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Abstract
This paper investigates a class of neural networks
(NNs) with time-varying delays. At first, based
on the general exponential function and by using
inequality techniques, we establish novel lemmas
addressing fixed/preassigned-time synchronization
for such NNs. Then, by employing these derived
lemmas and designing two effective feedback
controllers, we systematically study the fixed-time
synchronization (FTS) and preassigned-time
synchronization (PRTS) problems of delayed
NNs. In addition, the settling-time estimation in
our fixed-time stability lemma expresses superior
accuracy compared to existing results in previous
related works, which can all be viewed as special
cases of this paper. Finally, numerical simulations
demonstrate the validity and practicality of the
theoretical findings.
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1 Introduction
In recent years, dynamic behaviors of neural networks
(NNs) have drawn widespread interests from
researchers because of their crucial applications in
areas such as image processing [1], information
prediction [2, 3], and fault-tolerant control [4].
Among them, stability and synchronization of NNs
have been given more pages and many interesting
works have been reported, e.g., see [5–7]. In 2020,
Arik [8] studied stability of neutral-type NNs with
multiple delays, and by using continuous/periodic
sampling algorithm, Wang et al. [9] discussed
synchronization of delayed memristive NNs. In
2021, by designing event-triggered impulsive control,
Chen et al. [10] got the synchronization of NNs with
disconnected switching topology, Zhang et al. [11]
achieved the synchronization of delayed second-order
fuzzy memristive NNs, Fu et al. [12] through pinning
impulsive control got exponential synchronization
of memristive inertial NNs. In 2022, Shen et al. [13]
derived synchronization of complex-valued NNs,
Wang et al. [14] studied finite-time synchronization
of delayed inertial NNs via feedback control. In
2023, Zhang et al. [15] investigated the stability of
state-dependent switching inertial NNs. Recently,
Duan et al. [16]discussed finite-time synchronization
of complex-valued BAM inertial NNs.
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Noteworthy, the discussions in the aforementioned
papers are all focused on asymptotic/finite-time
stability and synchronization, which convergence
time is too long or depends on initial conditions
of systems, and these limitations restrict the
practical implementation of the theoretical findings
in real-world engineering applications. In 2012,
Polyakov [17] proposed the fixed-time stability
definition, which convergence time, that is, called the
settling-time, can be estimated and do not connect with
the initial conditions of systems. Then, many valuable
results about fixed-time synchronization (FTS) and
stability of NNs are reached, e.g., see [18–23]. In 2017,
Hu et al. [18] discussed FTS of discontinuous NNs. In
2021, Kong et al. [19] investigated FTS for fuzzy inertial
NNs, Aouiti et al. [20] got fixed-time stabilization of
neutral-type inertial NNs. In 2022, Gan et al. [21]
derived FTS of memristive complex-valued NNs. In
2023, by using aperiodically switching control, Hu et
al. [22] given fixed-time stabilization of coefficients
discontinuous spatiotemporal NNs. In 2024, Zhang
et al. [23] expressed new approximate results of
fixed-time stabilization for delayed second-order NNs.

Although the upper-bound for the settling-time
function of fixed-time stability is a positive constant
that independent of initial values, but it cannot be
preassigned according to practical requirements. In
2017, Jiménez-Rodríuez et al. [24] showed results
about predefined-time stabilization of systems, which
settling-time can be preassigned at first and do not
related with any parameters of the systems. So,
preassigned-time synchronization (PRTS) has more
advantages than FTS. In these years, some results on
PRTS of NNs have been discussed in [25–29]. In
2021, Chen et al. [25] showed PRTS of a class of
competitive NNs, Hu et al. [26] got PRTS of complex
networks with an improved fixed-time stability. In
2022, Han et al. [27] discussed the preassigned-time
anti-synchronization of delayed fuzzy inertial NNs. In
2023, by using non-reduced order approach, Zhang
et al. [28] expressed PRTS of delayed fuzzy inertial
NNs, Wang et al. [29] investigated PRTS of delayed
fractional-order memristive NNs.

