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Abstract
This paper addresses the problem of achieving
prescribed-time synchronization of coupled
switched neural networks (CSNNs) using
state-dependent intermittent control. Unlike
traditional intermittent control, the intervals for
work and rest in this approach are not pre-designed
but determined by the relationship between the
designed Lyapunov function and the boundary
auxiliary functions. The proposed control strategy
can effectively mitigate chattering behavior arising
from rapid switching in traditional intermittent
control. Subsequently, leveraging Lyapunov theory
and various inequality techniques, we develop
a new set of sufficient conditions, formulated
as linear matrix inequalities (LMIs), to ensure
prescribed-time synchronization of CSNNs under
the designed intermittent control strategy. In the
end, a numerical example is given to verify the
obtained theoretical results.
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1 Introduction
Complex networks consist of a large number of nodes,
with each node being a fundamental element within
the networks. There exist complex relationships and
topological structures among these nodes. As a result,
its dynamic behaviors become more complicated and
challenging to handle [1]. Practical applications like
public transportation networks, power systems, and
the Internet heavily rely on the dynamic behavior of
networks [2], such as stability and synchronization.
Thus, the dynamical analysis of complex networks
has garnered significant attention from scholars in
recent years. CSNNs, as a special type of complex
networks, and their synchronization behavior also play
an important role in the fields of secure communication
[3], and information processing [2].

In previous synchronization analyses of coupled
neural networks (CNNs) with or without
state-dependent switching connection weights,
including asymptotic synchronization [2, 4],
finite-time synchronization [5, 6], and fixed-time
synchronization [7], these synchronization results
have their limitations. Specifically, asymptotic
synchronization requires the system to converge
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as time tends to positive infinity. For finite-time
synchronization, the settling time is dependent on
the initial state of the system. In CSNNs, however,
the estimation of the initial error may be inaccurate
due to switching behaviors and the complexity
of the coupling structure, further affecting the
predictability of the settling time. While the settling
time of fixed-time synchronization is theoretically
independent of the initial values, it is still determined
by the parameters of the controller. The switching
behaviors and coupling nonlinearities in CSNNs
make parameter design more complex, rendering it
challenging to balance convergence speed with control
intensity.

On the other hand, the settling time for fixed-time
synchronization is not affected by initial values but
still depends on the control parameters. In practical
applications, it is often preferable for the settling
time to be independent of any parameters and to be
adjustable according to demand [8]. Consequently,
it is essential to investigate the prescribed-time
synchronization of CSNNs.

Recently, various types of controllers have been
designed, such as discontinuous control [3, 10],
smooth control [11], etc. [9, 12], to achieve
prescribed-time synchronization of CSNNs or CNNs.
It should be pointed out that these works have not
involved intermittent control. To the best of the
author’s knowledge, no relevant works have utilized
intermittent control to achieve the prescribed-time
synchronization of CSNNs. The most similar work
is literature [8], where the authors investigated the
prescribed-time stabilization problem of complex
networks, but the complex networks are continuous,
and the intermittent control is time-dependent, the
work and rest intervals need to be designed in
advance. Moreover, chattering behaviors may occur
in such control [13]. Fortunately, Wang et al.
[14] have proposed a new type of intermittent
control, known as state-dependent intermittent control,
which can effectively address the aforementioned
issues. Subsequently, this type of intermittent control
has been further improved and extended, and has
been used to achieve finite/fixed time stability and
quasi-synchronization problems for other nonlinear
systems [15–17].

Currently, there are few reported studies on achieving
prescribed-time synchronization of CSNNs using
state-dependent intermittent control. In order to fill
this research gap, this paper designs a new class of

state-dependent intermittent control and utilizes it to
tackle the prescribed-time synchronization problem of
CSNNs. The major contributions are summarized as
follows.

1. We propose a novel state-dependent intermittent
control method that effectively mitigates the
chattering behavior caused by the rapid switching
inherent in traditional intermittent control.

2. We derive a novel and easily verifiable criterion in
the form of LMIs that guarantees prescribed-time
synchronization of CSNNs under the proposed
controller.

