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Abstract
In this article, the issues of fixed-time projective
synchronization (FTPS) and predefined-time
projective synchronization (PTPS) in fuzzy
neural networks (FNNs) with discontinuous
activations and mixed-time delays are addressed
by utilizing an adaptive aperiodically switching
strategy. First of all, using the tool of Lyapunov
function theory, the fixed-time stabilization (FS)
in such FNNs is examined. Next, by developing
suitable adaptive aperiodically switching strategy
controllers, novel criteria for achieving FTPS and
PTPS are established within such FNNs. Unlike
recent works, in this paper, aperiodically switching
control and adaptive control are employed to
synchronize fuzzy neural networks (FNNs)
within fixed and predefined time. Furthermore,
depending on the selection of different projective
factors, the results of projective synchronization in
this paper can include results such as complete
synchronization, anti-synchronization and
fixed/predefined-time synchronization. Ultimately,
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illustrative simulations are conducted to support
the efficacy of outcomes gained in this study.

Keywords: aperiodically switching control, adaptive
control, fixed-time projective synchronization,
predefined-time projective synchronization.

1 Introduction
Fuzzy neural networks (FNNs) amalgamate fuzzy
theory with neural networks (NNs), thereby
combining the advantages of both approaches [1, 2].
These systems possess key capabilities such as
learning, association, recognition, and information
processing. Due to these properties, FNNs have
found wide practical applications, including image
processing [3], pattern recognition [4], parallel
processing [5], image encryption [6] and so on. In
recent years, numerous noteworthy and intriguing
findings have been accomplished, such as [7–11].

Synchronization, an important dynamic behavior
of NNs, has garnered considerable attention
from numerous researchers. Recently, numerous
synchronization methodologies tailored to FNNs have
been investigated, such as exponential synchronization
[12], finite-time synchronization [13], projective
synchronization [14], anti-synchronization [15],
and general decay synchronization [16] among
others. Among these approaches, fixed-time
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synchronization(FTS) has drawn significant scholarly
attention due to its independence from system
initial conditions. Recently, substantial research
efforts have been devoted to investigating fixed-time
synchronization in FNNs, see [17–19]. Kong et al. [17]
researched FTS of the discontinuous second-order
FNNs, which features uncertain parameters. Zheng et
al. [18] concentrated on FTS for discontinuous fuzzy
competitive NNs. Zheng et al. [19] explored the FTS
of memristive delayed FNNs.

However, the value of system parameters and control
strategies can dictate the settling time (ST) of FTS. In
real-world applications, obtaining accurate parameters
becomes particularly challenging when a chaotic
system is subjected to perturbations and external
noise. Therefore, Sánchez-Torres et al. [20? ]. Then,
predefined-time synchronization (PTS) was studied.
It has the advantage of being able to synchronize at
any predefined-time and be completely independent
of the initial states, controller parameters and system.
There is no doubt that such a stellar performance has
attracted more and more attention, see [22–24] and
the references therein. In [22], the authors researched
FTS/PTS of FNNs with random perturbations. In
[23], Han et al. explored discontinuous fuzzy cellular
NNs for FTS/PTS problems. In [24], the FTS and PTS
problems of time-varying delayed fuzzy memristive
neural networks were explored.

It is essential to point out that the above studies
do not link fixed-time and predefined-time with
projective synchronization. On the one hand,
projective synchronization control facilitates quicker
communication rates and leverages its attributes
for secure communication [25, 26]. Projective
synchronization, on the other hand, ismore versatile as
complete synchronization [47], anti-synchronization
[15], and stabilization [40] can be derived as particular
instances when the projective factor is 1, -1, and 0,
respectively [14, 27]. So we’ll consider FTPS/PTPS
for FNNs.

To attain synchronization within the drive-response
system, a variety of control strategies have been
introduced and widely explored, including quantized
output control [18, 28], adaptive control [29, 30],
intermittent control [31–33, 50], sliding mode control
[21, 34], impulsive control [14, 35], pinning control
[36], and so on. The aforementioned techniques can
be classified into two categories: continuous control
methods and discontinuous control methods. In
comparison with the continuous control strategies,

the discontinuous control methods are not only
more practical, but also capable of reducing costs
and the amount of transmitted information [37].
Among these methods, aperiodically intermittent
control, as a type of discontinuous control strategy,
has garnered significant interest from numerous
researchers due to its distinct advantages. At present,
the related researches on the synchronization of FNNs
under the aperiodically semi-intermittent strategy
mainly focus on finite/fixed-time synchronization
[37–41, 48]. It is significant to observe that
fixed/predefined-time projective synchronization of
FNNs under aperiodically strategies has rarely been
considered in previous studies.

Moreover, adaptive control refers to a type of control
where the feedback gain varies over time and can
be automatically adjusted according to the design’s
update rules, thereby reducing control costs to a
certain extent. Therefore, this paper investigates FNNs
by combining adaptive control with aperiodically
switching control.

Informed by the insights gleaned from the foregoing
analysis, this paper will center on achieving
fixed-time projective synchronization (FTPS)
and predefined-time projective synchronization
(PTPS) in delayed FNNs via an adaptive aperiodically
switching strategy. The principal contributions can be
summarized as follows:

(1) Unlike literature [29, 30, 37, 39, 40], which
only considered a single control strategy research
system, this paper will simultaneously combine the
aperiodically switching control with adaptive control
to research FTPS/PTPS of FNNs.

(2) The outcomes of the projective synchronization
we investigated will vary with the projective factor.
When the projective factor is -1, 0, 1, it can obtain
complete synchronization [47], stabilization [40] and
anti-synchronization [15]. These results are all our
special cases.

(3)Unlike these studies [13, 37, 38] that primarily focus
on finite-time synchronization of FNNs, this article not
only investigates FTS, which removes the impact of the
system’s initial value on the ST, but also explores PTS,
thereby eliminating the influence of both system and
controller parameters.

The other parts are: Necessary preliminaries and aas
are offered in Section 1. Some criteria regarding FTPS
and PTPS of FNNs are derived in Section 2. In Section
3, the simulation examples are showed. Conclusions
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are summarized in Section 4.

