensemble methods. Visualization via
Grad-CAM further confirms that the framework
focuses on clinically relevant cellular structures,
validating its diagnostic relevance. By bridging
statistical uncertainty quantification with deep
ensemble learning, this work offers a principled
and transparent methodology for medical image
classification, with potential extensibility to other
domains requiring reliable and interpretable
predictions under uncertainty.

Keywords: cervical cytology classification, uncertainty
quantification, ensemble learning, quantile deviation, deep
learning.

1 Introduction

Cervical cancer poses a major threat to women'’s
health worldwide, ranking among the leading
causes of morbidity and mortality among female
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malignancies. Statistics indicate that over 500,000
new cervical cancer cases and more than 300,000
deaths occur annually worldwide [1]. This alarming
situation underscores the critical importance of early
screening and diagnosis. Liquid-based cytology (LBC)
remains the most widely used screening method,
analyzing cervical exfoliated cells morphologically
to identify precancerous lesions and early signs
of malignancy. However, traditional manual slide
review processes have inherent limitations: each slide
typically contains thousands of cells [2]. Pathologists
must subjectively assess microscopic features such
as cell morphology, nuclear-to-cytoplasmic ratio,
and staining characteristics under high intensity
workloads. This process is not only time consuming
and labor-intensive but also prone to diagnostic errors
due to physician experience, fatigue, and cognitive
biases, potentially leading to missed or misdiagnosed
cases [3]. In regions with uneven distribution
of medical resources, the shortage of experienced
pathologists further exacerbates screening bottlenecks.
Consequently, developing efficient, objective, and
reproducible computer aided diagnostic systems has
become an urgent necessity to enhance cervical cancer
screening coverage and diagnostic accuracy.

With the rapid advancement of artificial intelligence
technology, particularly breakthroughs in deep
learning within computer vision, medical image
analysis methods based on convolutional neural
networks have opened new avenues for automated
cervical cytology diagnosis.  Unlike traditional
machine learning approaches reliant on manually

engineered features, deep learning models
can autonomously learn hierarchical feature
representations within images, demonstrating

exceptional performance across diverse medical image
classification tasks [4]. However, cervical cytology
classification presents unique complexities: First,
significant morphological similarities exist between
different pathological categories, with features like
nuclear size, shape, and chromatin distribution often
exhibiting continuous spectrum variations, blurring
category boundaries. = Second, factors inherent
in smear preparation such as staining variations,
cell overlap, and impurity interference further
complicate feature extraction and interpretation.
Furthermore, deep learning models inherently exhibit
an “overconfidence” bias, potentially outputting
high confidence probabilities even for incorrect
predictions a trait that could have severe consequences
in high stakes medical decision-making scenarios.

Collectively, these factors generate substantial
uncertainty in model predictions, yet traditional
classification frameworks often fail to explicitly model
and leverage this uncertainty.

To enhance model robustness and generalization
capabilities, ensemble learning has become a widely
adopted technical strategy in medical image analysis
by combining predictions from multiple base
learners. Typical methods such as majority voting
and weighted averaging effectively reduce variance
and bias inherent in individual models. However,
most existing ensemble methods implicitly assume
that all base learners produce predictions of equal
reliability. This overlooks the potential for systematic
differences in prediction confidence across models
when encountering diverse samples. For instance,
one model may excel at recognizing a specific type of
morphologically variant cell while performing poorly
on another; or when image quality is poor, different
models may exhibit varying degrees of uncertainty.
Fixed weights or simplistic rules fail to adaptively
balance contributions across models. In cases of
prediction conflicts, a “majority rules” approach may
even amplify errors. Thus, quantifying and modeling
uncertainty within each base learner’s prediction
to enable dynamic, adaptive model fusion becomes
crucial for enhancing ensemble system performance
and reliability.

To address the above challenges, we propose a
novel uncertainty aware ensemble framework that
systematically integrates statistical quantile analysis
with deep learning for cervical cytology classification.
Our main contributions are threefold:

e Uncertainty-Aware Weighting Based on Quantile
Deviation: We introduce a quantile deviation
metric to measure the prediction error of base
models across different probability quantile
intervals. This method provides a statistical
foundation for dynamically assigning ensemble
weights, granting higher weights to models with
lower uncertainty.

e Hybrid Statistical Deep Learning : We construct a
two stage architecture that further optimizes the
uncertainty-weighted probabilities generated by
a multi-layer deep convolutional neural network
through a multi-layer perceptron, achieving
effective integration of statistical inference and
nonlinear feature mapping.

e Interpretability: Through experiments on two
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public datasets and Grad-CAM visualization
validation, we demonstrate that this framework
not only achieves outstanding classification
performance but also focuses model attention
on pathology relevant regions, significantly
enhancing interpretability for clinical users.