However, fixed/preassigned-time stability Lemmas
used inmost of the previousworks aremainly based on
the inequality dV(t)

dt 6 −αVp(t)−βVq(t), (α, β > 0, 0 6
p 6 1, q > 1), which has two exponential variables
that lead to certain difficulties in the practical design
of the controllers. Now, an interesting question comes
up, that is , whether we can only use one exponential
variable to realize FTS and PRTS of NNs. So, in this

paper, we will use general exponential function that
contains only one exponential variable to derive our
FTS and PRTS lemmas, and based on these proposed
lemmas, some new results on FTS and PRTS of a class
of delayed NNs will be studied. This study makes the
following novel contributions:

Firstly, a new FTS lemma for a delayed NNs is
built, which settling-time is more precise compared to
existing results [24, 25]. And the new lemma can be
used to study other nonlinear dynamic systems.

Secondly, a new lemma on PRTS of the delayed NNs
is constructed, and the preassigned-time of the PRTS
do not depend on any parameters of the delayed NNs.

Thirdly, two new effective feedback controllers are
designed to realize FTS and PRTS of the delayed
NNs, respectively, and some comparisions between
related previous works with this paper are given in
the simulations.

This paper is organized as follows: Section 2 presents
the preliminaries. In Section 3, new criteria for FTS
and PRTS of the delayed NNs are given. Section 4
shows the simulation and comparison results. Finally,
conclusions are displayed.

2 Preliminaries
Notations: Let N = {1, 2, ..., v}, Rv is the Euclidean
space with v-dimensional. (·)T is the transpose of
(·), ṗ(t) stands for derivative of p(t). For ∀ y =
(y1, y2, ..., yv)

T ∈ Rv, which norm is ‖y‖ =
∑v

k=1 |yk|.
ϑk = max{|ϑ−k |, |ϑ

+
k |}. And C([−µ, 0],Rv) denotes all

continuous function from [−µ, 0] to Rv, where µ =
max16k6v{µk}, µk = maxt>0{µk(t)}, k ∈ N .

2.1 Delayed NNs model
In this paper, we consider the delayed NNs as follows:

dmk(t)

dt
= −akmk(t) +

v∑
j=1

bkjFj(mj(t))

+

v∑
j=1

ckjFj(mj(t− µj(t)))

+ δk, t > 0, (1)

where mk(t) is the k-th neural state, ak > 0, bkj , ckj
are all connect weights, the feedback function Fj(·) is
continuous, µj(t) > 0, which is time delay and satisfy
µj(t) 6 µj , δk is external input. Let the initial values of
NNs (1) aremk(s) = kk(s),kk(s) ∈ C([−µ, 0],R), k ∈
N .
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Assumption 1. For NNs (1), which feedback function
Fk(·) is continuous, Fk(0) = 0 and for ∀ y1, y2 ∈ R, has

ϑ−k 6
Fk(y1)−Fk(y2)

y1 − y2
6 ϑ+k , |Fk(y1)| 6 Lk, (2)

in which, ϑ−k , ϑ
+
k ∈ R, y1 6= y2, Lk > 0, k ∈ N .

Remark 1. Under Assumption 1, one can easy find
that NNs (1) exists solutionmk(t) with starting value
mk(s) = kk(s),kk(s) ∈ C([−µ, 0],R), and t > 0, k ∈
N .

Let NNs (1) as the drive system, which response
system is

dnk(t)

dt
= −aknk(t) +

v∑
j=1

bkjFj(nj(t))

+

v∑
j=1

ckjFj(nj(t− µj(t)))

+ δk + uk(t), (3)

in which uk(t) is control input, and other parameters
are same as in NNs (1). Let initial values of NNs (2)
are nk(s) = ik(s),ik(s) ∈ C([−µ, 0],R), k ∈ N .

Let wk(t) = nk(t) − mk(t), k ∈ N , then, the
synchronization error system is

dwk(t)

dt
= −akwk(t) +

v∑
j=1

bkjGj(wj(t))

+

v∑
j=1

ckjGj(wj(t− µj(t)))

+ uk(t), t > 0, (4)

in which, Gj(wj(t)) = Fj(nj(t))−Fj(mj(t)), k ∈ N .