Notations: Rγ is γ-dimensional Euclidean space. For a
given vector ‖α‖ = (α1, α2, · · · , αγ)T ∈ Rγ , ‖α‖1 =∑γ

l |αl| denotes 1− norm. ϑ = maxβ ∈ γ{aβ, εβ}.
C([−ϑ, 0],Rγ) means the space of all continuous
functions f : [−ϑ, 0] → Rγ . The left and right
derivative of Γ(·) at point Ξ are expressed as Γ(Ξ−),
Γ(Ξ+), respectively. K[=] is the convex closure of set
=.M= {1, 2, 3, ...γ}, L = {1, 2, 3, ...}, ℵ = {0, 1, 2, ...}.

2 Preliminaries
2.1 Model description
The drive system of discontinuous FNNs with
mixed-time delays is:

dxl(t)

dt
=− blxl(t) +

γ∑
β=1

clβfβ(xβ(t)) +

γ∑
β=1

dlβ

× fβ(xβ(t− aβ(t))) +

γ∑
β=1

ςlβ

×
∫ t

t−εβ(t)
fβ(xβ(s))ds+

γ∧
β=1

ρlβ

× fβ(xβ(t− ζβ(t))) +

γ∨
β=1

%lβ

× fβ(xβ(t− ζβ(t))) +Wl, l ∈ γ, t > 0,

(1)

here xl(t) is the l-th neuron state. bl > 0 is the neuron
self-inhibition, clβ, dlβ, ςlβ denote the connect weights
among neurons, fβ(·) is discontinuous feedback
function, time delays ζβ(t), εβ(t), aβ(t) meet 0 <
aβ(t) 6 aβ, 0 6 εβ(t) 6 εβ, 0 6 ζβ(t) 6 ζβ , ρlβ and %lβ
represent elements of fuzzy feedback MIN template
and fuzzy feedback MAX template, respectively.

∨
,
∧

denote the fuzzy OR and AND operations. Wl is the
external input. The starting conditions are xl(s) =
Φl(s), l ∈ Z, s ∈ [−ϑ, 0] and Φl(s) ∈ C([−ϑ, 0],R).

Here, the response system is:

dyl(t)

dt
=− blyl(t) +

γ∑
β=1

clβfβ(yβ(t)) +

γ∑
β=1

dlβ

× fβ(yβ(t− aβ(t))) +

γ∑
β=1

ςlβ

×
∫ t

t−εβ(t)
fβ(yβ(s))ds+

γ∧
β=1

ρlβ

× fβ(yβ(t− ζβ(t))) +

γ∨
β=1

%lβ

× fβ(yβ(t− ζβ(t))) +Wl

+ Ul(t), l ∈ γ, t > 0,

(2)

where Ul(t) denotes controllers. The starting values
of FNNs (2) are yl(s) = Ψl(s), l ∈ γ, s ∈ [−ϑ, 0] and
Ψl(s) ∈ C([−ϑ, 0],R).
2.2 Difinitions and lemmas
The following are some definitions, assumptions, and
lemmas that will be used.

A 1: fβ(·) ∈ C(R\Bβ,R), the set Bβ contains a finite
number of discontinuous points ℘iβ . The right limit
and left limit of fβ(·) are fβ(℘i+), fβ(℘i−), respectively,
β ∈M, i ∈ L.
A 2:For ∀℘β ∈ K[fβ(‡)], ∀=β ∈ K[fβ(†)], there exit
nonnegative constants ∆β,Aβ,Bβ such that |fβ(·)| ≤
∆β , and

sup
℘β∈K[fβ(‡)],=β∈K[fβ(†)]

|℘β −=β| 6 Aβ |‡ − †|+ Bβ

where †, ‡ ∈ R, and

K[fβ(‡)] =
[

min
{
fβ(‡−), fβ(‡+)

}
,max

{
fβ(‡−),

fβ(‡+)
}]
,

K[fβ(†)] =
[

min
{
fβ(†−), fβ(†+)

}
,max

{
fβ(†−),

fβ(†+)
}]
.

By adopting differential inclusion theories [42], one
has:

dxl(t)

dt
∈ − blxl(t) +

γ∑
β=1

clβK[fβ(xβ(t))] +

γ∑
β=1

dlβ

×K[fβ(xβ(t− aβ(t)))] +

γ∑
β=1

ςlβ

×
∫ t

t−εβ(t)
K[fβ(xβ(s))]ds+

γ∧
β=1

ρlβ

×K[fβ(xβ(t− ζβ(t)))] +

γ∨
β=1

%lβ

×K[fβ(xβ(t− ζβ(t)))] +Wl, l ∈M, t > 0.

(3)

and
dyl(t)

dt
∈ − blyl(t) +

γ∑
β=1

clβK[fβ(yβ(t))] +

γ∑
β=1

dlβ

×K[fβ(yβ(t− aβ(t)))] +

γ∑
β=1

ςlβ

×
∫ t

t−εβ(t)
K[fβ(yβ(s))]ds+

γ∧
β=1

ρlβ

×K[fβ(yβ(t− ζβ(t)))] +

γ∨
β=1

%lβ

×K[fβ(yβ(t− ζβ(t)))] +Wl

+ Ul(t), l ∈M, t > 0. (4)
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equilvalently, one gets ϕβ(t) ∈ K[fβ(xβ(t))], ψβ(t) ∈
K[fβ(yβ(t))],

dxl(t)

dt
=− blxl(t) +

γ∑
β=1

clβϕβ(t) +

γ∑
β=1

dlβϕβ(t− aβ(t))

+

γ∑
β=1

ςlβ

∫ t

t−εβ(t)
ϕβ(s)ds+

γ∧
β=1

ρlβ

× ϕβ(t− ζβ(t)) +

γ∨
β=1

%lβ

× ϕβ(t− ζβ(t)) +Wl, l ∈M, t > 0. (5)

and

dyl(t)

dt
=− blyl(t) +

γ∑
β=1

clβψβ(t) +

γ∑
β=1

dlβψβ(t− aβ(t))

+

γ∑
β=1

ςlβ

∫ t

t−εβ(t)
ψβ(s)ds+

γ∧
β=1

ρlβ

× ψβ(t− ζβ(t)) +

γ∨
β=1

%lβψβ(t− ζβ(t))

+Wl + Ul(t), l ∈M, t > 0. (6)

Definition 1. Function f̃(t) = (x̃1(t), x̃2(t), ..., x̃γ(t))T

is a Filippov solution of FNNs (1) with fundamental
positions xl(s) = Φl(s), l ∈ M, s ∈ [−ϑ, 0] and
Φl(s) ∈ C([−ϑ, 0],R), for P ∈ [0,+∞) and P is
compact-interva, the absolutely continuous function
f(t) meets (3) or (5).