The remainder of this paper is organized as follows:
Section 2 reviews related work. Section 3 details
the proposed methodology. Section 4 presents
experimental results and analysis. Section 5 discusses
the implications and limitations, and Section 6
concludes the paper.

2 Related Work

In this section, we will discuss some previously
published studies on cervical cancer detection from
Pap smear images using deep learning methods.
Plissiti et al. [5] constructed the SIPaKMeD dataset
and achieved 95.35% accuracy using handcrafted
features with an SVM classifier. Subsequent research
shifted towards deep feature extraction, such as the
CNN-SVM pipeline proposed by Nanni et al. [6].

Feature fusion strategies emerged as a key direction
for performance improvement. Rahaman et al. [7]
proposed a Hybrid Deep Feature Fusion network,
while Basak et al. [8] combined deep learning with
evolutionary algorithms for feature optimization. Liu
et al. [9] extracted and fused local and global features
using Xception and Deil models, respectively.

To address class imbalance, Newaz et al. [10]
developed an intelligent decision support system
integrating hybrid resampling with genetic algorithms.
For model integration, Ghoneim et al. [11] combined
CNN with Extreme Learning Machines, and Tawalbeh
et al. [12] fused features from ten pretrained models
for SVM classification.

Transfer learning has been widely adopted. Kalbhor
et al. [13] compared various pretrained networks
with machine learning algorithms, while Attallah [4]
focused on lightweight architectures (MobileNet,
ResNet-18) with feature fusion and dimensionality
reduction for efficient deployment. These studies
establish a foundation for applying uncertainty
quantification methods in this domain.

Manna et al. [1] introduced a CNN ensemble using
fuzzy ranking to combine confidence scores from three
CNN architectures. Pramanik et al. [22] developed a
fuzzy distance-based ensemble that minimizes error
through Euclidean, Manhattan, and cosine distances,
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with defuzzification via the product rule. Sahoo et
al. [2] integrated three ensemble techniques Sugeno
fuzzy, ranking-based, and gamma function based
ensembles sing weighted filtering that considers each
intermediate model’s validation performance to fuse
final classifications.

Akpinar et al.[14] proposed an uncertainty aware
liquid neural network (UA-LNN) that quantifies
prediction uncertainty by integrating Monte Carlo
Dropout into the network. Han et al. [15] propose
DM-CNN, a dynamic multi-scale convolutional neural
network for medical image classification.  This
model integrates a dynamic multi scale feature fusion
module (DMFF), hierarchical dynamic uncertainty
attention, and a multi-scale fusion pooling method
(MF Pooling), employing Monte Carlo Dropout for
uncertainty quantification. Ullah et al.[16] proposed
SVIS-RULEX, an interpretable artificial intelligence
framework for medical image classification that
integrates statistics, vision, and rules. This framework
combines deep feature based statistical feature
engineering, a two-stage feature selection method
(ZFEMIS), rule extraction using decision trees and
RuleFit, and a visualization method based on statistical
feature map overlay (SFMOV). Wang et al. [17]
proposed CreINNs, a confidence set interval neural
network for uncertainty estimation in classification
tasks. Building upon the traditional interval neural
network architecture, this model captures parameter
uncertainty through deterministic intervals for weights
and biases. In contrast to computationally intensive
uncertainty quantification methods like Bayesian
Neural Networks (which require learning weight
distributions) and Monte Carlo Dropout (which needs
multiple stochastic forward passes), our quantile
deviation approach offers a computationally efficient
alternative. It operates on deterministic pre-trained
models through a lightweight post-hoc analysis,
providing granular uncertainty assessment across
different confidence levels without modifying network
architecture or increasing inference time, while
maintaining competitive performance. Techniques
such as Bayesian neural networks and Monte
Carlo dropout provide uncertainty estimates but
are computationally expensive. Our work draws
inspiration from quantile regression, a robust statistical
method for modeling conditional quantiles, and adapts
it to measure prediction uncertainty in an ensemble
setting. This offers a computationally efficient and
statistically principled alternative for uncertainty
aware model fusion.
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Figure 1. Cervical cancer detection framework based on quantile deviation integration and multi-layer perceptron
networks.

3 Methodology

Our proposed framework, illustrated in Figure 1,
consists of three main stages: (1) feature extraction
using multiple pre-trained CNNSs, (2) uncertainty
aware ensemble via quantile deviation weighting, and
(3) decision refinement using a multi-layer perceptron.

3.1 Dataset description

To evaluate the proposed cervical cancer detection
framework based on quantile deviation ensemble and
multi-layer perceptron networks, experiments were
conducted using the SIPaKMeD dataset. This dataset
covers five categories: Dyskeratotic, Koilocytotic,
Metaplastic, Parabasal, and Superficial-Intermediate,
as shown in Table 1. It consists of 4,049 images cropped
from 966 clusters of cell slices, with examples of Pap
smear images shown in Figure 2.