2 Notation
Throughout the paper,= = {1, 2, ···, N},Rn represents
the n-dimensional Euclidean space; In a symmetric
matrix, symmetric elements are denoted by the symbol
‘∗’, and the transpose of a matrix is represented by the
symbol ‘>’; ‘⊗’ denotes the Kronecker product, and
In stands for n × n identity matrix. Define two sets
Ξ1(νpi) = {νpi||νpi| ≤ Ti}, Ξ2(νpi) = {νpi||νpi| > Ti}
with p ∈ =, i = 1, 2, · · ·, n and Ti > 0 denotes
thresholds for state-dependent switching. ãij =

max{|a†ij |, |a
‡
ij |}. co[aij(ωpi)] = {a†ij , a

‡
ij} is the convex

hull of co{a†ij , a
‡
ij}, a

†
ij and a

‡
ij represent the lower and

upper bounds of the connection weights respectively.

3 Problem Statement
Based on the previous works [2, 4, 5, 7], a class of
CSNNs consisting of N neuron nodes is considered as
follows

ν̇p(t) =−Dνp(t) +A(νp(t))f
(
νp(t)

)
+ δ

N∑
q=1

wpqΠνq(t)

+ up(t), t ≥ 0, p ∈ N , (1)

where νp(t) = (νp1(t), νp2(t), · · ·, νpn(t))> ∈ Rn is
the state of node p, D = diag{d1, d2, · · ·, dn} is
a diagonal matrix, where dp > 0 stands for the
neuron self-inhibitions,A(νp(t)) = (aij(νpi))n×n, is the
switched connection weight matrix and take values
as a†i,j if νpi ∈ Ξ1(νpi), or otherwise a‡i,j if νpi ∈
Ξ2(νpi). f(·) ∈ Rn is the activation function. Π =
diag{Π1,Π2, · · ·,Πn} denotes inner coupling matrix.
W = (wpq)N×N is the configuration matrix, where
its elements are required to satisfy wpq = wqp(p 6= q)

and wpp = −
∑N

q=1,q 6=pwpq, δ > is a coupling strength.
up(t) = (up1(t), up2(t), · · ·, upn(t))> ∈ Rn denotes
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control input. To derive the main results of this
paper, the activation function is required to satisfy the
following assumption

Assumption 1 For any p ∈ =, there exists positive
constantMp and Lp such that

‖fp(y)‖ ≤Mp, ‖fp(y)− fp(x)‖ ≤ Lp‖y − x‖

for ∀y, x ∈ Rn.

Additionally, the isolated node of network (1) has the
following form

ω̇(t) = −Dω(t) +A(ω(t))f
(
ω(t)

)
(2)

where ω(t) = (ω1(t), ω2(t), · · ·, ωn(t))> ∈ Rn.

The synchronization error is defined by ep(t) = νp(t)−
ω(t). By employing the differential inclusion and
measurable selection theorems [18], it follows from (1)
and (2) that there exist áij(t) ∈ co[aij(νpi)], àij(t) ∈
co[aij(ωpi)], co[aij(νpi)] = co[aij(ωpi)] = co{a†ij , a

‡
ij}

such that

ė(t) =
(
− IN ⊗D + δW ⊗Π

)
e(t) +

(
IN ⊗ Á(t)

)
f
(
e(t)

)
+ [IN ⊗ (Á(t)− À(t))]f

(
ω(t)

)
+ u(t), (3)

where e(t) = (e>1 (t), e>2 (t), · · ·, e>N (t))>,
u(t) = (u>1 (t), u>2 (t), · · ·, u>N (t))>, f

(
e(·)

)
=(

f>
(
e1(·)

)
, f>

(
e2(·)

)
, · · ·, f>

(
eN (·)

))>, f
(
ep(·)

)
=

f
(
νp(·)

)
− f

(
ωp(·)

)
, p ∈ =, Á(t) = (áij(t))n×n,

À(t) = (àij(t))n×n.

