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Abstract
This paper studies the preassigned time
anti-synchronization control problem of a
class of bidirectional associative memory
(BAM) neural networks with inertia terms and
memristor characteristics. By constructing a novel
Lyapunov-Krasovskii function and combining
it with the latest fixed-time stability theory, it
strictly proves the sufficient conditions for the
system to achieve anti-synchronization within the
preassigned time. Numerical simulations further
verified the effectiveness and superiority of the
method, especially demonstrating higher accuracy
and flexibility when dealing with high-order
dynamics and memristor-based systems.

Keywords: preassigned-time anti-synchronization,
non-reduced method, mixed delays, memristive inertial
BAM neural networks.

1 Introduction
In recent years, bidirectional associative memory
(BAM) neural networks [1–3] have shown broad
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application prospects in fields such as pattern
recognition, intelligent control, and information
security due to their unique bidirectional information
processing capabilities and associative memory
characteristics [4, 5]. Especially when inertia terms [6]
and memristors [7] are introduced, such networks can
be used to simulate the dynamic behavior of biological
neurons and the plasticity of synapses. The inertia
term reflects the dynamic lag effect of neurons, while
the memristor endows the network with non-volatile
memory characteristics. The combination of the two
makes the system’s dynamic behavior more complex
and closer to that of a real biological nervous system.
In recent years, there have been many papers on BAM
neural networks here [8–11].

Before delving into system control issues, it is
necessary to first understand the characteristics of
the key component, the memristor. The resistance
value of a memristor depends on the amount of
charge or magnetic flux passing through it and can
simulate the non-volatile memory and nonlinear
dynamic behavior of biological synapses [14].
Introducing memristors into neural networks not
only enables more efficient hardware implementation
(such as neuromorphic chips), but also endows the
system with adaptability and historical dependence,
thereby significantly enhancing the network’s
information processing capabilities [15]. However,
the multi-valued characteristics and switching
nonlinearity of memristors also bring new theoretical
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challenges: on the one hand, their continuous or
discrete resistive state switching can lead to the system
dynamically presenting piecewise smooth or even
discontinuous characteristics. On the other hand,
the time-varying characteristics of the memristor
[16] coupling term make traditional stability analysis
methods (such as the theory based on Lipschitz
continuity) difficult to be directly applied. Especially
in the problem of preset time control, the coupling
of the memristor state and the inertia term further
increases the complexity of controller design, and
there is an urgent need to develop new analytical tools
to precisely characterize the transient behavior of the
system.

In the face of these challenges, traditional solutions
often have obvious deficiencies. Specifically, most of
the traditional research on synchronous control of
discontinuous inertial neural networks adopts the
order reduction method, that is, by replacing state
variables, the second-order discontinuous differential
equation is transformed into a system of first-order
equations [17–20]. Although this method simplifies
theoretical analysis, it also brings obvious limitations:
Firstly, the order reduction process introduces
additional state variables, leading to the expansion
of system dimensions and increasing computational
complexity; Secondly, the split equations often
fail to fully retain the physical meaning and
dynamic characteristics of the original system. More
importantly, the stability conditions derived from this
are usually rather conservative and difficult to achieve
precise time control. In addition, existing research
mainly focuses on asymptotic synchronization [21–23]
or finite-time synchronization [9, 24–27], whose
convergence time depends on the initial state of the
system and cannot meet the strict requirements of the
preset time (i.e., users can specify the convergence
time in advance) in actual engineering. These flaws
severely limit the application of such methods in
high-precision control scenarios.

Based on the above analysis, Preassigned time
anti-synchronization is a cutting-edge research
direction in the field of neural network control.
Its core goal is to design a controller to precisely
achieve anti-synchronization of the system state
within the time preset by the user. And the
convergence time is completely independent of the
initial state. This feature has key application value
in scenarios with extremely high time sensitivity
requirements such as secure communication and fault
detection. Compared with traditional asymptotic

synchronization or finite-time synchronization,
preassigned time synchronization [28–31] offers
stricter time controllability: system errors can converge
to zero at the exact moment specified by engineering
requirements, rather than relying solely on initial
conditions or system parameters. The neural networks
studied in [12, 13, 30, 32] did not take memristors
into account, but this paper studies them. Unlike
[33] which studies the anti-synchronization problem
of BAM neural networks, we are researching the
anti-synchronization [32–34] problem of inertial BAM
neural networks. From the above, it can be known
that the neural network studied in this paper is more
comprehensive, However, there are few related papers
that study the preassigned time anti-synchronization
(PTAS) of inertial memristor BAM neural networks
(BAM-IMNNS) using non-reduced-order methods.
The research in this paper can fill this gap.

Be insptred by the above, our article aims to research
the PTAS issues for BAM-IMNNs. And the innovations
of our article are presented below:

(1)The research system of this paper includes the
inertia term, the memristor term, and BAM. However,
there are relatively few results related to the inertia
term and memristors with BAM neural networks.
Our research content can fill this gap and provide a
theoretical basis for related studies.

(2)Different from many results on synchronization of
discontinuous inertial neural networks, the variable
separation method they used lacked of preciseness,
we can effectively avoid these problems by using the
non-reduced to discuss the problem of BAM-IMNNs.

(3)This paper studies the preassigned time
anti-synchronization problem of the system, which
can precisely achieve anti-synchronization within the
preset time, and the convergence time is completely
independent of the initial state.