2.2 Definitions and Lemmas

Definition 1 ([28]). Drive-response NNs (1) and
(3) achieved FTS and the corresponding error system
(4) gets fixed-time stable, if origin of system (4) is
stable, and there is a positive constant Tmax such
that the settling function T(k(0),i(0)) 6 Tmax, and
limt→Tmax ‖w(t)‖ = limt→Tmax ‖n(t) − m(t)‖ = 0 as
well as ‖w(t)‖ = ‖n(t) − m(t)‖ = 0 when t > Tmax,
where w(t) = n(t) − m(t) = (n1(t) − m1(t), n2(t) −
m2(t), ..., nv(t) − mv(t))

T , t > 0 and Tmax is named
settling-time.

Definition 2 ([28]). Drive-response NNs (1) and
(3) get PRTS and the error system (4) achieves

preassigned-time stable, if system (4) is fixed-time
stable, and for a preassigned positive constant Tp,
which do not depend on any parameters and initial
values of NNs (1) and (3), such that the settling
function T(k(0),i(0)) 6 Tp, and limt→Tp ‖w(t)‖ =
limt→Tp ‖n(t)−m(t)‖ = 0 as well as ‖w(t)‖ = ‖n(t)−
m(t)‖ = 0 when t > Tp, where t > 0,Tp is called
preassigned-time.

Lemma 1. Suppose that there is a continuous
regular function V(·), which is positive definite and
radially-unbounded, and follow with solutions of (4)
that satisfy

dV(t)

dt
6 −c bV

q(t)V1−q(t)− σ, (5)

in which, b > 1, c > 0, σ > 0, 0 < q 6 1, then,
system (4) achieves fixed-time stable as well as the
drive-response NNs (1) and (3) get FTS. If σ = 0,
the settling-time is Tmax

1 = 1
qc ln b , and if σ > 0,

settling-time is

Tmax
2 =

1

q ln b

[
1

σ
ln

(
b(c+ σ)

bc+ σ

)
+

1

bc

]
. (6)

Proof. From (5), one can find that dV(t)
dt < 0, because

V(·) is positive definite and V(w(t)) → +∞ (w(t) →
+∞). Therefore, system (4) is global asymptotic stable.
And from (5), we get the settling-time function is

T(w(0)) =
∫ V(w(0))

0

dp

cbp qp1−q + σ
. (7)

Now, we derive the estimate value of (7). If σ = 0,
then,

T(w(0)) 6
∫ +∞

0

dp

cbp qp1−q
=

1

qc

∫ +∞

0

ds

bs

=− 1

qc

∫ +∞

0
b−sd(−s)

=− 1

qc

∫ −∞
0

bxdx =
1

qc

∫ 0

−∞
bxdx

=
bx

qc ln b

∣∣∣∣0
−∞

=
1

qc ln b
= Tmax

1 . (8)
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And if σ > 0, we have

T(w(0)) 6
∫ +∞

0

dp

cbp qp1−q + σ

=

∫ 1

0

dp

cbp qp1−q + σ
+

∫ +∞

1

dp

cbp qp1−q + σ

6
∫ 1

0

dp

cbp qp1−q + σp1−q

+

∫ +∞

1

dp

cbp qp1−q + σ
. (9)

Noted that,∫ 1

0

dp

cbp qp1−q + σp1−q
=

∫ 1

0

dp

(cbp q + σ)p1−q

=
1

q

∫ 1

0

ds

(cbs + σ)

=
1

q

∫ 1

0

b−sds

(c+ σb−s)
. (10)

Let y = c + σb−s, we get dy = −σ ln b b−sds, then,
b−sds = − 1

σ ln bdy. Now, from (10), one obtains

1

q

∫ 1

0

b−sds

(c+ σb−s)
=− 1

qσ ln b

∫ c+σ
b

c+σ

dy

y

=
1

qσ ln b

∫ c+σ

c+σ
b

dy

y

=
ln y

qσ ln b

∣∣∣∣∣
c+σ

c+σ
b

=
1

qσ ln b
ln

(
b(c+ σ)

bc+ σ

)
. (11)

And∫ +∞

1

dp

cbp qp1−q + σ
6
∫ +∞

1

dp

cbp qp1−q
=

1

qc

∫ +∞

1

ds

bs

=− 1

qc

∫ +∞

1
b−sd(−s)

=
1

qc

∫ −1
−∞

bxd(x)

=
bx

qc ln b

∣∣∣∣∣
−1

−∞

=
1

qbc ln b
. (12)

Now, from (8)-(10), if σ > 0, we get the settling-time
is

T(w(0)) 6 1

q ln b

[
1

σ
ln

(
b(c+ σ)

bc+ σ

)
+

1

bc

]
= Tmax

2 .