Table 1. Description of dataset categories.

Type Category  Number
Dyskeratotic Abnormal 813
Koilocytotic Abnormal 825
Metaplastic Benign 793
Parabasal Normal 787
Superficial-Intermediate = Normal 831

3.2 Data preprocessing

Given the varying original image sizes in the Pap
smear dataset, before the images were input into
the proposed model, the images were first uniformly
resized to the standard dimensions of 224x224 pixels.
Second, to stabilize the training process and accelerate
model convergence, the image pixel values were
rescaled to the (0,1) range. Finally, data augmentation
was applied using the following strategies: random
rotation within 0-40°, horizontal and vertical shifts

(a) (b) () (d) (e)

Figure 2. shows examples of Pap smear images from the SIPaKMeD dataset: (a) Dyskeratotic, (b) Koilocytotic, (c)
Metaplastic, (d) Parabasal, and (e) Superficial-Intermediate.
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of up to 20 in both the width and height directions,
shear transformations with an intensity of 0.2, scaling
operations within the range of 0.8-1.2 times, and
horizontal flipping. After pre-processing, the dataset
size was expanded to alleviate the issue of insufficient
sample quantity.

3.3 Base CNN Feature Extractors

We select three well-established CNN architectures,
pre-trained on ImageNet, for their complementary
characteristics.

e DenseNet-121 is a representative dense
connection network proposed by Huang et
al. [18], whose core lies in its inter-layer dense
connection mechanism: each layer establishes
forward connections with all preceding layers.
This effectively mitigates the vanishing gradient
problem through feature reuse while achieving
efficient feature extraction with reduced
parameters. The network comprises multiple
dense blocks, wherein each layer within a
block receives features from all preceding
layers and feeds them to subsequent layers,
facilitating cross-layer feature fusion. Inter-layer
transition layers incorporate 1x1 convolutions,
mean pooling, and batch normalisation for
dimensionality reduction and computational
optimisation.  DenseNet-121, pre-trained on
ImageNet, exhibits robust feature generalisation
capabilities and can be transferred to medical
image analysis tasks.

e MobileNet-V2, proposed by Sandler et al.
[19], is a lightweight convolutional neural
network specifically optimised for mobile
devices. The network comprises 53 layers,
employing an inverted residual architecture
with linear bottleneck layers. Through deep
separable convolutions, it significantly reduces
computational complexity, achieving efficient
feature extraction with only approximately 3.5
million parameters. It processes 224x224
pixel images and is pre-trained on the
ImageNet dataset, demonstrating strong
transfer learning capabilities. =~ MobileNet-V2
supports millisecond-level real-time inference
while maintaining high classification accuracy,
making it suitable for resource-constrained
mobile devices and embedded medical image
analysis scenarios.

e He et al. [20] proposed the Residual Network
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(ResNet), an innovative deep CNN architecture,
which effectively solved the core problem of
gradient vanishing in deep neural network
training through the design of shortcut links
with cross-layer jump connections. The core
mechanism of this architecture lies in establishing
direct connections between the layers and
layers of the network, allowing lower level
features to bypass intermediate layers and directly
participate in higher-level computations. The
basic building block of ResNet is the residual
block, each of which contains two parallel paths.
The residual path learns the residual mapping
between input and output through convolution
operations, while the shortcut path directly
transmits cross-layer signals. The outputs of the
two paths are added element-wise and used as
input for the next module. This design maintains
the integrity of the gradient flow, making the
effective training of ultra deep networks possible.

3.4 Quantile deviation ensemble

During the prediction process of deep learning models,
the model often generates extremely high probability
scores for the input samples. This phenomenon can
lead to overconfidence issues in both true positive and
false positive classifications, as noted by Hechtlinger
et al. [21]. When using such models to construct
ensemble frameworks, the highly uneven distribution
of raw probability scores hinders the effective learning
of complementary information from the different
classifiers. To achieve integrated perception of
uncertainty, this paper proposes a dynamic weight
fusion framework based on quantile deviation. We
introduced a temperature soft maximum distribution
to transform the probabilities. This distribution
is defined by the temperature parameter 7Tand
the number of categories n, with its mathematical
expression given in Formula 1.

_ exp(a/T)
i1 exp(e;/T)

where z; represents the model output for i-th class.
The temperature parameter 7' adjusts the scale of
the exponential term, This smoothens the sharpness
of the probability distribution. When 7' > 1, the
probability distribution becomes flatter, reducing
the model’s overconfidence. When T' < 1, the
distribution becomes sharper, highlighting the
dominant position of high probability categories.
Through this standardized transformation, the
probability outputs of different classifiers are mapped

(1)

temp_softmax(z;, T")
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to a unified scale space, providing a balanced
numerical foundation for subsequent ensemble
weight calculations based on quantile deviation, This
effectively promotes the mining and integration of
complementary information.