The work arrangement of our research is as follows:
Part 2, preliminaries are illustrated. Part 3, PTAS
standards of BAM-IMNNs are given. Part 4,
simulations are displayed. Lastly, conclusions
are showed.

Notations: Let D =
{

1, 2, ...k1

}
, < =

{
1, 2, ...k2

}
,

= =
{

0, 1, 2, ...
}
, Rk is k-dimensional Euclidean

space. And for ∀z = (z1, z2, ...zk)
T ∈ Rk,

||z|| =
∑k

i=1 |zi|, co[Ω] is the convex closure of set
Ω. D+V (t) is Dini derivative with top right of V (t)

that is continuous function. Let § = max
{
τ, η

}
,
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C([−§, 0],Rk1) demonstrates all continuous-functions
from [−§, 0] into Rk1 and §∗ = max

{
σ, ι

}
,

C([−§∗, 0],Rk2) demonstrates all continuous-functions
from [−§∗, 0] into Rk2 . Aως = max

{
|a+ως |, |a−ως |

}
,

Bως = max
{
|b+ως |, |b−ως |

}
,θ = max

{
|θ+ως |, |θ−ως |

}
, βς =

min
{
|β+ς |, |β−ς |

}
, Cςω = max

{
|c+ςω|, |c−ςω|

}
, Dςω =

max
{
|d+ςω|, |d−ςω|

}
,ϑ = max

{
|ϑ+ςω|, |ϑ−ςω|

}
.

2 Preliminaries
2.1 Model and Assumptions
The BAM-IMNNs is

d2xω(t)

dt2
=− λωxω(t)− µω

dxω(t)

dt
+

k2∑
ς=1

aως(xω(t))

× fς(yς(t)) +

k2∑
ς=1

bως(xω(t))fς(yς(t− τ(t)))

+

k2∑
ς=1

θως(xω(t))

∫ t

t−η(t)
fς(yς(s))ds+ Γω,

d2yς(t)

dt2
=− αςyς(t)− βς

dyς(t)

dt
+

k1∑
ω=1

cςω(yς(t))

× gω(xω(t)) +

k1∑
ω=1

dςω(yς(t))gω(xω(t− σ(t)))

+

k1∑
ω=1

ϑςω(yς(t))

∫ t

t−ι(t)
gω(xω(s))ds+ Υς ,

ω ∈ D, ς ∈ <, t ≥ 0, (1)

where

aως(xω(t)) =

{
a+ως , φως

dfς(xς(t))
dt ≤ dxω(t)

dt

a−ως , φως
dfς(xς(t))

dt > dxω(t)
dt

bως(xω(t)) =

{
b+ως , φως

dfς(xς(t−τ(t)))
dt ≤ dxω(t)

dt

b−ως , φως
dfς(xς(t−τ(t)))

dt > dxω(t)
dt

θως(xω(t)) =

 θ+ως , φως
d
∫ t
t−η(t) fς(xς(s))ds

dt ≤ dxω(t)
dt

θ−ως , φως
d
∫ t
t−η(t) fς(xς(s))ds

dt > dxω(t)
dt

(2)

cςω(yς(t)) =

{
c+ςω, φςω

dgω(yω(t))
dt ≤ dyς(t)

dt

c−ςω, φςω
dgω(yω(t))

dt > dyς(t)
dt

dςω(yς(t)) =

{
d+ςω, φςω

dgω(yω(t−σ(t)))
dt ≤ dyς(t)

dt

d−ςω, φςω
dgω(yω(t−σ(t)))

dt > dyς(t)
dt

ϑςω(yς(t)) =

 ϑ+ςω, φςω
d
∫ t
t−ι(t) gω(yω(s))ds

dt ≤ dyς(t)
dt

ϑ−ςω, φςω
d
∫ t
t−ι(t) gω(yω(s))ds

dt > dyς(t)
dt

(3)

where φως = φςω = 1(ω 6= ς), if not, -1. Γω,Υς

are external input, And λω, µω, ας , βς > 0,
other connection weights a+ως , a

−
ως , b

+
ως , b

−
ως ,

θ+ως , θ
−
ως , c

+
ςω, c

−
ςω, d

+
ςω, d

−
ςω, ϑ

+
ςω, ϑ

−
ςω are all constants.

gω(·), fς(·) is feedback function. Time-delays
τ(t),η(t),σς ,ιςand 0 < τ(t) 6 τ , 0 < η(t) 6 η
,0 < σ(t) 6 σ, 0 < ι(t) 6 ι respectively. The
initial data of BAM-IMNNs (1) are prescribed as
xω(‡) = χω(‡), ẋω(‡) = ϕω(‡),yς(‡) = χ̃ς(‡), ẏς(‡) =
ϕ̃ς(‡) and χω(‡), ϕω(‡) ∈ C([−§, 0],R), ‡ ∈ [−§, 0],
χ̃ς(‡), ϕ̃ς(‡) ∈ C([−§∗, 0],R), ‡ ∈ [−§∗, 0],
ω ∈ D, ς ∈ <.

Assumption1: The activation function satisfies
|gω(·)| 6 Πω, Πω > 0, |fς(·)| 6 Πς , Πς > 0.