4 Main Results
In this paper, the state-dependent intermittent control
is designed as follows

u(t) =


ū(t), V(t) ∈ Γ1(t),
0, V(t) ∈ Γ2(t),
ū(t−), V(t) ∈ Γ3(t),

(4)

where ū(t) = −(K⊗In)e(t)−sign(e(t))[ℵ+cλ(t)V(t)],
V(t) is the designed Lyapunov function in this
paper, K is matrix control gain, ℵ > 0, c > 0,
λ(t) =

Tpre

Tpre−t , t
− denotes the previous instant of

time t, and Γ1(t) = {V(t) ∈ R+ : V(t) ≥ W1(t)},
Γ2(t) = {V(t) ∈ R+ : V(t) <W2(t)}, Γ3(t) =
{V(t) ∈ R+ :W2(t) ≤ V(t) <W1(t)}, Wj(t) =

βV(t0)exp
{
−2cj

∫ t
t0
λ(s)ds

}
, 0 < β < 1, cj > 0, j =

1, 2, c > c2 > c1.

Remark 1 Conventional periodic intermittent control is
typically time-dependent, with its activation time sequences

predetermined and unable to adapt to system dynamics. This
may lead to resource wastage to some extent in practical
applications and may induce chattering. To address this
issue, the controller proposed in this paper divides the control
region into three parts: Γ1(t), Γ2(t), and Γ3(t), specifically
introducing the transition region Γ3(t). This region is
situated between Γ1(t) and Γ2(t), acting as a buffer during
control switching. Enlarging the scope of Γ3(t) prolongs
the dwell time of the system state within this region (i.e., the
transition period). This implies that by adjusting controller
parameters (such as c1, c2, β), the switching frequency of
the controller can be significantly reduced, thereby effectively
suppressing chattering.

Remark 2 The presence of auxiliary boundary functions
W1(t) and W2(t) is crucial, as it helps to prevent the
occurrence of chattering phenomenon resulting from rapid
switching between control and non-control intervals. While
the fundamental concept of using boundary functions to
guide intermittent control is inspired by [13, 16], this
work represents its first successful theoretical extension
and application to address the more challenging problem of
prescribed-time synchronization for coupled switched neural
networks, which involves a distinct analytical approach to
handle the prescribed-time performance objective.

Remark 3 The activated mechanism of the state-dependent
intermittent controller (4) is described as follows:

1. When V(t) ∈ Γ1(t):
The control input u(t) = ū(t) is activated. This occurs
when the Lyapunov function value exceeds the upper
boundW1(t), initiating the control period.

2. When V(t) ∈ Γ2(t):
The control inputu(t) = 0 is activated (control is turned
off). This occurs when the Lyapunov function value falls
below the lower boundW2(t), initiating the rest period.

3. When V(t) ∈ Γ3(t):
The control input inherits the previous state, u(t) =
u(t−).
This occurs when the Lyapunov function value is in the
transition region [W2(t),W1(t)], and the control status
remains unchanged (either active or inactive).

Remark 4 The roles of the parameters involved in the
control strategy of this paper are described as follows:
Increasing the boundary scaling coefficient β or narrowing
the boundary layer gap c2 − c1 expands the range
of the transition region Γ3(t), thereby prolonging the
state-switching transients and effectively suppressing
high-frequency chattering phenomena; simultaneously,
increasing the control gain c or reducing the prescribed-time
Tpre significantly enhances the system convergence rate.
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Theorem 1 Suppose that Assumption 1 holds, if there exist
positive constants c, cj(j = 1, 2), ξ, ℵ and matrixK such
that c > c2 > c1, J < ℵ andΩ11 IN ⊗ Ã L ⊗ In

∗ −2ξ−1IN ⊗ In 0
∗ ∗ −2ξIN ⊗ In

 ≤ 0, (5)

where J = max1≤i,j≤n,1≤p≤N{|a†ij − a‡ij |Mp}, Ω11 =
−K ⊗ In − IN ⊗ D + δW ⊗ Π, L = diag{L1, L2, · ·
·, LN}. Then, systems (1) and (2) realize prescribed-time
synchronization under the state-dependent intermittent
control (4).

Proof. Choose a Lyapunov function candidate as

V(t) =
√
e>(t)e(t), e(t) ∈ RnN\{0}, (6)

When V(t) ∈ Γ1(t), calculating the derivative of V(t)
along the trajectory of system (3) gives

dV(t)

dt
≤e>(t)

V(t)

[(
−K ⊗ In − IN ⊗D

+ δW ⊗Π
)
e(t) +

(
IN ⊗ Á(t)

)
f
(
e(t)

)
+ [IN ⊗ (Á(t)− À(t))]f

(
ω(t)

)]
− ℵ − cλ(t)V(t).