Remark 1. Under Assumptions A1 and A2, employing
differential inclusion theory [42], there are FNNs (1)
with a local-solution f(t) = (x1(t), x2(t), ..., xγ(t))T at
least with starting values xl(s) = Φl(s), l ∈ M, s ∈
[−ϑ, 0] and Φl(s) ∈ C([−ϑ, 0],R).

2.3 Error systems of FNNs (1) and (2)
We choose to represent the projective factor with θ,
θ ∈ R. Then, the error state el(t) = yl(t)− θxl(t), one

gets

del(t)

dt
=− blel(t) +

γ∑
β=1

clβ[ψβ(t)− θϕβ(t)] +

γ∑
β=1

dlβ

× [ψβ(t− aβ(t))− θϕβ(t− aβ(t))]

+

γ∑
β=1

ςlβ

∫ t

t−εβ(t)
[ψβ(s)− θϕβ(s)]ds+

γ∧
β=1

ρlβ

× ψβ(t− ζβ(t))−
γ∧

β=1

ρlβθϕβ(t− ζβ(t))

+

γ∨
β=1

%lβψβ(t− ζβ(t))−
γ∨

β=1

%lβθϕβ

× (t− ζβ(t)) + (1− θ)Wl

+ Ul(t), l ∈M, t > 0, (7)

Definition 2 [43]. The system (7) achieves fixed-time
stability, meaning that systems (1) and (2) get FTPS. If
there exists a constant Tmax and Tmax > T(e(0)) > 0
which is called ST, such that limt→Tmax ‖el(t)‖1 = 0,
‖el(t)‖1 ≡ 0 hold for all t > Tmax.

Definition 3 [44]. If systems (1), (2) can acquire
FTPS, there exists a positive constant Tp and
T(e(0)) 6 Tp for ∀e(0) ∈ R, then systems (7) achieves
predefined-time stability, and systems (1), (2) can
accomplish PTPS, where Tp is the predefined-time.

Definition 4 [38]. Let λ = lim sup
m→∞

tm+1−sm
tm+1−tm , where

m ∈ ℵ.

Lemma 1 [45]. Let χ1, χ2, · · · , χγ ≥ 0, 0 < v1 ≤
1, v2 ≥ 1,and such that

γ∑
β=1

χv1β >
( γ∑
β=1

χβ

)v1
,

γ∑
β=1

χv2β > γ1−v2
( γ∑
β=1

χβ

)v2
.

Lemma 2 [23]. Let xβ, yβ, ρlβ, %lβ ∈ R, fβ is
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discontinuous function for l, k = 1, 2, . . . γ. Then∣∣∣ γ∧
β=1

ρlβfβ(xβ)−
γ∧

β=1

ρlβfβ(yβ)
∣∣∣

6
γ∑

β=1

∣∣∣ρlβ∣∣∣∣∣∣fβ(xβ)− fβ(yβ)
∣∣∣,

∣∣∣ γ∨
β=1

%lβfβ(xβ)−
γ∨

β=1

%lβfβ(yβ)
∣∣∣

6
γ∑

β=1

∣∣∣%lβ∣∣∣∣∣∣fβ(xβ)− fβ(yβ)
∣∣∣.

Lemma 3 [40]. Suppose the radial unbounded regular
function V(·) defined in C(Rγ , [0,+∞)), and P̃ (t) =

0⇔ V(P̃ (t)) = 0, and V(·) meets

dV(t)

dt
6

{
}V(t)− kV$(t)− ω, tm 6 t < sm,
0, sm 6 t < tm+1,

(8)
m ∈ ℵ, then, system (1) and (2) can achieve FTPS, in
which k > 0, } < k, ω > 0, $ = sign(V(t)− 1) + τ, 1 <
τ < 2, and the ST is

Tmax =


1

1−λ

(
1

(2−τ)(k+ω−}) + 1
(k−})τ

)
, } > 0,

1
1−λ

(
1

(2−τ)(k+ω) + 1
kτ

)
, } < 0.

(9)

Lemma 4. Suppose the radially-unbounded C-regular
function V(·) defined in C(Rγ , [0,+∞)), and P̃ (t) =

0⇔ V(P̃ (t)) = 0, and V(·) meets

dV(t)

dt
6

{
Tmax
Tp

[}V(t)− kV$(t)− ω], tm 6 t < sm,

0, sm 6 t < tm+1,m ∈ ℵ,
(10)

system (1) and (2) can achieve PTPS at
predefined-time Tp.

Proof. 1) If } > 0, according to V(t), It can be
categorized into the following two scenarios.

When V(t) ∈ (0, 1), one knows V$ = Vτ−1,V 6 Vτ−1
and −ω 6 −ωVτ−1. Then, (10) changes into

dV(t)

dt
6

{
−Tmax

Tp
(k + ω − })Vτ−1, tm 6 t < sm,

0, sm 6 t < tm+1,

(11)

For t ∈ [0, s0), let Q0(t) = Z(t) − N0, Z(t) =
Tp

Tmax
V2−τ (t) + (ω+ k− })(2− τ)t,N0 =

Tp
Tmax

V2−τ (0).

Through caculation, we get Q0(0) = 0, Q̇0(t) 6 0. We
have Z(t) 6 N0 for all t ∈ [0, s0).

For t ∈ [s0, t1), let Q∗0(t) = Z(t) − (k + ω − })(2 −
τ)(t − s0) − N0, owing to Z(s0) 6 N0, and through
caculation, one derives Q̇0

∗
(t) 6 0. We attain Z(t) 6

(k + ω − })(2− τ)(t− s0) +N0 for all t ∈ [s0, t1).