2.2 Difinition of Filippov solution
Owing to switched-connection (2) and (3),
BAM-IMNNs (1) is discontinuous. By using
theory of differential inclusions theories [35] and
from (1), one get

d2xw(t)

dt2
+ µω

dxω(t)

dt
∈ −λωxω(t) +

k2∑
ς=1

co[aως(xω(t))]

fς(yς(t)) +

k2∑
ς=1

co[bως(xω(t))]fς(yς(t− τ(t)))

+

k2∑
ς=1

co[θως(xω(t))]

∫ t

t−η(t)
fς(yς(s))ds+ Γω,

d2yς(t)

dt2
+ βς

dyς(t)

dt
∈ −αςyς(t) +

k1∑
ω=1

co[cςω(yς(t))]

gω(xω(t)) +

k1∑
ω=1

co[dςω(yς(t))]gω(xω(t− σ(t)))

+

k1∑
ω=1

co[ϑςω(yς(t))]

∫ t

t−ι(t)
gω(xω(s))ds+ Υς ,

ω ∈ D, ς ∈ <, t ≥ 0, (4)

65



Journal of Nonlinear Dynamics and Applications

equivalent

d2xω(t)

dt2
+ µω

dxω(t)

dt
= −λωxω(t) +

k2∑
ς=1

aως(t)

× fς(yς(t)) +

k2∑
ς=1

bως(t)fς(yς(t− τ(t)))

+

k2∑
ς=1

θως(t)

∫ t

t−η(t)
fς(yς(s))ds+ Γω,

d2yς(t)

dt2
+ βς

dyς(t)

dt
= −αςyς(t) +

k1∑
ω=1

cςω(t)

× gω(xω(t)) +

k1∑
ω=1

dςω(t)gω(xω(t− σ(t)))

+

k1∑
ω=1

ϑςω(t)

∫ t

t−ι(t)
gω(xω(s))ds+ Υς ,

ω ∈ D, ς ∈ <, t ≥ 0, (5)

where aως(t) ∈ co[aως(xω(t))], bως(t) ∈ co[bως(xω(t))],
θως(t) ∈ co[θως(xω(t))], cςω(t) ∈ co[cςω(yς(t))], dςω(t) ∈
co[dςω(yς(t))], ϑςω(t) ∈ co[ϑςω(yς(t))].

Definition 1 ([36]). The function x(t) =
(x1(t), x2(t), ...xk1(t))T , y(t) = (y1(t), y2(t), ...yk2(t))T

is a Filippov-solution of BAM-IMNNs (1)
with initial position xω(‡) = χω(‡), ẋω(‡) =
ϕω(‡),yς(‡) = χ̃ς(‡), ẏς(‡) = ϕ̃ς(‡) and
χω(‡), ϕω(‡) ∈ C([−§, 0],R), ‡ ∈ [−§, 0],
χ̃ς(‡), ϕ̃ς(‡) ∈ C([−§∗, 0],R), ‡ ∈ [−§∗, 0], ω ∈ D, ς ∈ <.
For all compact-interval of [0,+∞), the function x(t),
y(t) meets system (4) and (5).

2.3 Error model between BAM-IMNNs (1) and (7)
Now, we take corresponding response-model of
BAM-IMNNs (1) below:

d2pω(t)

dt2
=− λωpω(t)− µω

dpω(t)

dt
+

k2∑
ς=1

aως(pω(t))

× fς(qς(t)) +

k2∑
ς=1

bως(pω(t))fς(qς(t− τ(t)))

+

k2∑
ς=1

θως(pω(t))

∫ t

t−η(t)
fς(qς(s))ds

+ Γω + vω(t),

d2qς(t)

dt2
=− αςqς(t)− βς

dqς(t)

dt
+

k1∑
ω=1

cςω(qς(t))

× gω(pω(t)) +

k1∑
ω=1

dςω(qς(t))gω(pω(t− σ(t)))

+

k1∑
ω=1

ϑςω(qς(t))

∫ t

t−ι(t)
gω(pω(s))ds

+ Υς + uς(t), ω ∈ D, ς ∈ <, t ≥ 0, (7)

where

aως(pω(t)) =

{
a+ως , φως

dfς(pς(t))
dt ≤ dpω(t)

dt

a−ως , φως
dfς(pς(t))

dt > dpω(t)
dt

bως(pω(t)) =

{
b+ως , φως

dfς(pς(t−τ(t)))
dt ≤ dpω(t)

dt

b−ως , φως
dfς(pς(t−τ(t)))

dt > dpω(t)
dt

θως(pω(t)) =

 θ+ως , φως
d
∫ t
t−η(t) fς(pς(s))ds

dt ≤ dpω(t)
dt

θ−ως , φως
d
∫ t
t−η(t) fς(pς(s))ds

dt > dpω(t)
dt

(8)

cςω(qς(t)) =

{
c+ςω, φςω

dgω(qω(t))
dt ≤ dqς(t)

dt

c−ςω, φςω
dgω(qω(t))

dt > dqς(t)
dt

dςω(qς(t)) =

{
d+ςω, φςω

dgω(qω(t−σ(t)))
dt ≤ dqς(t)

dt

d−ςω, φςω
dgω(qω(t−σ(t)))

dt > dqς(t)
dt

ϑςω(qς(t)) =

 ϑ+ςω, φςω
d
∫ t
t−ι(t) gω(qω(s))ds

dt ≤ dqς(t)
dt

ϑ−ςω, φςω
d
∫ t
t−ι(t) gω(qω(s))ds

dt > dqς(t)
dt

(9)

where pω(t) is the ω-th neural status, qς(t) is the ς-th
neural status, the other parameters remain consistent
with those in BAM-IMNNs (1). And the initial
data of BAM-IMNNs (7) are prescribed as pω(‡) =
χ∗ω(‡), İω(‡) = ϕ∗ω(‡),qς(‡) = χ̃∗ς (‡), J̇ς(‡) = ϕ̃∗ς (‡) and
χ∗ω(‡), ϕ∗ω(‡) ∈ C([−§, 0],R), ‡ ∈ [−§, 0], χ̃∗ς (‡), ϕ̃∗ς (‡) ∈
C([−§∗, 0],R), ‡ ∈ [−§∗, 0], ω ∈ D, ς ∈ <.