To quantify the predictive reliability of models at

different confidence levels, we introduce quantile

deviation as the core metric for uncertainty perception

Quantile deviation () D,Mathematical expression See

Formula 2.

1 o~ falbs
2,C
0, e 3]

i=1 c=1 1_q’pzc

ﬁi,c > Yic
else

y’i,C‘?

(2)

where N is the sample size, C' is the number of
categories, p; . is the model’s predicted probability
for the i sample in the ¢ category, y; . is the true
label, and ¢ is the quantile parameter. It quantifies
the model’s prediction bias at a specific quantile
by assigning different loss weights based on the
magnitude relationship between the predicted and
true values, thereby reflecting the model prediction
accuracy at the quantile of interest.

Based on quantile deviation, establish a dynamic
weight allocation mechanism.The mathematical
expression for the model weight wy,(¢) based on the
quantile deviation is shown in Formula 3.

1
QDg(m)

3)
3 (
>k=1 9D,

wm(q) =

where M is the number of models, and QD, is the

quantile deviation of the m model under the ¢ quantile.

The principle is that models with smaller deviations
have higher weights, and the performance is predicted
based on the quantile to assign weights to multiple
models in preparation for model fusion. Models with
lower prediction deviation will be assigned higher
weights in the ensemble.

The mathematical expression for the prediction output
y(x) based on dynamic weighting is shown in Formula

4.
-3 et

where f,(z) is the predicted value of the input z
by the m model. By weighting w,,(¢) and merging
the outputs of multiple models, models with small
quantile deviations and accurate predictions will have
a higher proportion in the merged results.

() (4)

Mathematical expression for classification probability
prediction fusion, see Formula 5.

Q M
. 1
P(x) = softmax | => Y w (z), T | (5)
Q g=1m=1
where ) is the number of quantiles. By first

combining the probabilities of different quantiles ¢
and different models m, and then using temperature
Softmax to obtain the final classification probability,
the prediction is optimized by integrating multiple
models and multiple quantile information.This fusion
process explicitly incorporates the performance of each
model across different confidence quantiles, enabling
multi-model collaborative prediction with uncertainty
awareness.

Quantile deviation serves as a key tool for quantifying
prediction errors, utilizing a unique weighting method
to illustrate a model’s predictive performance at
specific quantiles. Combining temperature Softmax
based weight calculations and prediction fusion
formulas, a comprehensive system is established from
model evaluation to multi-model integration.

The two core hyperparameters of our framework are
the temperature 7" and the set of quantiles ). Their
values are chosen based on calibration principles
and the goal of comprehensive uncertainty profiling.
1.Temperature Parameter 7: The temperature
parameter in the temp_softmax function (Equation
1) controls the sharpness of the output probability
distribution. In line with the temperature scaling
approach used in [22], we set T' = 2.0 (where T" > 1).
This choice produces a flatter probability distribution,
effectively reducing the model’s overconfidence
bias while preserving the ordinal ranking of class
predictions, thereby providing a more balanced input
for the subsequent quantile deviation analysis.

2. Quantile Set (): To capture model behavior across
the full spectrum of prediction confidence, we select
three representative quantiles: @ = {0.1,0.5,0.9}.
This choice is clinically and statistically motivated.

e ¢ = 0.1 (Low-confidence tail): Penalizes errors
where the model is under-confident (predicted
probability for the true class is low). This is crucial
for identifying ambiguous or borderline cases.

e ¢ = 0.5 (Median): Measures the median
prediction error, providing a balanced, overall
assessment of model accuracy.
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e ¢ = 0.9 (High-confidence tail): Heavily penalizes
errors where the model is over-confident (wrong
with high probability).

By integrating these three distinct confidence regimes,
our ensemble weighting mechanism becomes sensitive
to diverse types of prediction uncertainty, leading to
more robust fusion.

with

3.5 Decision Refinement

Perceptron

The Multi-Layer Perceptron (MLP) is the most basic
feedforward neural network, consisting of an input
layer, several hidden layers, and an output layer.
Information is transmitted between layers via fully
connected connections. Its core functionality lies
in utilizing nonlinear activation functions to break
the constraints of linear mapping, thereby enabling
the learning of complex nonlinear relationships
within input data. As a typical representative of
feedforward network architectures, MLP optimizes
weight parameters through the backpropagation
algorithm. The input layer is responsible for receiving
raw features, while the hidden layers can be designed
as single or multiple layers based on task requirements
to perform feature transformations. The output layer
employs activation functions tailored to the task type.

Multi-Layer

The ensemble probabilities embody both the consensus
among models and the underlying uncertainty. To
capture potential nonlinear interactions and optimize
decision boundaries, we feed these probabilities into
a MLP. Acting as a meta-learner, this perceptron
generates the final classification prediction through
a final nonlinear transformation.