Next, by using a mathematical induction method
similar to that in [37], one can get

Z(t) 6



(k + ω − })(2− τ)
m∑
i=1

(ti − si−1)

+N0, tm 6 t < sm,

(k + ω − })(2− τ)
( m∑
i=1

(ti − si−1) + t− sm
)

+N0, sm 6 t < tm+1,
(12)

From Definition 4, it gets 0 6 λ < 1, using a method
similar to that in [37], one deduces

Z(t) 6 (k + ω − })(2− τ)λt+N0, t ∈ [0,+∞).

Consequently, for t ∈ [0,+∞), one has

Tp

Tmax
V(2−τ)(t) 6

Tp

Tmax
V(2−τ)(0)− (k + ω − })

× (2− τ)(1− λ)t. (13)

Owing to V(t) ∈ (0, 1), from (13), one can acquire

T1(e(0)) 6
Tp

Tmax

1

(k + ω − })(2− τ)(1− λ)
. (14)

When V(t) ∈ (1,+∞), one obtains V$(t) =
Vτ+1(t),V(t) 6 Vτ+1(t). Subsequently, (10)
transforms into

dV(t)

dt
6

{
−Tmax

Tp
(k− })Vτ+1, tm 6 t < sm,

0, sm 6 t < tm+1,

(15)

For t ∈ [0, s0), let Q0(t) = Z(t) − N0, Z(t) =
Tp

Tmax
V−τ (t) − (k − })τt,N0 =

Tp
Tmax

V−τ (0). Through
caculation, one can obtain Q0(0) = 0, Q̇0(t) > 0. We
have Z(t) > N0, for all t ∈ [0, s0), .

For t ∈ [s0, t1), let Q
∗
0(t) = Z(t) + (k − })τ(t − s0) −

N0, Q
∗
0(s0) = Z(s0)−N0 > 0, Through caculation, one

can obtain ˙
Q
∗
0(t) > 0. Then, for ∀t ∈ [s0, t1), Z(t) >

N0 − (k− })τ(t− s0).

14
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Next, using the method similar to that above, one can
obtain

Z(t) >


N0 − (k− })τ

m∑
i=1

(ti − si−1), tm 6 t < sm,

N0 − (k− })τ
( m∑
i=1

(ti − si−1)

+t− sm
)
, sm 6 t < tm+1,

(16)
from Definition 4, it gets 0 6 λ < 1, using a method
similar to that in [40], one deduces

Z(t) > N0 − (k− })τλt, t ∈ [0,+∞). (17)

Consequently, for t > 0, one gets

Tp

Tmax
V−τ (t) >

Tp

Tmax
V−τ (0) + (k−})τ(1−λ)t. (18)

Owing to V(t) ∈ (1,+∞), one has V−τ (t) < 1. From
(18), we can get

T2(e(0)) 6
Tp

Tmax

1

(k− })τ(1− λ)
. (19)

From (9), (14) and (19), we know

T(e(0)) = T1(e(0)) + T2(e(0)) 6 Tp. (20)

2) If } 6 0, there are the following two situations
resulting from V(t).

When V(t) ∈ (0, 1), one gets V$ = Vτ−1 and −ω 6
−ωVτ−1. Then, (10) changes into

dV(t)

dt
6

{
−Tmax

Tp
(k + ω)Vτ−1, tm 6 t < sm,

0, sm 6 t < tm+1,

(21)

from (21) and using processes similar to those in 1),
there are

T1(e(0)) 6
Tp

Tmax

1

(k + ω)(2− τ)(1− λ)
. (22)

When V(t) > 1, one gets V$ = Vτ+1. Then, (11)
changes into

dV(t)

dt
6

{
−Tmax

Tp
kVτ+1, tm 6 t < sm,

0, sm 6 t < tm+1,m ∈ ℵ,
(23)

from (23) and using processes similar to those in 1),
there are

T2(e(0)) 6
Tp

Tmax

1

kτ(1− λ)
. (24)

From (9), (22) and (24), we know

T(e(0)) = T1(e(0)) + T2(e(0)) 6 Tp. (25)

Now, from (20) and (25), we find Lemma 4 is
applicable. The proof is complete.

Remark 2. Unlike references [29, 30], which only
consider adaptive control strategy and also unlike
references [39, 40], which only consider aperiodically
switching control strategy, this paper combines these
two control strategies to study fixed/predefined-time
projective synchronization, integrating the advantages
of both.On the one hand, the aperiodically switching
control strategy, as a discontinuous control scheme,
has practical and economical advantages in real-world
applications and is more convenient to implement.
On the other hand, the adaptive control strategy has
the advantage that the control gain can automatically
adjust itself on the basis of some appropriate update
rules.

3 Main results
3.1 FTPS of FNNs
The aperiodically switching control with adaptive
updating law Ul(t) in FNNs (7) is given as follows:

Ul(t) =



−hl(t)el(t)−
(
ξl|el(t)|$ + Il

)
sign(el(t))

+
γ∑

β=1

clβ[θfβ(xβ(t))− fβ(θ(xβ(t)))]

+(θ − 1)Wl, tm 6 t < sm,

−hl(t)el(t)− Ilsign(el(t)) +
γ∑

β=1

clβ

×[θfβ(xβ(t))− fβ(θ(xβ(t)))]
+(θ − 1)Wl, sm 6 t < tm+1,m ∈ ℵ,

(26)

in which $ = τ + sign(V(t) − 1), ξl, Il are positive
numbers, 1 < τ < 2. The adaptive updating law fulfills

ḣl(t) =(hl(t)− ηl)|el(t)|sign(hl(t)− ηl)− pl
× sign(hl(t)− ηl)|hl(t)− ηl| − ql
× sign(hl(t)− ηl)|hl(t)− ηl|$, (27)

wherem = 0, 1, 2, . . . , ηl, pl, ql are positive constants.