(7)

By utilizing inequality X>Y + Y>X ≤ ξX>X +
ξ−1Y>Y (ξ > 0) and Assumption 1, we get

e>(t)
(
IN ⊗ Á(t)

)
f
(
e(t)

)
=

1

2
[e>(t)

(
IN ⊗ Á(t)

)
f
(
e(t)

)
+ f>

(
e(t)

)(
IN ⊗ Á>(t)

)
e(t)]

≤1

2
ξe>(t)

(
IN ⊗ Á(t)

)(
IN ⊗ Á>(t)

)
e(t)

+
1

2ξ
f>
(
e(t)

)
f
(
e(t)

)
=

1

2
ξe>(t)

(
IN ⊗ (Á(t)Á>(t))

)
e(t) +

1

2ξ
‖f
(
e(t)

)
‖2

=
1

2
ξe>(t)

(
IN ⊗ ÃÃ>

)
e(t) +

1

2
ξ−1e>(t)

(
L2 ⊗ In

)
e(t)

Equation (7) is equivalent to

dV(t)

dt
≤e>(t)

V(t)

[
−K ⊗ In − IN ⊗D + δW ⊗Π

+
1

2

(
ξIN ⊗ ÃÃ> + ξ−1L2 ⊗ In

)]
e(t)

− ℵ+ J − 2cλ(t)V(t),

where J = max1≤i,j≤n,1≤p≤N{|a†ij − a‡ij |Mp}. Then,
the following inequality (8) holds

dV(t)

dt
≤ −2cλ(t)V(t), (8)

if and only if −ℵ+ J < 0 and

−K ⊗ In−IN ⊗D + δW ⊗Π

+
1

2

(
ξIN ⊗ ÃÃ> + ξ−1L2 ⊗ In

)
≤ 0.

(9)

According to Schur’s complement, inequality (9) holds
if and only if condition (5) is satisfied.

By integrating (8) from t0 to t, we obtain

V(t) ≤ V(t0)exp
{
−2c

∫ t

t0

λ(s)ds

}
. (10)

Note that 0 < β < 1, V(t0) > W1(t0). At time t0,
the control input ū(t) is activated. Due to c > c1,
the convergence rate of V(t) is faster than that of the
boundary functionW1(t). Consequently, there exists
a time instant t1, such that V(t1) = W1(t1), i.e., the
trajectory of V(t) intersects W1(t) at t1. Afterwards,
the controller ū(t) remains active according to the
designed control strategy, and the trajectory of V(t)
will enter the region defined by Γ3. Since c > c2,
there exists a time instant s1, such that V(s1) =W2(s1),
indicating that the trajectory of V(t) intersectsW2(t) at
s1. At the same time, control inputu(t) = 0 is activated,
and after time s1, the trajectory of V(t) will enter the
region defined by Γ2. Furthermore, the trajectory of
V(t) will again reach the boundary of W1(t) at time
t2, activating controller ū(t), and triggering controller
u(t) = 0 at time s2. By repeating the same process, we
can obtain the activation instant sequence tk(k ∈ Z+)
and the stopping instant sequence sk(k ∈ Z+) of the
controlleru(t) determined by the relationship between
V(t) andWj(t), j = 1, 2.

For the sake of theoretical analysis, let Tc =⋃∞
k=0[tk, sk) and Tuc =

⋃∞
k=0[sk, tk+1) denote the work

time and rest time of the controller, respectively. For
any t ∈ [tk, sk) ⊂ Tc, it follows from (10) that

V(t) ≤V(tk)exp
{
−2c

∫ t

tk

λ(s)ds

}
≤V(tk)exp

{
−2c1

∫ t

tk

λ(s)ds

}
.

(11)

Based on the above analysis, when t = tk, one has

V(tk) =W1(tk) = βV(t0)exp
{
−2c1

∫ tk

t0

λ(s)ds

}
.

(12)
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Figure 1. Synchronization error evolution of system (3)
without control.

Substituting (12) into (11), it gives

V(t) ≤ βV(t0)exp
{
−2c1

∫ t

t0

λ(s)ds

}
, t ∈ [tk, sk).