e1ω(t) = pω(t) + xω(t), e2ς(t) = qς(t) + yς(t) stand for
synchronization error state, then we have error model
of BAM-IMNNs (1) and (7) below:

d2e1ω(t)

dt2
=− λωe1ω(t)− µω

de1ω(t)

dt
+

k2∑
ς=1

ãως(t)fς(qς(t))

+

k2∑
ς=1

b̃ως(t)fς(qς(t− τ(t))) +

k2∑
ς=1

θ̃ως(t)

×
∫ t

t−η(t)
fς(qς(s))ds+

k2∑
ς=1

aως(t)fς(yς(t))
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+

k2∑
ς=1

bως(t)fς(yς(t− τ(t))) +

k2∑
ς=1

θως(t)

×
∫ t

t−η(t)
fς(yς(s))ds+ (1+)Γω + vω(t)

d2e2ς(t)

dt2
=− αςe2ς(t)− βς

de2ς(t)

dt
+

k1∑
ω=1

c̃ςω(t)gω(pω(t))

+

k1∑
ω=1

d̃ςω(t)gω(pω(t− σ(t))) +

k1∑
ω=1

ϑ̃ςω(t)

×
∫ t

t−ι(t)
gω(pω(s))ds+

k1∑
ω=1

cςω(t)gω(xω(t))

+

k1∑
ω=1

dςω(t)gω(xω(t− σ(t))) +

k1∑
ω=1

ϑςω(t)

×
∫ t

t−ι(t)
gω(xω(s))ds+ (1+)Υς + uς(t),

ω ∈ D, ς ∈ <, t ≥ 0, (10)

where ãως(t) ∈ co[aως(pω(t))], b̃ως(t) ∈ co[bως(pω(t))],
θ̃ως(t) ∈ co[θως(pω(t))], c̃ςω(t) ∈ co[cςω(qς(t))], d̃ςω(t) ∈
co[dςω(qς(t))], ϑ̃ςω(t) ∈ co[ϑςω(qς(t))].

2.4 lemmas and Definitions

Definition 2 ([10]). The BAM-IMNNs (1) and
(7) are said fixed-time anti-synchronization, if for
∀e1ω(t), ė1ω(t), e2ς(t), ė2ς(t) ∈ R, and settling time
funtion T (ẽ1ω(0), ẽ2ς(0)) ≥ 0, exist Tmax >
0. Such that T (ẽ1ω(0), ẽ2ς(0)) ≤ Tmax, and
limt→Tmax ||ẽ1ω(t)|| = 0, limt→Tmax ||ẽ2ς(t)|| = 0, and
||ẽ1ω(t)|| = 0, ||ẽ2ς(t)|| = 0 for t > Tmax, where
ẽ1ω(t) = (e11(t), e12(t), ...e1k1(t), ė11(t), ...ė1k1(t))T ,
ẽ1ω(0) = (e11(0), e12(0), ...e1k1(0), ė11(0), ...ė1k1(0))T ,
ẽ2ς(t) = (e21(t), e22(t), ...e2k2(t), ė21(t), ...ė2k2(t))T ,
ẽ2ς(0) = (e21(0), e22(0), ...e2k2(0), ė21(0), ...ė2k2(0))T ,
and Tmax is named settling time.

Definition 3. ([38]) Suppose the BAM-IMNNs (1)
and (7) are fixed-time anti-synchronization, if error
system (10) is fixed-time stable, and for a constant
Tp > 0, and ∀̃̃e1ω(0), ẽ2ς(0) ∈ R2k, such that
T (ẽ1ω(0), ẽ2ς(0)) ≤ Tp, then BAM-IMNNs (1) and (7)
are called PTAS, and Tp is called the preassigned-time.

Lemma 1 ([10]). Let x1, x2, ...xn ≥ 0, 0 < ı1 < 1, ı2 >
1 and such that.

n∑
r=1

xı1r ≥ (
n∑
r=1

xr)
ı1 ,

n∑
r=1

xı2r ≥ n(

n∑
r=1

xr/n)ı2 . (11)

Lemma 2 ([37]). All for function ∀V (·) : R2k →
[0,+∞), regular function with positive-define and
radially unbounded, and pretty much all results of
(10) fulfill

dV (ẽ(t))

dt
≤ −γV ε(ẽ(t))−$V l(ẽ(t)) +AV (ẽ(t))−Ξ

in which γ,$,Ξ,A > 0, A < min
{
γ,$

}
, 0 < ε <

1, l > 1, then. system (10) is fixed-time stable and ST
is

Tmax =
[(γ −A)

1
ε +Ξ

1
ε ]1−ε −Ξ

1−ε
ε

(γ −A)
1
ε (1− ε)

+
[(γ +Ξ)

1
l + ($ −A)

1
l ]1−l

21−l(l − 1)($ −A)
1
l

, A > 0, (12)

Lemma 3 ([38]). Let ∀V (·) : R2k → [0,+∞), which
is the regular function with radially unbounded and
positive-define, and pretty much all results of (10)
fulfill

dV (ẽ(t))

dt
≤Tmax

Tp
(−γV ε(ẽ(t))−$V l(ẽ(t))

+AV (ẽ(t))−Ξ)

then. BAM-IMNNs (1) and (7) can implement PTAS,
and Tp is called preassigned-time.