In accordance with differential inclusion theories [42],
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error system (7) with controller (26) is

del(t)

dt
=− (bl + hl(t))el(t) +

γ∑
β=1

clβ[ψβ(t)− φβ(t)]

+

γ∑
β=1

dlβ[ψβ(t− aβ(t))− θϕβ(t− aβ(t))]

+

γ∑
β=1

ςlβ

∫ t

t−εβ(t)
[ψβ(s)− θϕβ(s)]ds+

γ∧
β=1

ρlβ

× ψβ(t− ζβ(t))−
γ∧

β=1

ρlβθϕβ(t− ζβ(t))

+

γ∨
β=1

%lβψβ(t− ζβ(t))−
γ∨

β=1

%lβθϕβ

× (t− ζβ(t))−
(
ξl|el(t)|$ + Il

)
× sign(el(t)), tm 6 t < sm,

del(t)

dt
=− (bl + hl(t))el(t) +

γ∑
β=1

clβ[ψβ(t)− φβ(t)]

+

γ∑
β=1

dlβ[ψβ(t− aβ(t))− θϕβ(t− aβ(t))]

+

γ∑
β=1

ςlβ

∫ t

t−εβ(t)
[ψβ(s)− θϕβ(s)]ds+

γ∧
β=1

ρlβ

× ψβ(t− ζβ(t))−
γ∧

β=1

ρlβθϕβ(t− ζβ(t))

+

γ∨
β=1

%lβψβ(t− ζβ(t))−
γ∨

β=1

%lβθϕβ

× (t− ζβ(t))− Ilsign(el(t)), sm 6 t < tm+1,
(28)

in which ϕβ(t) ∈ K[fβ(xβ(t))], ψβ(t) ∈
K[fβ(yβ(t))], φβ(t) ∈ K[fβ(θxβ(t))].

To get FTPS results, we make the following notations.

} = max
16l6γ

{−(bl + ηl −
γ∑

β=1

|cβl|Al),−pl}, (29)

k1 = min
16l6γ

{ξl, ql},k = k1 · (2γ)−τ , (30)

ωl =Il −
γ∑

β=1

[
|clβ|Bβ +

(
|dlβ|+ |ςlβ|εβ + |ρlβ|

+ |%lβ|
)

(1 + |θ|)∆β

]
.

bl + ηl −
γ∑

β=1

|cβl|Al > 0, ωl > 0 (31)

Theorem 1. Suppose that A 1,A 2, } < k and (31)
hold, then FNNs (1) and (2) achieve FTPS with
control (26), and the ST is Tmax.

Proof. The nonnegative function are constructced

V(t) =

γ∑
l=1

(|el(t)|+ |hl(t)− ηl|). (32)

For tm 6 t < sm,m ∈ ℵ, owing to V(t) is C − regular
function [46], one gets

dV(t)

dt
=

γ∑
l=1

(
εl(t) ·

del(t)

dt
+ ε∗l (t) ·

dhl(t)

dt

)

=

γ∑
l=1

{
εl(t)

[
− (bl + hl(t))el(t) +

γ∑
β=1

clβ

× [ψβ(t)− φβ(t)] +

γ∑
β=1

dlβ[ψβ(t− aβ(t))

− θϕβ(t− aβ(t))] +

γ∑
β=1

ςlβ

×
∫ t

t−εβ(t)
[ψβ(s)− θϕβ(s)]ds+

γ∧
β=1

ρlβ

× ψβ(t− ζβ(t))−
γ∧

β=1

ρlβθϕβ(t− ζβ(t))

+

γ∨
β=1

%lβψβ(t− ζβ(t))−
γ∨

β=1

%lβθ

× ϕβ(t− ζβ(t))−
(
ξl|el(t)|$ + Il

)
sign(el(t))

]
+ ε∗l (t) ·

[
(hl(t)− ηl)|el(t)|sign(hl(t)− ηl)

− plsign(hl(t)− ηl)|hl(t)− ηl|

− qlsign(hl(t)− ηl)|hl(t)− ηl|$
]}
. (33)

in which εl(t) ∈ K[sign(el(t))], ε
∗
l (t) ∈ K[sign(hl(t) −

ηl)].
From A 1,A 2,Lemma 3.we gets

|ψβ(t)− φβ(t)| 6 Aβ|eβ(t)|+ Bβ,∣∣∣ γ∧
β=1

ρlβ × ψβ(t− ζβ(t))−
γ∧

β=1

ρlβ × θϕβ(t− ζβ(t))
∣∣∣

6
γ∑

β=1

|ρlβ||ψβ(t− ζβ(t)− θϕβ(t− ζβ(t)|

6
γ∑

β=1

|ρlβ|(1 + |θ|)∆β

16
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∣∣∣ γ∨
β=1

%lβ × ψβ(t− ζβ(t))−
γ∨

β=1

%lβ × θϕβ(t− ζβ(t))
∣∣∣

6
γ∑

β=1

|%lβ||ψβ(t− ζβ(t)− θϕβ(t− ζβ(t)|

6
γ∑

β=1

|%lβ|(1 + |θ|)∆β. (34)

then,we get

dV(t)

dt
6

γ∑
l=1

[
− (bl + hl(t))|el(t)|+

γ∑
β=1

|clβ|(Aβ|eβ(t)|

+ Bβ) +

γ∑
β=1

|dlβ|(1 + |θ|)∆β +

γ∑
β=1

|ςlβ|εβ(t)

× (1 + |θ|)∆β +

γ∑
β=1

|ρlβ|(1 + |θ|)∆β

+

γ∑
β=1

|%lβ|(1 + |θ|)∆β −
(
ξl|el(t)|$ + Il

)
+ (hl(t)− ηl)|el| − pl|hl(t)− ηl|

− ql|hl(t)− ηl|$
]

6
γ∑
l=1

{
− (bl + ηl −

γ∑
β=1

|cβl|Al)|el(t)| − pl

× |hl(t)− ηl| − ξl|el(t)|$ − ql|hl(t)− ηl(t)|$

−
[
Il −

γ∑
β=1

(
|clβ|Bβ + (|dlβ|+ |ςlβ|εβ

+ |ρlβ|+ |%lβ|)(1 + |θ|)∆β

)]}
(35)

Basing on Lemma 1, one gets

(1) When V(t) ∈ (0, 1), then $ ∈ (0, 1)

−
γ∑
l=1

[ξl|el(t)|$ + ql|hl(t)− ηl|$]

6− k1
( γ∑
l=1

|el(t)|$ + |hl − ηl(t)|$
)

6− k1
( γ∑
l=1

|el(t)|+ |hl(t)− ηl|
)$

=− k1V$(t), (36)

where k1 = min
16l6γ

{ξl, ql}.