The proof of Lemma 1 is completed.

Remark 2. From (8), (9) and (10), one can easily find
that Tmax

2 < Tmax
1 .

Remark 3. If b = e, σ = 0, then, the inequality (5)
become the one used in [24, 25]. From Remark 2, of
course, we can get the settling-time Tmax

2 of this paper
is more precise than the earlier works [24, 25]. And
if c = 0 in inequality (5), one can get the finite-time
stable of NNs discussed in [30]. Therefore, the Lemma
1 of this paper are more general, which can be used to
discuss FTS for other more complex nonlinear systems.

Lemma 2. Let Tp is a preassigned positive constant,
and suppose that the continuous regular function V(·)
is positive definite and radially-unbounded, and follow
with solutions of (4) that satisfy

dV(t)

dt
6 −Tmax

Tp
(
c bV

q(t)V1−q(t) + σ
)
, (13)

in which, b > 1, c > 0, 0 < q 6 1, if σ = 0,Tmax =
Tmax
1 , and if σ > 0,Tmax = Tmax

2 , then, system
(4) achieves preassigned-time stable as well as the
drive-response NNs (1) and (3) get PRTS, and Tp is
named preassigned-time.

Proof. From (13), we get the settling-time function is

T(w(0)) = Tp

Tmax

∫ V(w(0))

0

dp

c bp qp1−q + σ
. (14)

Now, from (8)-(12), one can easily get that T(w(0)) 6
Tp. By using Definition 2, one can get Lemma 2 hold.
This proof is finished.

Remark 4. The inequalities (5) and (13) depend on
the function V(t). And inequalities (5) and (13) only
have one exponential variable q that satisfies 0 < q 6 1,
which is unlike the previous works [17–23] that based
on inequality dV(t)

dt 6 −αVp(t) − βVq(t) to get the
FTS results, where α, β > 0, 0 6 p 6 1, q > 1. So,
our results are more straightforward and simplify the
designing structure of the fixed-time controllers.

3 FTS and PRTS of the delayed NNs
3.1 FTS of the Delayed NNs (1) and (3)
If wk(t) 6= 0, k ∈ N , in order to get FTS of NNs (1) and
(3), the control scheme in error system (4) is designed
as follows:

uk(t) =− ξkwk(t)− ηk bV
q(t)V−q(t)wk(t)

− γksign(wk(t)), (15)
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where ξk > 0, ηk > 0, b > 1, γk > 0, 0 < q 6 1,V(t) =∑v
k=1 |wk(t)|.

Theorem 1. Under Assumption 1 and the control
scheme (15), and if the following conditions hold

ak + ξk −
v∑
j=1

|bjk|ϑk > 0, (16)

γk −
v∑
j=1

|ckj |Lj > 0, (17)

then, drive-response NNs (1) and (3) achieve FTS,
which settling-time is Tmax

2 .

Proof. Now, let us consider the following C-regular
function

V(t) =
∑v

k=1
|wk(t)|. (18)

By using the chain-rule given in [31], one can get
the derivative of V(t) follow with solutions of (4) as
follows:

dV(t)

dt

∣∣∣∣∣
(4)

=
∑v

k=1
ẇk(t) · sign(wk(t))

=
∑v

k=1
sign(wk(t)) ·

(
− akwk(t)

+
v∑
j=1

bkjGj(wj(t)) + uk(t)

+
v∑
j=1

ckjGj(wj(t− µj(t)))

)

=
∑v

k=1
sign(wk(t)) ·

(
− (ak + ξk)wk(t)

+
v∑
j=1

bkjGj(wj(t)) +
v∑
j=1

ckj

× Gj(wj(t− µj(t)))− ηk bV
q(t)V−q(t)

× wk(t)− γksign(wk(t))

)
,

under Assumption 1, we get |Gj(wj(t))| 6 ϑj |wj(t)|,
and ∑v

k=1
sign(wk(t))

v∑
j=1

bkjGj(wj(t))

6
∑v

k=1

v∑
j=1

|bkjGj(wj(t))|

6
∑v

k=1

v∑
j=1

|bkj |ϑj |wj(t)|

=
∑v

k=1

v∑
j=1

|bjk|ϑk|wk(t)|,

therefore,

dV(t)

dt

∣∣∣∣∣
(4)