4 Experiments and Results

This section will systematically discuss the evaluation
system, hyperparameter tuning, result analysis,
horizontal comparison, visualization verification, and
cross-dataset generalization. First, we will clarify the
logic behind selecting evaluation metrics for deep
models and detail the methods for setting basic
hyperparameters. We will then analyze the core
results of the model outputs and extract key patterns
from the numerical performance. Next, we will
compare our framework with mainstream ensemble
algorithms and state-of-the-art methods, using precise
metric data to highlight the technical advantages
of our framework. Additionally, we will utilize
Class Activation Mapping (CAM) to visually analyze
the decision focus of the model, thereby intuitively
revealing the feature attention mechanism. Finally, we
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will conduct supplementary experiments on another
independent cervical cancer dataset to validate the
framework’s generalization capability and stability
across datasets.

4.1 Evaluation indicators

To evaluate the effectiveness of the framework, various
evaluation metrics were used. These metrics include
accuracy, precision, recall, and F1 score. The above
metrics are calculated using the following formulas.
In addition, confusion matrices and receiver operating
characteristic (ROC) curves were used to evaluate
the performance of the framework. In a binary
classification model7’ P, FP, FN and T'N represent
the number of true positives, false positives, false
negatives, and true negatives, respectively.

Accuracy refers to the proportion of samples that are
correctly classified in all samples:

N TN +TP
ccuracy =
Y= TPYTN+FP+FN

(6)

Precision refers to the proportion of true positives
among samples predicted to be positive:

TP

P .. -t
recision TP+ FP

(7)

The recall rate refers to the proportion of true positives
correctly predicted among all actual positive samples:

TP

Recall = ——+
A= TP I EN

(8)

The F1 score is the harmonic mean of precision and
recall, providing a balanced assessment that considers
both metrics simultaneously:

Precision x Recall

F1=2x 9)

Precision + Recall

4.2 Hyperparameter settings

For deep CNN models, it is essential to carefully
select hyperparameters, particularly the learning rate
and batch size. The learning rate controls the
extent to which newly learned information overwrites
existing knowledge. Batch size refers to the number
of samples loaded at once. The hyperparameters
used to train the CNN model were determined
through extensive experimental settings to identify the
optimal combination of base learners for the proposed
ensemble technique. The hyperparameters selected
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for this experiment are detailed in Table 2. The same
learning rate and batch size were applied to all three
base classifiers. The Adam optimizer was used to
optimize the internal weights. The model performed
best at a batch size of 16 and a learning rate of 1e-4.

Table 2. Basic hyperparameter settings used for training.

Hyperparameter Value
Optimizer Adam

Loss function Categorical cross entropy
Learning rate le-4

Batch size 16

Number of epochs 75

4.3 Analysis of results

Our proposed framework was evaluated on the
SIPaKMeD dataset, which contains 5-class cervical
cancer cell data, using 5-fold cross-validation to
validate the model. Table 3 presents the classification
accuracy across all folds. Our uncertainty-aware
ensemble achieves an average accuracy of 97.68%,
which is significantly higher than any single
base model (DenseNet121: 96.52%, MobileNetV2:
94.94%, ResNet-50: 96.94%). After MLP refinement,
the accuracy further improves to 98.10%. This
demonstrates the effectiveness of both the quantile
deviation weighting and the subsequent non-linear
optimization.

It is worth noting that the base classifiers did not
show obvious overfitting in the experiment, which
is a key factor in the success of this method. The
visualization results in Figure 3 provide strong
evidence for this. Theoretically, the purpose of quantile
deviation integration is to accurately estimate the bias
at different quantiles. If the model overfits, it will
cause the quantile estimation to be biased, such as
overestimating or underestimating the bias of extreme
quantiles, resulting in the loss of a reliable basis for the
decision of quantile deviation integration.

Figures 4 and 5 present the receiver operating
characteristic (ROC) curves and confusion matrices
for the first fold of the experiment, respectively. From
the ROC curves, it can be seen that the AUC values
for each pathological cell category are close to 1, fully
demonstrating the model’s strong ability to distinguish
between different categories. The elements on the
main diagonal of the confusion matrix show a high
value distribution, verifying the model’s accurate
classification of most categories. Although there are
a few misclassification cases due to feature overlap,
the overall proportion is extremely low. The two
sets of visualization results collectively indicate that
the model demonstrates outstanding performance in
the task of classifying cervical cancer pathological
cells. In subsequent work, we can specifically optimize
the classification logic for categories with significant
teature overlap by combining attention mechanisms,
contrastive learning, and other strategies to further
reduce the misclassification rate.