(2) When V(t) ∈ (1,+∞), then $ ∈ (2, 3)

−
γ∑
l=1

[ξl|el(t)|$ + ql|hl − ηl(t)|$]

6− k1
( γ∑
l=1

|el(t)|$ + |hl − ηl(t)|$
)

6− k1(2γ)−τ
( γ∑
l=1

|el(t)|+ |hl(t)− ηl|
)$

=− kV$(t). (37)

Therefore, from (30) and (36)-(37), one gets, for tm 6
t < sm,m ∈ ℵ,

−
γ∑
l=1

[ξl|el(t)|$ + ql|hl(t)− ηl|$] 6 −kV$(t), (38)

where k = k1 · (2γ)−τ .
According to (33)-(38), one has

dV(t)

dt
6 }V(t)− kV$(t)− ω, tm 6 t < sm. (39)

Now, for sm 6 t < tm+1,m ∈ ℵ, from (28)-(32), we
get

dV(t)

dt
6

γ∑
l=1

[
− (bl + hl)|el(t)|+

γ∑
β=1

|clβ|(Aβ|eβ(t)|

+ Bβ) +

γ∑
β=1

|dlβ|(1 + |θ|)∆β +

γ∑
β=1

|ςlβ|εβ(t)

× (1 + |θ|)∆β +

γ∑
β=1

|ρlβ|(1 + |θ|)∆β

+

γ∑
β=1

|%lβ|(1 + |θ|)∆β − Il + (hl(t)− ηl)|el(t)|

− pl|hl(t)− ηl| − ql|hl(t)− ηl|$
]

6
γ∑
l=1

{
− (bl + ηl −

γ∑
β=1

|cβl|Al)|el(t)| −
[
Il

−
γ∑

β=1

(
|clβ|Bβ + (|dlβ|+ |ςlβ|εβ + |ρlβ|+ |%lβ|)

× (1 + |θ|)∆β

)]
− pl|hl(t)− ηl| − ql|hl(t)− ηl|$

}
60

(40)
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From (39) and (40), we can know (8) holds. Through
Lemma 3, we can know (7) is fixed-time stable; in
other words, FNNs (1) and (2) achieve FTPS under
the controller (26) at ST Tmax.

Corollary 1. Under Theorem 1 with controller (26),
we find
(1) when θ = 0, FNNs (1) achieve the FS;
(2) when θ = 1, FNNs (1) and (2) attain the FTS;
(3) when θ = −1, FNNs (1) and (2) fulfil fixed-time
anti-synchronization, Tmax is the ST.

3.2 PTPS of FNNs
To facilitate, let

Ξl =

γ∑
β=1

[
|clβ|Bβ +

(
|dlβ|+ |ςlβ|εβ + |ρlβ|+ |%lβ|

)
× (1 + |θ|)∆β

]
. (41)

Now consider the following controller

U∗l (t) =



−hl(t)el(t)− }(1− Tmax
Tp

)(|el(t)|
+|hl(t)− ηl|)sign(el(t))− Tmax

Tp

(
ξl|el(t)|$

+ql|hl(t)− ηl|$ +
Tp

Tmax
Ξl + ωl

)
sign(el(t))

+
γ∑

β=1

clβ[θfβ(xβ(t))− fβ(θ(xβ(t)))]

+(θ − 1)Wl, tm 6 t < sm,

−hl(t)el(t)− Ilsign(el(t)) +
γ∑

β=1

clβ

×[θfβ(xβ(t))− fβ(θ(xβ(t)))]
+(θ − 1)Wl, sm 6 t < tm+1,m ∈ ℵ,

(42)

the adaptive updating law of hl(t) satisfies

ḣl(t) =(hl(t)− ηl)|el(t)|sign(hl(t)− ηl)− pl
× sign(hl(t)− ηl)|hl(t)− ηl| − ql
× sign(hl(t)− ηl)|hl(t)− ηl|$,

The error system is

del(t)

dt
=− (bl + hl(t))el(t) +

γ∑
β=1

clβ[ψβ(t)− φβ(t)]

+

γ∑
β=1

dlβ[ψβ(t− aβ(t))− θϕβ(t− aβ(t))]

+

γ∑
β=1

ςlβ

∫ t

t−εβ(t)
[ψβ(s)− θϕβ(s)]ds+

γ∧
β=1

ρlβ

× ψβ(t− ζβ(t))−
γ∧

β=1

ρlβθϕβ(t− ζβ(t))

+

γ∨
β=1

%lβψβ(t− ζβ(t))−
γ∨

β=1

%lβθϕβ

× (t− ζβ(t))− }(1− Tmax

Tp
)

× (|el(t)|+ |hl(t)− ηl|)sign(el(t))

− Tmax

Tp

(
ξl|el(t)|$ + ql|hl(t)− ηl|$

+
Tp

Tmax
Ξl + ωl

)
sign(el(t)), tm 6 t < sm,

del(t)

dt
=− (bl + hl(t))el(t) +

γ∑
β=1

clβ[ψβ(t)− φβ(t)]

+

γ∑
β=1

dlβ[ψβ(t− aβ(t))− θϕβ(t− aβ(t))]

+

γ∑
β=1

ςlβ

∫ t

t−εβ(t)
[ψβ(s)− θϕβ(s)]ds+

γ∧
β=1

ρlβ

× ψβ(t− ζβ(t))−
γ∧

β=1

ρlβθϕβ(t− ζβ(t))

+

γ∨
β=1

%lβψβ(t− ζβ(t))−
γ∨

β=1

%lβθϕβ

× (t− ζβ(t))− Ilsign(el(t)), sm 6 t < tm+1,
(43)

Theorem 2. UnderA 1,A 2 and (42)-(43), if } < k and
(31) hold, then, FNNs (1) and (2) get PTPS.
Proof. Designating a following nonnegative function

V(t) =

γ∑
l=1

(|el(t)|+ |hl(t)− ηl|). (44)

For tm 6 t < sm,m ∈ ℵ, owing to V(t) is C − regular
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function [46], one gets

dV(t)

dt
=

γ∑
l=1

(
εl(t) ·

del(t)

dt
+ ε∗l (t) ·

dhl(t)

dt

)