6−
∑v

k=1

(
ak + ξk −

v∑
j=1

|bjk|ϑk
)
|wk(t)|

−
∑v

k=1
ηk b

Vq(t)V−q(t)|wk(t)|

−
∑v

k=1

(
γk −

v∑
j=1

|ckj |Lj
)

6−
∑v

k=1

(
ak + ξk −

v∑
j=1

|bjk|ϑk
)
|wk(t)|

− bV
q(t)V−q(t)

∑v

k=1
ηk|wk(t)|

−
∑v

k=1

(
γk −

v∑
j=1

|ckj |Lj
)
. (19)

Let c = min16k6v{ηk}, σ =
∑v

k=1

(
γk−

∑v
j=1 |ckj |Lj

)
.

Based on (16), (17) and (19), one gets

dV(t)

dt
6 −c bV

q(t)V1−q(t)− σ. (20)

Now, by using the Lemma 1, we obtain error system (4)
reaches fixed-time stable, the drive-response system
(1) and (3) achieve FTS under control (15), and the
settling-time is Tmax

2 . The proof is completed.

3.2 PRTS of the Delayed NNs (1) and (3)
Now, we design the following control to get PRTS of
NNs (1) and (3)

u∗k(t) =− ξkwk(t)−
Tmax

Tp
(
ηk b

Vq(t)V−q(t)wk(t)

+ γksign(wk(t))
)
+
(Tmax

Tp − 1
)
ζk, (21)

where ζk =
∑v

j=1 |ckj |Lj , k ∈ N , and the other
parameters are given same as in (15).

Theorem 2. Choose a preassigned positive constant
Tp, under Assumption 1 and with the control scheme
(21), if the conditions (16) and (17) hold, then, the
drive-response NNs (1) and (3) achieve PRTS, which
settling-time is Tp.

Proof. From the proof of Theorem 1 and under control
(21), one can get

dV(t)

dt

∣∣∣∣∣
(4)

=
∑v

k=1
ẇk(t) · sign(wk(t))
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=
∑v

k=1
sign(wk(t)) ·

(
− akwk(t)

+
v∑
j=1

bkjGj(wj(t)) + u∗k(t)

+
v∑
j=1

ckjGj(wj(t− µj(t)))

)

=
∑v

k=1
sign(wk(t)) ·

(
− (ak + ξk)wk(t)

+
v∑
j=1

bkjGj(wj(t)) +
v∑
j=1

ckj

× Gj(wj(t− µj(t)))

− Tmax

Tp
(
ηk b

Vq(t)V−q(t)wk(t)

+ γksign(wk(t))
)

+ ζk

(Tmax

Tp − 1
)
sign(wk(t))

)

6−
∑v

k=1

(
ak + ξk −

v∑
j=1

|bjk|ϑk
)
|wk(t)|

− Tmax

Tp
∑v

k=1
ηk b

Vq(t)V−q(t)|wk(t)|

− Tmax

Tp
∑v

k=1

(
γk − ζk

)
6− Tmax

Tp
(
c bV

q(t)V1−q(t) + σ
)
. (22)

Now, by using the Lemma 2, we obtain error system (4)
reaches preassigned-time stable, the drive-response
system (1) and (3) achieve PRTS under control (21),
and the settling-time is Tp. The proof is completed.

Remark 5. Because controllers (15) and (21) contain
sign(·), so, tanh(r · (·)), r > 0 can be used in the
simulation to avoid chattering phenomenon.

Remark 6. In this paper, the Lyapunov function in (16)
is given in 1-norm, and we can also use z-norm (z >
2) to construct the Lyapunov function. On the other
hand, we consider the delayed NNs with continuous
right-hand-side, in fact, the results of this paper also
hold for delayed NNs with discontinuous right hand
side, we think these issues are interesting and worthy
our work together to discuss them in the future.

m
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Figure 1. The delayed NNs (23) exists chaotic behaviors.