Remark 1. It is worth noting that the definitions and
lemmas given in this subsection are the main basis for
the research results of this paper, and they are also
clearly marked in the derivation part of this paper.

3 Main results
3.1 PTAS between drive-response BAM-IMNNs (1)

and (7)
We get some results on PTAS between BAM-IMNNs
(1) and (7) in this part, we firstly design the following
controller to achieve this goal.

vω(t) =−mωe1ω(t)− nω ė1ω(t)− Tmax
Tp

sign(ė1ω(t))

× (κ1ω|e1ω(t)|ε + κ2ω|ė1ω(t)|ε + κ3ω|e1ω(t)|l

+ κ4ω|ė1ω(t)|l) + Ã(
Tmax
Tp
− 1)(sign(ė1ω(t))

× |e1ω(t)|+ ė1ω(t))− sign(ė1ω(t))(Ξ̃
Tmax
Tp

+ ℵω)− 2Γω,
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uς(t) =−m∗ς e2ς(t)− n∗ς ė2ς(t)−
Tmax
Tp

sign(ė2ς(t))

× (π1ς |e2ς(t)|ε + π2ς |ė2ς(t)|ε + π3ς |e2ς(t)|l

+ π4ς |ė2ς(t)|l) + Ã∗(
Tmax
Tp
− 1)(sign(ė2ς(t))

× |e2ς(t)|+ ė2ς(t))− sign(ė2ς(t))(Ξ̃
∗Tmax
Tp

+ ℵς)− 2Υς , (13)

wheremω, nω, κ1ω, κ2ω, κ3ω, κ4ω,m∗ς , n∗ς , π1ς , π2ς , π3ς , π4ς
are all non-negative constants, and Tmax is settling
time of fixed-time anti-synchronization, Tp is
preassigned-time, we let

Ã = max
1≤ω≤k1

{
1− µω − nω, λω +mω

}
, (14)

γ̃ = min
1≤ω≤k1

{
κ1ω, κ2ω

}
, (15)

$̃ = (2k1)
1−l min

1≤ω≤k1

{
κ3ω, κ4ω

}
, (16)

Ξ̃ =

k1∑
ω=1

[Eω −
k2∑
ς=1

2(Aως +Bως + θη)Πς ], (17)

ℵω =

k2∑
ς=1

2(Aως +Bως + θη)Πς , (18)

Ã∗ = max
1≤ς≤k2

{
1− βς − n∗ς , ας +m∗ς

}
, (19)

γ̃∗ = min
1≤ς≤k2

{
π1ς , π2ς

}
, (20)

$̃∗ = (2k2)
1−l min

1≤ς≤k2

{
π3ς , π4ς

}
, (21)

Ξ̃∗ =

k2∑
ς=1

[E∗ς −
k1∑
ω=1

2(Cςω +Dςω + ϑι)Πω], (22)

ℵς =

k1∑
ω=1

2(Cςω +Dςω + ϑι)Πω, (23)

A = max
{
Ã, Ã∗

}
, γ = min

{
γ̃, γ̃∗

}
,

$ = min
{
$̃, $̃∗

}
, Ξ = Ξ̃ + Ξ̃∗, (24)

Theorem 1. If Assumption1 holds true, and
γ,$,Ξ,A > 0, A < min

{
γ,$

}
hold, then

BAM-IMNNs (1) and (7) can implement PTAS, and
preassigned-time is Tp.

Proof. We design positive function

V (t) = V1(t) + V2(t)

where

V1(t) =

k1∑
ω=1

(|e1ω(t)|+ |ė1ω(t)|)

V2(t) =

k2∑
ς=1

(|e2ς(t)|+ |ė2ς(t)|)

Along solutions of error system (13) and through
calculation analysis, we get

D+V (t) = D+V1(t) +D+V2(t)

=

k1∑
ω=1

[ė1ω(t)sign(e1ω(t)) + ë1ω(t)sign(ė1ω(t))]

+

k2∑
ς=1

[ė2ς(t)sign(e2ς(t)) + ë2ς(t)sign(ė2ς(t))]

=

k1∑
ω=1

{
sign(e1ω(t))ė1ω(t) + sign(ė1ω(t))[−λω

e1ω(t)− µω ė1ω(t) +

k2∑
ς=1

ãως(t)fς(qς(t)) +

k2∑
ς=1

b̃ως(t)

× fς(qς(t− τ(t))) +

k2∑
ς=1

θ̃ως(t)

∫ t

t−η(t)
fς(qς(s))ds

+

k2∑
ς=1

aως(t)fς(yς(t)) +

k2∑
ς=1

bως(t)fς(yς(t− τ(t)))

+

k2∑
ς=1

θως(t)

∫ t

t−η(t)
fς(yς(s))ds+ 2Γω −mωe1ω(t)