=

γ∑
l=1

{
εl(t)

[
− (bl + hl(t))el(t) +

γ∑
β=1

clβ[ψβ(t)

− φβ(t)] +

γ∑
β=1

dlβ[ψβ(t− aβ(t))− θ

× ϕβ(t− aβ(t))] +

γ∑
β=1

ςlβ

∫ t

t−εβ(t)
[ψβ(s)−

θϕβ(s)]ds+

γ∧
β=1

ρlβψβ(t− ζβ(t))−
γ∧

β=1

ρlβθ

× ϕβ(t− ζβ(t)) +

γ∨
β=1

%lβψβ(t− ζβ(t))

−
γ∨

β=1

%lβθϕβ(t− ζβ(t))− }(1− Tmax

Tp
)

× (|el(t)|+ |hl(t)− ηl|)sign(el(t))−
Tmax

Tp

×
(
ξl|el(t)|$ + ql|hl(t)− ηl|$ +

Tp

Tmax
Ξl + ωl

)
× sign(el(t))

]
+ ε∗l (t)×

[
(hl(t)− ηl)|el(t)|

× sign(hl(t)− ηl)− plsign(hl(t)− ηl)
× |hl(t)− ηl| − qlsign(hl(t)− ηl)

× |hl(t)− ηl(t)|$
]}
.

(45)

From A 1,A 2,Lemma 4.we gets

dV(t)

dt
6

γ∑
l=1

[
− (bl + hl(t))|el(t)|+

γ∑
β=1

|clβ|(Aβ|eβ(t)|

+ Bβ) +

γ∑
β=1

|dlβ|(1 + |θ|)∆β +

γ∑
β=1

|ςlβ|εβ(t)

× (1 + |θ|)∆β +

γ∑
β=1

|ρlβ|(1 + |θ|)∆β+

γ∑
β=1

|%lβ|(1 + |θ|)∆β − }(1− Tmax

Tp
)(|el(t)|

+ |hl(t)− ηl|)−
Tmax

Tp

(
ξl|el(t)|$ + ql

× |hl(t)− ηl|$ +
Tp

Tmax
Ξl + ωl

)
+ (hl(t)− ηl)|el(t)| − pl|hl(t)− ηl|

− ql|hl(t)− ηl|$
]

dV(t)

dt
6

γ∑
l=1

{
− (bl + ηl −

γ∑
β=1

|cβl|Al)|el(t)| − pl

× |hl(t)− ηl| − }(1− Tmax

Tp
)(|el(t)|

+ |hl(t)− ηl|)−
Tmax

Tp

(
ξl|el(t)|$

+ ql|hl(t)− ηl|$
)
− Tmax

Tp
ωl

}
(46)

Applying a proof resembling to that of Theorem 1, we
obtain that

dV(t)

dt
6

Tmax

Tp
(}V(t)− kV$(t)− ω), tm 6 t < sm.

(47)

for sm 6 t < tm+1,m ∈ ℵ, from (40), (42)-(44),
employing a proof analogous to that of Theorem 1,
we get

dV(t)

dt
60 (48)

From (47) and (48), we determine that (10) holds.
Through employing Lemma 4, (7) is predefined-time
stable; thus, FNNs (1) and (2) obtain PTPS with the
controller (42) at ST Tmax. This ends the proof.

Corollary 2. Under Theorem 2 and controller (42), we
find
(1) when θ = 0, FNNs (1) achieve the predefined-time
stabilization;
(2) when θ = 1, FNNs (1) and (2) attain the PTS;
(3) when θ = −1, FNNs (1) and (2) fulfil
predefined-time anti-synchronization, Tmax is the ST.

Remark 3. Currently, research concerning
synchronization under the aperiodically
intermittent strategy primarily concentates on
finite-time synchronization [37, 38] and fixed-time
synchronization [39, 40]. Unlike these articles,
from the perspective of practical reality, the
fixed-time/predefined-time projective synchronizaton
we researched are better. On the one hand, the ST of
finite-time has a connection with the initial conditions,
on the other hand, the ST of FTPS is correlated with
system parameters and controller gains. Moreover,
the ST of PTPS is not affected by starting conditions or
system parameters.

Remark 4. Although references [38, 41, 48]
adopt adaptive aperidically switching synchronization,
we study projective synchronization. When the
projective factor is -1, 0, 1, we can obtain the result
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Table 1. Comparisons between previous literature and this papers

Related works FNNs adaptive aperiodically switching controller FTPS PTPS

[7–19, 22, 24, 40]
√

× × ×
[38, 41, 48] ×

√
× ×

[27, 39] × ×
√ √

[49]
√

×
√

×
[44, 50] × ×

√ √

[23]
√

×
√ √

this paper
√ √ √ √

of anti-synchronization, stabilization and complete
synchronization. This indicates that our results are
more extensive.

Remark 5. FromTable 1, we can see the differences and
connections between this article and other literature.
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Figure 1. Discontinuous function fβ(xβ(t)) showed in (50).
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Figure 2. Phase trajectory of system (49)

4 Numerical simulations
In this section, two examples are given to show the
validity of the theoretical results obtained.

Example 1. Examine a category of FNNs as follow

dxl(t)

dt
=− blxl(t) +

2∑
β=1

clβfβ(xβ(t)) +

2∑
β=1

dlβ

× fβ(xβ(t− aβ(t))) +
2∑

β=1

ςlβ

×
∫ t

t−εβ(t)
fβ(xβ(s))ds+

2∧
β=1

ρlβ

× fβ(xβ(t− ζβ(t))) +

2∨
β=1

%lβ

× fβ(xβ(t− ζβ(t))) +Wl, l ∈M, t > 0,
(49)

0 20 40 60 80 100 120 140 160 180 200

time(s)

-4

-3

-2

-1

0

1

2

3

4

x
1
(t

) 
a
n

d
 x

2
(t

)

x
1
(t) x

2
(t)

Figure 3. States x1(t) and x2(t) of FNNs (49)
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Figure 4. Error states e1(t), e2(t) without control

in which

fβ(xβ(t)) = 2 sin(xβ(t)) + 0.2sign(xβ(t)). (50)
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Table 2. Parameter values of FNNs (49).

parameters b1 c11 c12 d11 d12 ς11 ς12 ρ11 ρ12 %11 %12
Values 1.4 1.2 −1.4 −1.6 −0.2 0.2 −0.1 −1.3 −0.4 −0.2 −1.2

parameters b2 c21 c22 d21 d22 ς21 ς22 ρ21 ρ22 %21 %22
Values 0.2 −0.5 2.5 0.1 −0.5 −0.1 0.2 −1.6 −1 −0.6 −1.1

where aβ(t) = bβ(t) = ζβ(t) = exp(t)
1+exp(t) , β = 1, 2. The

other parameters are shown in Table 2. Figure 1 shows
the graph of discontinuous function fβ(xβ(t)).

