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Abstract
This paper investigates a class of coupled
stochastic  strict-feedback nonlinear systems

under asynchronous intermittent event-triggered
control (AIETC). Initially, stochastic analysis
technique, Lyapunov method and backstepping
design method are employed to design the virtual
and actual controllers. AIETC is achieved by an
auxiliary timer that grants each subsystem its
own control and rest time. In the meantime the
control input is applied only at the last node of
each subsystem. Then, a global Lyapunov function
is constructed. By utilizing graph theory, the
global exponential ultimate boundedness in mean
square of the systems can be obtained and Zeno
behavior is eliminated successfully. Finally, a
simulation example is provided to demonstrate the
effectiveness of our results.
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1 Introduction

Stochastic strict-feedback systems (SSFSs), which
preserve the classical strict-feedback structure [1-4]
while accounting for stochastic disturbances, have
attracted sustained attention in recent years. In general,
SSFSs typically employ backstepping techniques for
controller design to achieve system stabilization.
Backstepping designs for SSFSs were first proposed
by [5, 6] and further developed by the work of [7-
13]. However, the aforementioned results are
confined to a single SSFS. Motivated by the ubiquitous
interconnections among real-world systems, multiple
stochastic strict-feedback networks are considered in a
coupled configuration in [14-16]. Across these studies,
Guo et al. [14] demonstrated that, even when the
stochastic strict-feedback networks are not strongly
connected and subject to time-varying delays, pinning
control together with a graph theory can still guarantee
exponential stabilisation or synchronization in mean
square.

In many practical control systems, control inputs
are not continuously available due to actuator faults,
communication constraints, network interruptions, or
energy-saving requirements. These limitations have
motivated the development of intermittent control
strategies. Intermittent control allows the controller
to be inactive over certain time intervals, thereby
reducing energy consumption and communication
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burden. Compared with continuous control,
intermittent control exhibits greater practicality and
flexibility and has been widely adopted in areas
such as networked control systems [17-21]. For
instance, Liu et al. [17] established synchronization
criteria for complex networks under aperiodically
intermittent pinning control. Li et al. [18] investigated
the exponential synchronization of stochastic
hybrid multi-weight coupled systems with mixed
delays using aperiodically adaptive intermittent
control, and derived less conservative conditions
by introducing novel Halanay-type differential
inequalities. Nevertheless, most existing intermittent
control schemes rely on time-triggered mechanisms,
in which control actions are executed according to
predetermined schedules. Although such strategies
are straightforward to implement, they fail to
exploit real-time system state information, which
may result in unnecessary control updates and
inefficient use of resources. To overcome these
drawbacks, event-triggered control (ETC) has been
proposed and has received increasing attention in
recent years [22-24]. In event-triggered control
systems, control signals are updated only when
predefined triggering conditions, determined by
the system state, are satisfied. Recently, the ETC of
stochastic strict-feedback nonlinear systems (SSFNSs)
has attracted considerable research interest, with
representative results reported in [25, 26]. Specifically,
an adaptive fuzzy event-triggered tracking controller
was developed in [25] to guarantee semi-global
uniform ultimate boundedness of all closed-loop
signals. Furthermore, Lu et al. [26] proposed an
adaptive event-triggered tracking control scheme for
SSENSs with full-state constraints by integrating a
tan-type stochastic barrier Lyapunov function with
radial basis function neural networks.

To harness the flexibility of intermittent control and
the resource efficiency of ETC, the intermittent
event-triggered control strategy has been
proposed and validated in [27-29]. Note that
the aforementioned intermittent schemes require
all nodes to switch simultaneously. In [30], an
asynchronously intermittent decentralized framework
was introduced that allows each subsystem to
possess its own working and resting intervals,
thereby accommodating practical demands such
as staggered micro-grid duty cycles. Subsequently,
input-to-state practically exponential stability was
investigated by designing asynchronously intermittent
event-triggered control in [31]. To the best of the

authors’ knowledge, there are few results on SSFNSs
under intermittent event-triggered control, let alone
asynchronous intermittent event-triggered control
(AIETC) for coupled stochastic strict-feedback
nonlinear systems (CSSFNSs).