− nω ė1ω(t)− Tmax
Tp

sign(ė1ω(t))(κ1ω|e1ω(t)|ε

+ κ2ω|ė1ω(t)|ε + κ3ω|e1ω(t)|l + κ4ω|ė1ω(t)|l)

+ Ã(
Tmax
Tp
− 1)(sign(ė1ω(t))|e1ω(t)|+ ė1ω(t))

− sign(ė1ω(t))(Ξ̃
Tmax
Tp

+ ℵω)− 2Γω]
}

+

k2∑
ς=1

{
sign(e2ς(t))ė2ς(t) + sign(ė2ς(t))[−αςe2ς(t)

− βς ė2ς(t) +

k1∑
ω=1

c̃ςω(t)gω(pω(t)) +

k1∑
ω=1

d̃ςω(t)

× gω(pω(t− σ(t))) +

k1∑
ω=1

ϑ̃ςω(t)

∫ t

t−ι(t)
gω(pω(s))ds
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+

k1∑
ω=1

cςω(t)gω(xω(t)) +

k1∑
ω=1

dςω(t)gω(xω(t− σ(t)))

+

k1∑
ω=1

ϑςω(t)

∫ t

t−ι(t)
gω(xω(s))ds+ 2Υς −m∗ς e2ς(t)

− n∗ς ė2ς(t)−
Tmax
Tp

sign(ė2ς(t))(π1ς |e2ς(t)|ε

+ π2ς |ė2ς(t)|ε + π3ς |e2ς(t)|l + π4ς |ė2ς(t)|l)

+ Ã∗(
Tmax
Tp
− 1)(sign(ė2ς(t))|e2ς(t)|+ ė2ς(t))

− sign(ė2ς(t))(Ξ̃
∗Tmax
Tp

+ ℵς)− 2Υς ]
}
. (25)

From Asummption1 and (25), by directly scaling or
shrinking the activation function, connection weight
and sign function, we get

D+V (t) 6
k1∑
ω=1

{
|ė1ω(t)|+ λω|e1ω(t)| − µω|ė1ω(t)|

+ 2

k2∑
ς=1

(Aως +Bως + θη)Πς +mω|e1ω(t)|

− nω|ė1ω(t)| − Tmax
Tp

(κ1ω|e1ω(t)|ε + κ2ω|ė1ω(t)|ε

+ κ3ω|e1ω(t)|l + κ4ω|ė1ω(t)|l) + Ã(
Tmax
Tp
− 1)

(|e1ω(t)|+ |ė1ω(t)|)− (Ξ̃
Tmax
Tp

+ ℵω)
}

+

k2∑
ς=1

{
|ė2ς(t)|+ ας |e2ς(t)| − βς |ė2ς(t)|

+ 2

k1∑
ω=1

(Cςω +Dςω + ϑι)Πω +m∗ς |e2ς(t)|

− n∗ς |ė2ς(t)| −
Tmax
Tp

(π1ς |eς(t)|ε + π2ς |ė2ς(t)|ε

+ π3ς |e2ς(t)|l + π4ς |ė2ς(t)|l) + Ã∗(
Tmax
Tp
− 1)

(|e2ς(t)|+ |ė2ς(t)|)− (Ξ̃∗
Tmax
Tp

+ ℵς)
}

=

k1∑
ω=1

{
(1− µω − nω)|ė1ω(t)|+ (λω +mω)

|e1ω(t)|+ 2

k2∑
ς=1

(Aως +Bως + θη)Πς −
Tmax
Tp

(κ1ω|e1ω(t)|ε + κ2ω|ė1ω(t)|ε + κ3ω|e1ω(t)|l

+ κ4ω|ė1ω(t)|l) + Ã(
Tmax
Tp
− 1)(|e1ω(t)|

+ |ė1ω(t)|)− (Ξ̃
Tmax
Tp

+ ℵω)
}

+

k2∑
ς=1

{
(1− βς − n∗ς )|ė2ς(t)|+ (ας +m∗ς )

|e2ς(t)|+ 2

k1∑
ω=1

(Cςω +Dςω + ϑι)Πω −
Tmax
Tp

(π1ς |eς(t)|ε + π2ς |ė2ς(t)|ε + π3ς |e2ς(t)|l

+ π4ς |ė2ς(t)|l) + Ã∗(
Tmax
Tp
− 1)(|e2ς(t)|

+ |ė2ς(t)|)− (Ξ̃∗
Tmax
Tp

+ ℵς)
}

. (26)

Basing on Lemma 1, (15), (16), (20) and (21), we get

−
k1∑
ω=1

(κ1ω|e1ω(t)|ε + κ2ω|ė1ω(t)|ε)

≤ −γ[

k1∑
ω=1

(|e1ω(t)|+ |ė1ω(t)|)]ε

−
k1∑
ω=1

(κ3ω|e1ω(t)|l + κ4ω|ė1ω(t)|l)

≤ −$[

k1∑
ω=1

(|e1ω(t)|+ |ė1ω(t)|)]l.