Under the starting values x1(s) = 1.75, x2(s) =
0.5,∀s ∈ [−1, 0), the trajectories x1(t) and x2(t) of
FNNs are shown in Figures 2 and 3. Figure 4 shows
error states e1(t), e2(t) without control. Figure 5 and
6 show evolution of the adaptive updating law hl(t)
with θ = 1,−1.2.

Response system of FNNs (49) is

dyl(t)

dt
=− blyl(t) +

2∑
β=1

clβfβ(yβ(t)) +

2∑
β=1

dlβ

× fβ(yβ(t− aβ(t))) +
2∑

β=1

ςlβ
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Figure 5. Evolution of the adaptive updating law hl(t)
with θ = 1
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Figure 6. Evolution of the adaptive updating law hl(t)
with θ = −1.2
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Figure 7. FTPS trajectories of states x1(t), y1(t) and
x2(t), y2(t) with θ = 1

×
∫ t

t−εβ(t)
fβ(yβ(s))ds+

2∧
β=1

ρlβ

× fβ(yβ(t− ζβ(t))) +
2∨

β=1

%lβ

× fβ(yβ(t− ζβ(t))) +Wl

+ Ul(t), l ∈M, t > 0, (51)

here, The parameter values are consistent with those
of FNNs (49). The starting values of (51) are y1(s) =
−0.6, y2(s) = 5, ∀s ∈ [−1, 0). Here, we take different
projective factors θ = −1.2, and θ = 1.

4.1 FTPS of FNNs (49) and (51)
From FNNs (49), we get Aβ = 2, Bβ = 0.2,∆β = 2.2,
aβ = εβ = ζβ = 1,Wl = 0.5, β = 1, 2.

Case 1: Let θ = 1, there, we choose ξ1 = ξ2 =
4, τ = 1.3, I1 = 123.4, I2 = 123.48, η1 = 3, η2 =
8, p1 = 1, p2 = 3, q1 = q2 = 3. Then, we
have k1 = 2, k = 0.4948, } = −0.4. We can get
ω1 = 100, ω2 = 100, ω = 200. The total operation
time is 9 s, and the first-intermittent subintervals are
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Figure 8. Error states e1(t), e2(t) with control (26), and
θ = 1
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Figure 9. FTPS trajectories of states x1(t), y1(t) with
θ = −1.2

[0, 0.6), [1, 2), [3.6, 4.2), [5, 5.5), [6, 7.2), [8.8, 9), which
also implies λ = 8/13.

Through simple calculations, we can determine that
these parameters meet the conditions of Theorem
1. Therefore, the drive-response systems (49) and
(51) can attain FTPS, the ST Tmax = 3.8992. Then,
20 different initial values are randomly selected here.
Figures 7 and 8 show the drive-response system can
FTPS.

Case 2: Let θ = −1.2, there, we choose tm = 2m, sm =
2(m + 0.2), λ = 0.8, ξ1 = ξ2 = 4, τ = 1.1, I1 =
625.688, I2 = 425.768, η1 = 15, η2 = 12, p1 = 3, p2 =
1, q1 = q2 = 3. Then, we have k1 = 3, k = 0.6529, } =
−1.we can get ω1 = 600, ω2 = 400, ω = 1000. By
calculation, one determines that the parameters meet
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Figure 10. FTPS trajectories of states x2(t), y2(t) with
θ = −1.2
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Figure 11. Error states e1(t), e1(t) with control (26), and
θ = −1.2

the requirements of Theorem 1. So system (49) and
(51) attain FTPS, the ST Tmax = 6.9674. We select 20
starting values randomly. Figures 9, 10 and 11 show
the drive-response system can FTPS.

4.2 PTPS of FNNs (49) and (51)
Now, we can select the parameters for the FTPS as
provided above, contingent upon the variation in θ.

Let θ = 1, we can gain Ξ1 = 23.4,Ξ2 = 23.48. By
using controller (42), from Therorem 2, we choose
predefined time Tp = 3 < Tmax = 3.8992. Then,
FNNs (49) and (51) can derive PTPS. Figure 12
demonstrates the system (49) and (51) can realize
PTPS with the controller (42) and θ = 1.

Let θ = −1.2, we can acquire Ξ1 = 25.688,Ξ2 = 25.768.
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Figure 12. Error states e1(t), e2(t) with θ = 1 and controllers
(42)
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Figure 13. Error states e1(t), e2(t) with θ = −1.2 and
controllers (42)

By using controller (42), from Therorem 2, we choose
predefined time Tp = 6 < Tmax = 6.9674. Then
FNNs (49) and (51) can accomplish PTPS. Figure 13
demonstrates the system (49) and (51) can realize
PTPS with the controller (42) and θ = −1.2.

5 Conclusions
Through utilizing the adaptive aperiodically switching
strategy, this paper explores the FTPS/PTPS problem
of FNNs. To attain the criteria of FTPS and PTPS,
two aperiodically switching strategies equipped with
adaptive updating laws are engineered, respectively.
Different from the previous fixed/predefined-time
synchronization [22, 23], complete synchronization
[47] and anti-synchronization [15], the FTPS/PTPS

attained in this paper are more general, as the above
situations are our special cases. Ultimately, numerical
simulations confirm the accuracy of the outcomes
obtained. It should be emphasized that our parameters
are real numbers. Indeed, FTPS and PTPS of FNNs
with complex-valued fuzzy elements [11, 49] hold
significant practical applications.
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