To validate the feasibility of using the base learners
in the proposed integrated framework for model
integration, a McNemar statistical test [23] was
conducted. This test is a non-parametric analysis
method for paired data distributions, where the
p-value represents the probability that the two models
perform similarly. Theoretically, a lower p-value is
required to reject the null hypothesis that “the two
models are similar.” When the p-value is less than
0.05, it can be concluded that the two compared
models exhibit significant statistical differences. As
shown in Table 4, the null hypotheses were all rejected,
clearly indicating that the ensemble model and the
base learners exhibit distinct statistical performance,
thereby strongly supporting the feasibility of using
base learners for ensemble construction.

4.4 Ablation Study and Comparison with Ensemble
Strategies

Table 5 compares our method with two baseline
integration strategies. = The proposed approach

Table 3. Results of 5-fold cross-validation on the SIPaKMeD dataset.

Fold_no DenseNet121(%) MobileNetV2(%) ResNet50(%) Qua_ensemble(%) MLP(%)
Fold_1 95.43 95.93 95.56 96.91 97.28
Fold_2 98.02 94.69 96.91 97.53 98.15
Fold_3 97.16 94.20 96.91 98.77 98.89
Fold_4 96.05 94.57 98.02 98.15 98.27
Fold_5 95.92 95.30 97.28 97.03 97.90
Average 96.52 94.94 96.94 97.68 98.10
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Figure 3. Training and validation loss curves for the first experimental fold using (a) DenseNet121, (b) MobileNetV2, and

(c) ResNet-50.

Table 4. P-values for McNemar’s test.

Model p-value
DenseNet121 0.0414
MobileNetV2  0.0258
ResNet50 0.0436

achieves superior classification performance with an
accuracy of 97.68%, compared to 96.30% for soft voting
and 97.53% for the summation rule. These results
confirm that the dynamic weighting strategy, which
adjusts model contributions based on statistically
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quantified uncertainty, outperforms static and uniform
combination rules in medical image classification tasks.

Table 5. Comparison of different ensemble strategies.

Method Accuracy (%)
Soft voting 96.30
Sum rule 97.53
Our proposed ensemble 97.68

Table 6 illustrates the competitiveness of the proposed
integrated method compared to advanced integrated
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Table 6. Comparison with other ensemble methods.

Method Accuracy(%) Precision(%) Recall(%) F1-Score(%)
Fuzzy rank [1] 95.43 95.34 95.38 95.36
Fuzzy distance [23] 96.47 96.51 96.53 96.45
MSENet [22] 97.21 97.16 97.15 97.14
Our proposed ensemble 97.68 97.70 97.67 97.69
4.5 Comparison with advanced methods
o When introducing any new method, it is extremely
Fﬁf important to compare its performance with existing
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Figure 4. ROC curve for the first fold of the experiment.
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Figure 5. Confusion matrix for the first fold of the
experiment.

methods. Manna et al. [1] introduced the concept

of fuzzy rank ordering to evaluate the final decision.

Pramanik et al. [22] proposed a method that constructs

an aggregation mechanism based on fuzzy distance.

In another study, Pramanik et al. [23] designed an
integration strategy based on mean and standard
deviation. As shown in Table 6, the method proposed
in this paper outperforms these methods in the
comparison.

methods. To this end, we have listed the proposed
method and some recently proposed methods
for comparison in Table 7. Wubineh et al. [24]
proposed the RES-DCGAN data augmentation
technique (adding residual blocks to the DCGAN
generator to enhance data flow and image quality)
and incorporated a self-attention mechanism into
pre-trained models such as ResNet50V2, Xception, and
DenseNet121, using the Pomeranian and SIPaKMeD
datasets for cervical cell classification. Sahoo et al. [2]
combined three ensemble techniques with advanced
data augmentation, using a weighted filtering method
to assign weights based on the validation performance
of each intermediate ensemble model, and fused the
results of the three ensemble methods to obtain the
final classification.

4.6 Time analysis

This section will introduce the execution time required
for each base classifier. Due to hardware resource
constraints, the model was trained separately, with
the relevant experimental details shown in Figure 6.
The experiment was set up with 75 training iterations
and a batch size of 16. Based on calculations, the
total training time for a single batch of images is
372ms, which translates to approximately (134 4 109 +
129) =+ 16 ~ 23.25ms/image. This result is based on
a computing device with 24GB of VRAM, powered
by an NVIDIA 3090 GPU, and implemented using the
Python 3.9 programming language and the TensorFlow
Keras framework. It is important to note that different
hardware configurations and software environments
may result in variations in execution time.

4.7 Uncertainty = Visualization @ and  Model

Explainability

The core of deep learning classification tasks lies in
feature extraction, and the information content of
these features directly determines the upper limit of
classification performance. Gradient-Weighted Class
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Table 7. Comparison with other advanced methods.