4 Example simulations

Example. We consider the following delayed NNs
with two-dimensional
dmk(t)

dt
= −akmk(t) +

∑2

j=1
bkjFj(mj(t))

+
∑2

j=1
ckjFj(mj(t− µj(t)))

+ δk, (23)

where a1 = a2 = 1, b11 = 2, b12 = −0.1, b21 =
−5, b22 = 3, c11 = −1.5, c12 = −0.1, c21 = −0.2, c22 =
−2, δ1 = δ2 = 0, µ1(t) = µ2(t) = exp(t)

1+exp(t) . Feedback
function Fj(mj(t)) = tanh(mj(t)), k, j = 1, 2. Let the
initial values of the delayed NNs (23) are k1(s) =
0.6,k2(s) = −0.6, ∀s ∈ [−1, 0), and NNs (23) exist
chaotic behaviors, which is shown in Figure 1. And
the state trajectoriesm1(t) andm2(t) of NNs (23) are,
respectively, shown in Figures 2 and 3.

Now, let the delayed NNs (23) as the derive system,
and the response system as follows:

dnk(t)

dt
= −aknk(t) +

∑2

j=1
bkjFj(nj(t))

+
∑2

j=1
ckjFj(nj(t− µj(t)))

+ δk + uk(t), k = 1, 2, (24)

Let the initial values of the delayed NNs (24) are
i1(s) = −0.4,i2(s) = 0.4,∀s ∈ [−1, 0). Then,
the error state trajectories without control between
drive-response systems (23) and (24) are, respectively,
shown in Figures 4 and 5.

Now, we choose values of the parameters: ξ1 =
15, ξ2 = 10, γ1 = 2, γ2 = 0.28, b = 2.5, q =
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Figure 2. State trajectorym1(t) of NNs (23).
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Figure 3. State trajectorym2(t) of NNs (23).
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Figure 4. Error state trajectory w1(t)without control (15).
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Figure 5. Error state trajectory w2(t)without control (15).
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Figure 6. Error state trajectory w1(t)with control (15).
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Figure 8. Synchronization curves betweenm1(t) and n1(t)
with control (15).
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Figure 9. Synchronization curves betweenm2(t) and n2(t)
with control (15).
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Figure 10. Error state trajectories w1(t), w2(t)with control
(21).

0.5, η1 = η2 = 1, then, all the conditions of Theorem
1 are hold, so, by using control (15), we know that
drive-response systems (23) and (24) achieve FTS.
By simple computing, one gets that c = σ = 1,
so, the settling-time of the FTS is Tmax

2 = 1.6516.
The error state trajectories with control (15) between
drive-response systems (23) and (24) are, respectively,
shown in Figures 6 and 7. We randomly select 30 initial
values, and the curves of the FTS betweenm1(t) and
n1(t), m2(t) and n2(t) are given in Figures 8 and 9,
respectively.

Table 1. Comparisons of some pervious works
with this article.

FTS Settling-time
σ = 0, b = e hold in [24, 25] Tmax

1 = 1
qc = 2

σ > 0, b > 1 hold in this paper Tmax
2 = 1.6516

Now, we use the control input (21) to realize PRTS
between drive-response systems (23) and (24). From
the parameters given above, we get ζ2 = 1.6, ζ2 =
2.2. Let Tp = 0.05, and Theorem 2 are all hold, and
by using control (21), we get drive-response systems
(23) and (24) achieve PRTS at settling-time Tp = 0.05,
which error state trajectories with control (21) between
systems (23) and (24) are displayed in Figure 10.

Remark 7. Through the above simulations, we can
find that the results of this paper are very effective. In
addition, from Table 1, we know the if σ = 0, b = e, one
can the results used in previous works [24, 25], which
settling-time of FTS is Tmax

1 = 2 > Tmax
2 = 1.6516 of

this paper. What’ more, in this paper, the parameters
σ, b satisfy σ > 0, b > 1, which are more general.

5 Conclusion
A kind of NNs with with time-varying delays has been
discussed in this article. Based on new inequalities,
novel Lemmas on FTS and PRTS were constructed.
In order to eliminate the influence of time delays for
the delayed NNs, two new feedback controllers (15)
and (21) contain the term−γksign(wk(t)), k ∈ N were
designed, then, some novel criteria ensure FTS and
PRTS of the delayed NNs were established. At last,
example simulations were also shown the effectiveness
the given FTS and PRTS results. As we know, NNs
with complex-valued has some critical applications
in the field of engineering, so, FTS and PRTS of
complex-valued NNs will be investigated in the future
works.
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