−
k2∑
ς=1

(π1ς |e2ς(t)|ε + π2ς |ė2ς(t)|ε)

≤ −γ∗[
k2∑
ς=1

(|e2ς(t)|+ |ė2ς(t)|)]ε

−
k2∑
ς=1

(π3ς |e2ς(t)|l + π4ς |ė2ς(t)|l)

≤ −$∗[
k2∑
ς=1

(|e2ς(t)|+ |ė2ς(t)|)]. (27)

we get

D+V (t) =

k1∑
ω=1

{
(1− µω − nω)|ė1ω(t)|+ (λω +mω)

|e1ω(t)|+ 2

k2∑
ς=1

(Aως +Bως + θη)Πς +
Tmax
Tp

(−γ[

k1∑
ω=1

(|e1ω(t)|+ |ė1ω(t)|)]ε −$[

k1∑
ω=1

(|e1ω(t)|

69



Journal of Nonlinear Dynamics and Applications

+ |ė1ω(t)|)]l) + Ã(
Tmax
Tp
− 1)(|e1ω(t)|

+ |ė1ω(t)|)− (Ξ̃
Tmax
Tp

+ ℵω)
}

+

k2∑
ς=1

{
(1− βς − n∗ς )|ė2ς(t)|+ (ας +m∗ς )

|e2ς(t)|+ 2

k1∑
ω=1

(Cςω +Dςω + ϑι)Πω +
Tmax
Tp

(−γ∗[
k2∑
ς=1

(|e2ς(t)|+ |ė2ς(t)|)]ε −$∗[
k2∑
ς=1

(|e2ς(t)|

+ |ė2ς(t)|)]l) + Ã∗(
Tmax
Tp
− 1)(|e2ς(t)|

+ |ė2ς(t)|)− (Ξ̃∗
Tmax
Tp

+ ℵς)
}

Basing (14), (18), (19) and (23), then

D+V1(t) 6
Tmax
Tp

(ÃV1(t)− γ̃V ε
1 (t)− $̃V l

1 (t)− Ξ̃)

D+V2(t) 6
Tmax
Tp

(Ã∗V2(t)− γ̃∗V ε
2 (t)− $̃∗V l

2 (t)− Ξ̃∗).

(28)

then, one gets

D+V (t) 6
Tmax
Tp

(AV (t)− γV ε(t)−$V l(t)−Ξ).

(29)

then, from Lemma 3, we get BAM-IMNNs (1) and (7)
can attain PTAS under the controller (13). This proof
is complete.

Remark 2.

It is worth noting that when Tp = Tmax in
the controller of Theorem1, the preassigned-time
anti-synchronization problem we studied can be
transformed into a fixed time anti-synchronization
problem.

Remark 3.

The Lyapunov function designed in Theorem 1
explicitly includes errors and their derivatives,
ensuring that they converge simultaneously and
making it particularly suitable for analyzing
second-order dynamic systems. And it is a key
tool for proving that the system achieves fixed time
consistency. Its derivatives can conveniently handle
non-smooth terms such as signed functions in the

control law. In the research of this article, this type
of Lyapunov function is highly in line with our
requirements.

Remark 4. The research on preset time
anti-synchronization control has solved another
type of key problem that traditional synchronization
control cannot handle. Its core value lies in enabling
the system to achieve anti-synchronization within the
precise time set by the user and independent of the
initial state of the system. This is crucial for enhancing
the security, reliability and performance of the system.

4 Numerical simulations
let’s give some simulations results to explain the PTAS
as follows.

Example 1. Discuss the two-dimensional
BAM-IMNNs is showed below

d2x1(t)

dt2
=− 1.25x1(t)− 0.1

dx1(t)

dt
+

2∑
ς=1

a1ς(x1(t))

fς(yς(t)) +
2∑
ς=1

b1ς(x1(t))fς(yς(t− τ(t)))

+
2∑
ς=1

θ1ς(x1(t))

∫ t

t−η(t)
fς(yς(s))ds

d2x2(t)

dt2
=− 1.25x2(t)− 0.1

dx2(t)

dt
+

2∑
ς=1

a2ς(x2(t))

fς(yς(t)) +

2∑
ς=1

b2ς(x2(t))fς(yς(t− τ(t)))

+
2∑
ς=1

θ2ς(x2(t))

∫ t

t−η(t)
fς(yς(s))ds

d2y1(t)

dt2
=− 1.5y1(t)− 0.2

dy1(t)

dt
+

2∑
ω=1

c1ω(y1(t))

gω(xω(t)) +
2∑

ω=1

d1ω(y1(t))gω(xω(t− σ(t)))

+
2∑

ω=1

ϑ1ω(y1(t))

∫ t

t−ι(t)
gω(xω(s))ds

d2y2(t)

dt2
=− 1.5y2(t)− 0.2

dy2(t)

dt
+

2∑
ω=1

c2ω(y2(t))

gω(xω(t)) +

2∑
ω=1

d2ω(y2(t))gω(xω(t− σ(t)))
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Figure 1. Phase trajectories of BAM-IMNNs (30).

+
2∑

ω=1

ϑ2ω(y2(t))

∫ t

t−ι(t)
gω(xω(s))ds, (30)

where a11(x1(t)) = 2.2, a+12 = 1.6, a−12 =
1.8, b+11 = −3.24, b−11 = −3.2, b+12 = 2.82, b−12 =
2.83, θ+11 = −0.01, θ−11 = −0.01, θ+12 = 0.01, θ−12 =
0.02, a22(x2(t)) = −1.6, a+21 = −2.4, a−21 =
−2.6, b+21 = −2.5, b−21 = −2.45, b+22 = 2.8, b−22 =
2.87, θ+21 = −0.01, θ−21 = −0.01, θ+22 =
0.01, θ−22 = 0.02, c11(y1(t)) = 0.6, c+12 =
−0.5, c−12 = −0.3, d+11 = 1.6, d−11 = 1.62, d+12 =
−2.5, d−12 = −2.9, ϑ+11 = 0.01, ϑ−11 = 0.02, ϑ+12 =
−0.05, ϑ−12 = −0.02, c22(y2(t)) = −1.8, c+21 =
−1.1, c−21 = −1.13, d+21 = 1.39, d−21 = 1.38, d+22 =
−3.25, d−22 = −3.27, ϑ+21 = 0.01, ϑ−21 = 0.02, ϑ+22 =
−0.01, ϑ−22 = −0.02, τ(t) = η(t) = σ(t) =