Work Ref. Accuracy (%)

Precision (%)

Recall(%)  F1-Score(%)

Liuetal. [9]
Wubineh et al. [24]
Sahoo et al. [2]
Our proposed

93.48
92
97.62
98.10

93.60
92
97.65
98.21

93.50
92
97.64
98.05

93.50
92
97.64
98.13

134

129

s}
S

109

Time to process one batch(in ms)
I I % =)
=3 S S =}

%}
S

=3

DenseNet121 MobileNetV2

Model

ResNet50

Figure 6. Training time of CNN model using a single batch
of images.

Activation Maps (Grad-CAM) serve as an effective tool
for visualizing the regions of interest in CNN models,
providing an intuitive representation of the basis for
model decisions[25]. This paper applies this technique
to three test samples of cervical cell smear images, with
results shown in Figures 7, 8 and 9.

By generating heatmaps from the final convolutional
layer outputs, the feature attention mechanisms of
different networks are clearly revealed: DenseNet121
achieves feature reuse through its dense connection
structure, with its heatmap covering a broad area,
demonstrating the ability to capture global contextual
information; MobileNetV2, based on separable
convolutions and inverted residual structures,
precisely focuses its heatmap on core lesion areas,
reflecting the optimized design of lightweight
architectures for efficient feature extraction; ResNet-50
achieves cross layer feature propagation through
residual connections, with its heatmap exhibiting
dual characteristics of hierarchical focus and detail
supplementation, balancing global semantics with
local details.

Visualization results indicate that all three models
effectively locate key discriminative regions within
images, yet exhibit significant differences in
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heatmap distribution patterns and focus intensity.
These variations intuitively reflect distinct feature
extraction preferences and sensitivities across network
architectures when processing cervical cell images,
providing visual evidence for complementary design
in ensemble models. The above analysis validates
Grad-CAM’s role in explaining model decisions and
comparing how different models focus on key features
in medical images, providing reference for optimizing
models to meet medical diagnostic needs.

Our framework exhibits reliable and robust
performance in cervical cancer detection, yet
limitations remain. Error case studies and Grad-CAM
visualizations reveal high confidence misclassifications
when distinguishing morphologically similar cell
types, highlighting challenges in capturing subtle
pathological features. For a misclassified dyskeratotic
cell, DenseNet121’s activation is dispersed across
nuclear fragments, MobileNetV2’s attention is
disrupted by background noise, and ResNet50
erroneously focuses on perinuclear bright areas all
failing to grasp key overall or cytoplasmic features.
For a misclassified koilocytotic cell, none of the
three models focus on the critical perinuclear halo:
DenseNet121 fixates on intranuclear fragments,
MobileNetV2 ignores the halo and misinterprets
cytoplasm, and ResNet50 concentrates on irrelevant
background. These misclassifications mainly stem
from insufficient "borderline samples" in training data,
systematic biases in feature extraction, and attention
mechanisms being susceptible to interference from
complex image backgrounds. Visual evidence for
these typical error cases is provided in Figures 10
and 11.

To systematically address these issues and further
reduce the misclassification rate, we propose and plan
to test the following targeted solutions in future work:

e Attention Mechanism Enhancement: Integrate
self-attention or squeeze-and-excitation (SE)
blocks into the base CNN architectures. This
would explicitly encourage the model to weigh
informative cellular regions more heavily
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(a) (b) () (d)

Figure 7. shows the analysis of Dyskeratotic category images using Grad-CAM. (a) Original image, (b) Grad-CAM of
DenseNet121, (c) Grad-CAM of MobileNetV2, and (d) Grad-CAM of ResNet50.

8-

()

Figure 8. shows the analysis of Superficial-Intermediate category images using Grad-CAM. (a) Original image, (b)
Grad-CAM of DenseNet121, (¢) Grad-CAM of MobileNetV2, and (d) Grad-CAM of ResNet50.

(a) (¢)

Figure 9. shows the analysis of Parabasal category images using Grad-CAM. (a) Original image, (b) Grad-CAM of
DenseNet121, (¢) Grad-CAM of MobileNetV2, and (d) Grad-CAM of ResNet50.

(a) (b) (¢) (d)

Figure 10. shows the misclassification analysis of Dyskeratotic images using Grad-CAM. (a) Original image, (b)
Grad-CAM of DenseNet121, (¢) Grad-CAM of MobileNetV2, and (d) Grad-CAM of ResNet50.

(d)
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(a) (b)

(c) (d)

Figure 11. shows the misclassification analysis of Koilocytotic images using Grad-CAM. (a) Original image, (b)
Grad-CAM of DenseNet121, (c) Grad-CAM of MobileNetV2, and (d) Grad-CAM of ResNet50.

while suppressing responses from irrelevant
background, directly mitigating the noise
interference problem observed.

e Contrastive  Learning for  Fine-Grained
Discrimination: Employ supervised contrastive
learning during pre-training or as an auxiliary
loss. By learning an embedding space where
morphologically similar but pathologically
distinct cell types (e.g., borderline cases) are
pushed apart, the model can be trained to
extract more subtle and discriminative features,
improving its ability to separate classes with
overlapping characteristics.

e Targeted Data Augmentation: Beyond general
augmentations,  develop pathology-aware
augmentation strategies. For instance, simulate
varying degrees of cell overlap, stain intensity
variations, or add controlled synthetic noise to
the background during training. This would
explicitly increase the model’s robustness to the
confounding factors identified in error cases.