Motivated by the above discussions, we propose
an asynchronous intermittent event-triggered control
scheme is proposed for CSSFNSs. By designing
an auxiliary timer and employing the backstepping
technique as well as graph theory, AIETC is designed
for each subsystem, which can ensure the global
exponential ultimate boundedness in mean square of
the systems. The main contributions of this article can
be listed as follows:

(1) In contrast to the ETC for a single SSENS
reported in previous works [25, 26], an intermittent
event-triggered control scheme for CSSFNSs is
investigated in this paper, which simultaneously
adopts intermittent control and explicitly accounts for
the topological structure among multiple SSFNSs.

(2) We devise an AIETC strategy that assigns each
subsystem its own working and resting intervals for
CSSENSs. Compare to [30, 31], the control input is
applied only to the last state of each subsystem in this

paper.

The rest of the paper is organized as follows. Section
2 presents the corresponding preliminary work and
the model description. Section 3 details the design
of the controllers and primary results together with
proofs. In Section 4, the effectiveness of the our results
is verified through an example. The paper is concluded
in Section 5.

2 Preliminaries and Model Description

2.1 Preliminaries

Throughout this paper, the following notations will
be used. Let Z*, R and R" be the sets of positive
integers, real numbers and non-negative real numbers,
respectively. Define N = {1,2,---,n -1}, N =
{1,2,---,n}, where n € Z*,n > 1.
{0,1,2,---}and K = {1,2,--- ,k}, k € Z*. R" is the
n-dimensional Euclidean space with norm | - |. For
a matrix or vector A, the symbol AT stands for its
transpose, and Tr(A) denotes its trace when A is square.
(Q, F,{F}t>0,P) represents a complete probability
space with a filtration {F};>¢ satisfying the usual
conditions. Let B(t) be a one-dimensional Brownian
motion defined on the probability space. E(-) denotes
the expectation with respect to the probability measure
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P. Assign CL2(RT x R™R™T) be the family of all
nonnegative functions W (¢, z) on R* x R"™ which are
continuously once differentiable in ¢ and twice in z.

Consider the following stochastic differential equation
dz(t) = f(t,2(t))dt + g(t, z(t))dB(t),

where z € R". For nonnegative function W(t,z) €
CH2(R* x R™;RT), the operators £ and H are defined
as

LW =W(t, z) + W.(t, 2) f(t, 2)

+ %Tr(gT(t, IWenlt, 2)g(t, 2),
HW =W, (t, 2(t))g(t, 2),

where W (t,z) = 3WT(;72), W..(t,2) = <62W(t,z)> ’
nxn

020z
oW (t, oW (t,
W.(t, z) = < B,ilZ)"” 7 a§n2)>'

2.2 Model Description
Consider the following CSSFNSs constructed on

a strongly connected digraph (g7, A7) with A7 =
(al,)kxk 7 €N,
dal(t) =(o] 2l 4 fl(t,x

T (2d ad)dt + gl (¢, 2P)dB(#), j € N,

da? () =(u; + f7'(t, 2l") + Zam n (@, an))dt
m=1

+ g7 (t2")AB(1).i € K, 2)
where :U € R is the j-th node state of the i-th SSENS,
xlm = (9311, La)T and:c[n] = (1:1,--. L) u € Ris

the control input; f] Rt xR/ -5 R, g/ : Rt xR/ — R
are all nonlinear functions; I“Zm : RxR — Ris coupling
function and a’ | represents coupling strength; o7 is a

positive constant and let o} = 1.

Denote z = ((l'[ln]) T (x%ﬂ) )YI' € R*", Assume
that f/, g/ and T satisfy the necessary conditions to
ensure system (1) (2) has a unique solution for any
initial value (0) = zo € R*". Suppose that fij (t,0) =
gl (t,0) = T? (0,0) = 0, then system (1)—(2) has a
trivial solutlon z(t) = 0.

To this end, we introduce the following assumptions
and definitions.
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Assumptlon 1. Fori € K, j € N, there exist positive
constants ¢/ and ¢”* such that

£ (¢, 2P| <
g (1, 2| <

"I(W o [ )

P (wil + e [l fad])-
Assumption 2. For any ¢, m € K, j € N, there exists a
nonnegative constant //, such that
i (el h)| < b (] + leh]).

Remark 1. The two assumptions are crucial for
the boundedness analysis, and their rationality is
justified as follows. Assumptlon 1 imposes linear
growth constraints on fJ (-) and g (-) with bounded

constants ¢/'', ¢/ which is a standard condition in
SSFNSs [13 14] to ensure controller design tractability.
It accommodates practical nonlinearities like asint
and bcost by choosing appropriate constants a and
b. Assumption 2 characterizes the coupling functions
are restricted to linear functions, which is general in
coupled nonlinear system analysis, as seen in [18, 31].