(13)
When t ∈ [sk, tk+1) ⊂ Tuc, the trajectory of V(t) stays
in Γ2 or Γ3, thus, we can directly obtain the following
inequality

V(t) ≤ W1(t) = βV(t0)exp
{
−2c1

∫ t

t0

λ(s)ds

}
. (14)

It follows from (13) and (14) that

V(t) ≤βV(t0)exp
{
−2c1

∫ t

t0

λ(s)ds

}
=βV(t0)exp

{
2c1Tpreln

Tpre − t
Tpre − t0

}
,

(15)

for any t ∈ [t0, Tpre). Then, from inequality (15),
it can be easily deduced that limt→Tpre V(t) = 0,
which implies limt→Tpre ‖e(t)‖ = 0. According
to the definition of prescribed time stability,
given in [8], we know that systems (1) and (2)
realize prescribed-time synchronization under the
state-dependent intermittent control (4). The proof is
completed.

5 Numerical Example
This section provides a numerical example to verify
the efficiency of the proposed approach.

Example 1 Consider network (1) with 5 nodes, and
νp(t) = (νp1(t), νp2(t), νp3(t))

> ∈ R3 for p ∈ =. In
addition, the remaining parameters of network (1) are as
follows: D = 0.01I3, Π = I3, wpq = 0.6(p 6= q), coupling

0 0.5 1 1.5 2 2.5 3 3.5 4

t/s

0

1

2

3

4

5

6

7

8

Figure 2. Evolution of V(t),W1(t) andW2(t).
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Figure 3. Synchronization error evolution of system (3)
with control (4).

strength δ = 0.8, the activation function f(ν) = 0.5(|ν +

1| − |ν − 1|) and T1 = T2 = 1, a†11 = −0.5, a‡11 = −0.6,
a†12 = 3, a‡12 = 5, a†13 = 2.8, a‡13 = 3; a†21 = 2, a‡21 = 1.9,
a†22 = −1.7, a‡22 = −0.02, a†23 = 1.2, a‡23 = 1.0;
a†31 = 1.9, a‡31 = 2.6, a†32 = 1.5, a‡32 = 1.7, a†33 = −1.5,
a‡33 = −1; Let ‖e(t)‖ =

∑N
p=1 e

>
p (t)ep(t), and the initial

values are set as νpi(0) ∈ [−1, 1], p ∈ =, i = 1, 2, 3,
ω(0) = (1, 2, 1)>. The synchronization results of CSNNs
(1) with the given parameters are shown in Figure 1, it can
be observed that synchronization of CSNNs (1) cannot be
achieved without control.

Using the LMI tool in MATLAB, the control gains K =
(kpq)N×N can be obtained by solving LMI (5) in Theorem
1, where kpp = 32.2882, kpq = 0(p 6= q). Additionally,
the parameters of controller (4) are selected as ℵ = 7,
c = 6, c1 = 0.6, c2 = 3, β = 0.5 Tpre = 5s. The
controller parameters ( ℵ = 7, c = 6, c1 = 0.6, c2 =
3, β = 0.5 )were selected to satisfy the LMI conditions
in Theorem 1 while ensuring adequate stability margins

7
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and simulation performance. Figure 2 illustrates the
relationship between the trajectories of V(t),W1(t) and
W2(t), which is consistent with the theoretical analysis
presented in this paper. Figure 3 depicts the evolution
of the synchronization error of system (3) with control
(4). Clearly, the synchronization error ‖e(t)‖ converges
to 0 within the settling time Tpre = 5s, which means
that systems (1) and (2) realize the prescribed-time
synchronization. At this point, the validity of the results
presented in this paper has been confirmed.

6 Conclusion
In this paper, a new type of intermittent control
has been developed to achieve the prescribed-time
synchronization for CSNNs. In this intermittent
control strategy, the intervals for work and rest are
determined by the relationship between the designed
Lyapunov function V(t) and the boundary functions
W1(t) andW2(t), without the need for pre-designed.
In addition, sufficient conditions given in the form of
LMIs are derived to guarantee the synchronization
of CSNNs within a preset settling time Tpre. In the
end, numerical results verified the correctness of the
theoretical results of this paper.
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