We employ gradient-weighted class activation
mapping (Grad-CAM) to visualize the focal
regions of attention for each base model. The
visualizations reveal complementary attention
patterns: DenseNet121 typically captures broader
contextual information, MobileNetV2 precisely
focuses on core cellular structures, while ResNet-50
balances global and local features. This diversity
validates the rationale for our ensemble approach.
More importantly, when classification errors occur,
Grad-CAM traces them back to specific model biases
such as attention disrupted by background noise or
atypical fragments providing valuable insights for
model debugging and uncertainty interpretation.
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4.8 Cross-Dataset Generalization

To assess generalization, we tested our framework
on an independent liquid-based cytology dataset
(Mendeley-LBC). As shown in Figure 12, our
method achieved 99.48% accuracy, demonstrating
its robustness and transferability to different data
distributions and preparation protocols.

100

99.48

98.78

983 9845

uracy(%)

DenseNet121 MobileNetV2 ResNetS0 Qua_ensemble MLP

Model

Figure 12. Results obtained from additional experiments
conducted on the Mendeley-LBC dataset.

5 Discussion and Limitations

The proposed framework successfully bridges
statistical uncertainty quantification with deep
ensemble learning, offering a principled, explainable,
and high performing solution for cervical cytology
classification. The quantile deviation mechanism
provides a computationally efficient way to measure
and utilize prediction uncertainty, guiding a more
intelligent model fusion.
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5.1 Limitations and Future Work

Dataset Scope: While the current evaluation is
comprehensive, it is primarily based on publicly
available datasets with a predefined set of abnormality
categories. Real-world cervical cancer screening
involves a wider spectrum of cytological presentations,
including rare subtypes and diagnostically challenging
borderline cases, which are underrepresented in
our training data. To address this, future work
will focus on expanding the dataset through multi
center collaborations to collect diverse clinical samples.
Additionally, we plan to explore advanced synthetic
data generation techniques, such as generative
adversarial networks (GANSs), to artificially create
realistic images of rare or borderline cytological
features, thereby enhancing the model’s robustness
and generalizability to real clinical scenarios.

Computational Cost: The training phase of our
framework, which involves multiple deep CNNSs,
remains computationally intensive. =~ While the
inference is efficient, the initial training overhead
could be a consideration for resource constrained
settings. To enhance practical deployment,
future work will investigate two directions: (1)
Lightweight modifications: exploring further
architectural optimizations or employing more
efficient base networks (e.g., EfficientNet) to reduce
the model footprint. (2) Efficient training strategies:
implementing knowledge distillation to transfer
the ensemble’s knowledge into a single, compact
student model, thereby drastically reducing inference
time and memory requirements without significant
performance degradation, making it more suitable for
real-time or mobile health applications.

Uncertainty Granularity: The current framework
quantifies prediction uncertainty at the ensemble
model level. While this informs the overall reliability
of a classification decision for a whole image, it does
not provide pixel-wise or instance-wise uncertainty
estimates, which could offer pathologists more
detailed insights into which specific cellular regions
contribute most to diagnostic uncertainty. As a key
direction for future work, we plan to extend our
framework to incorporate fine-grained uncertainty
estimation. This could be achieved by integrating our
ensemble approach with probabilistic segmentation
networks or developing uncertainty back propagation
techniques to generate spatial uncertainty heatmaps.
Such maps would highlight ambiguous areas within
a cell (e.g., overlapping nuclei, staining artifacts),
offering a deeper level of interpretability and aiding

in the review of challenging cases.

Future Work: integrating more advanced uncertainty
estimation techniques, expanding the framework to
handle whole slide images, and validating the system
in prospective clinical studies to assess its real world
impact on diagnostic workflow and patient outcomes.

6 Conclusion

We propose a novel uncertainty-aware ensemble
framework for cervical cytology classification that
integrates statistical quantile analysis with deep
learning. By introducing a weighting scheme
based on quantile deviation, we achieve dynamic,
uncertainty aware fusion of multi-layer convolutional
neural network predictors. Subsequent refinement
through multilayer perceptrons further enhances
performance.  Experimental results demonstrate
that our framework outperforms several existing
state-of-the-art methods on benchmark datasets while
providing interpretable decision insights through
visualization techniques. This work establishes a
robust methodological paradigm for uncertainty aware
medical image analysis, whose scalability holds
broad promise for other interdisciplinary applications
particularly in scenarios where reliable and explainable
predictions are critical.
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