ι(t) = exp(t)
1+exp(t) ,gω(xω(t)) = tanh(xω(t)),

fς(yς(t)) = tanh(yς(t)), ω, ς = 1, 2, and Γω = Υς = 0.
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Figure 2. Error trajectories of BAM-IMNNs (30) and (31)
withTp = 5.
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BAM-IMNNS (30) exists chaotic via initials
χ1(‡) = 0.8, ϕ1(‡) = 0.75, χ2(‡) = −0.8, ϕ2(‡) =
−0.65, χ̃1(‡) = 0.5, ϕ̃1(‡) = 0.65, χ̃2(‡) =
−0.7, ϕ̃2(‡) = −0.6,∀‡ ∈ [−1, 0), let’s drawn it
in Figure 1.

let’s give corresponding response systems below

d2p1(t)

dt2
=− 1.25p1(t)− 0.1

dp1(t)

dt
+

2∑
ς=1

a1ς(p1(t))

fς(qς(t)) +
2∑
ς=1

b1ς(p1(t))fς(qς(t− τ(t)))

+
2∑
ς=1

θ1ς(p1(t))

∫ t

t−η(t)
fς(qς(s))ds+ v1(t),

d2p2(t)

dt2
=− 1.25p2(t)− 0.1

dp2(t)

dt
+

2∑
ς=1

a2ς(p2(t))

fς(qς(t)) +
2∑
ς=1

b2ς(p2(t))fς(qς(t− τ(t)))

+
2∑
ς=1

θ2ς(p2(t))

∫ t

t−η(t)
fς(qς(s))ds+ v2(t),

d2q1(t)

dt2
=− 1.5q1(t)− 0.2

dq1(t)

dt
+

2∑
ω=1

c1ω(q1(t))

gω(pω(t)) +
2∑

ω=1

d1ω(q1(t))gω(pω(t− σ(t)))

+
2∑

ω=1

ϑ1ω(q1(t))

∫ t

t−ι(t)
gω(pω(s))ds+ u1(t),

d2q2(t)

dt2
=− 1.5q2(t)− 0.2

dq2(t)

dt
+

2∑
ω=1

c2ω(q2(t))

gω(pω(t)) +

2∑
ω=1

d2ω(q2(t))gω(pω(t− σ(t)))

+

2∑
ω=1

ϑ2ω(q2(t))

∫ t

t−ι(t)
gω(pω(s))ds+ u2(t),

(31)

the data of BAM-IMNNs (31) are same
as BAM-IMNNs (30), in controller, we let
τ = η = σ = ι = 1, l = 0.5, ε = 1.5,m1 =
m2 = 14.25, n1 = n2 = 1.2,m∗1 = m∗2 = 18.4, n∗1 =
n∗2 = 3.3, κ11 = κ21 = κ12 = κ22 = π11 = π21 = π12 =
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Figure 3. Preassigned-time anti-synchronization
trajectories of x1(t) and p1(t).
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Figure 4. Preassigned-time anti-synchronization
trajectories of x2(t) and p2(t).

π22 = 20, κ31 = κ41 = κ32 = κ42 = π31 = π41 = π32 =
π42 = 41.6, E1 = 20.26, E2 = 19.28, E∗1 = 11.42, E∗2 =
15.3,Ã = 15.5, Ã∗ = 19.9. Through simple calculations,
we get A = 19.9, γ = 20, $ = 20.8, Ξ = 0.24, And the
all requirements of Theorem 1 hold. Then, system
(1) and (7) can get PTAS, and Tmax = 5.3937. Let
Tp = 5 < Tmax = 5.3937. Figure 2 shows the error
trajectories of BAM-IMNNs (30) and (31) under
control, and the traces of state of BAM-IMNNs (30)
and (31) are drawed in Figures 3, 4, 5, and 6. Let
Tp = 4 < Tmax = 5.3937. Figure 7 shows the error
trajectories of BAM-IMNNs (30) and (31) under
control.
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Figure 5. Preassigned-time anti-synchronization
trajectories of y1(t) and q1(t).
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Figure 6. Preassigned-time anti-synchronization
trajectories of y2(t) and q2(t).
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Figure 7. Error trajectories of BAM-IMNNs (30) and (31)
withTp = 4.

5 Conclusion
This paper focuses on the preassigned time
anti-synchronization control problem of inertial
memristor BAM neural networks. By establishing a
theoretical framework directly based on second-order
differential equations, we have successfully overcome
the conservation problem caused by traditional
order reduction methods and achieved the complete
retention of the dynamic characteristics of the system.
Although this research has achieved certain results,
there are still issues worthy of further exploration.
How to apply theoretical achievements to large-scale
neural network systems and develop corresponding
hardware acceleration algorithms is a key step towards
practical application. These research directions will
open up new possibilities for the engineering
application of inertial memristor neural networks.
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