Definition 1. (see [32]) The intermittent control of
i-th subsystem is said to have an average control ratio

€ (0,1), if there exists positive constant Ny, such
that the following inequality holds:

Ni(ta,t1) > mi(ta — t1) — Ny, Vtg >t >0,

where Nj(t2, 1) denotes the total control time during
the interval (1, t2).

Definition 2. (see [33]) System (1)—(2) is said to
be globally p-th moment exponentially ultimately
bounded if there exist constants C > 0, II > 0 and
E > 0 such that for any solution with the initial value
To,

Elz(t)]P < ClzolPe™ + 2, p>0,t > to.

When p = 2, it is usually said to be globally
exponentially ultimately bounded in mean square.

3 Main Results

In this section, the design of continuous virtual
controllers is first designed by backstepping
technique. Then, according to these virtual controllers,
event-triggered mechanism is constructed. Combining
asynchronous intermittent control strategy, the
complete AIETC can be introduced. Finally, the
boundedness analysis of system (1)—(2) is given
through graph theory and Lyapunov method.
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3.1 Controller Design

In this subsection, we construct the Lyapunov function

and present the detailed design procedures for 113 k 1 .
the virtual and actual controllers. To implement e (A) Z i (|25 + |2,
asynchronous intermittent control, we first introduce m=1 .
the following auxiliary timer: <[eoyt + 1/6 3 Z @ il
4\ —

TzNw s te [Tovso]’ k "

oy =] min {Tl m,sl(T’) (1 = )] (t — Ti)} : + 37 edEO-em@p\Lys
€ (17, S]], 1 € No/{0}, m=1
ai(Sli) 7T1TZ( S’) te (SZ,TH_I] l € Ny, 1/70\3CF
(Y em(t)—ei(t) (=1 47,1 \4 | ei(t)
3 t3 (19> lee (@h)*(2,) ]e

where 7; (i € K) are tuning parameters. From the 1/70\3 F
definition of (3), one can easily get that 0 < ¢;(¢t) < < [lm(} +5 <19> Z (@l )+ k"l9637'1N7rz:| eSO (AN

7iNy, (cf. [31]), and

SURS S i SO =

—TiTis [Szza 114.1)

Next, we design the controllers step by step.

where 4 is an arbitrary positive constant and § = 3.

Step 1. Consider a Lyapunov function W/ (t,\j) = Substitution of (7) into (5) gives

Lesi®(AD*, Al = a}. Denote @, = al ) i,
K,7 € N. According to Assumption 1 and 2, it can be
attained that
LWL,
LW <&i(tW + eSO (ofa? - 57)
3
Ei(t) 1\3 2 Ei(t) 1\4 ] 1,1 e 1,2\2
<& ()W} + 5 [()\11)3(012%2 + 1 + 5B + e () [Ci + z(ci )
T A
3 7TiN7r,Lv I ‘*:'l 4
+ Z @bl m>>+§<Ai>2 i wha el 15 (G) 3Gk
3 k
<éi(t )I/V1 + s O3 (022? — B + D (WH352 +1 <169> Z(dz'lm)4(€am(t)(x7ln)4 — sl (z1)y,
3 4 -
ei(t) L1, 9/ 122 m=1
+ e O] +2<z>> )
k
e OND Y i (2] + ). (5)
m=1

Define o = max{l,c} + cg’l + %(03’2)2 + k9(1 +

k
- 3 - . .
where 3? is a virtual controller. By utilizing the e57i s )+1 (%) >~ (a@l.)*}, where ¢} € Ris a design

. . . m=1
following inequality parameter. Design the virtual controller 52 as

a % a+b 2 141
a+b[x(a+b)] "I P ®)
(6)

where I, L € R, a, b, x,r > 0, it can be attained that Therefore, from (8) and (9), we have

r|T|*L" < xT|** +
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(10)

Deductive Step. Suppose that at step p — 1, there are

virtual controllers 82, 83, - - - , ¥ designed as
/3? = —a?A?, N = ofai - B (12)
BY=—af N N =l e - (19)
such that
LWPHE,
p_l . .
<= =T O Fawl T
j=1
ot P ot at — )
10\ & .
+1(5) T X @ 0w - 0w
j=1m=1
170 R q\A(~q \4( em(t)(,.q \4
+ i\ Z(Qz) (@) (€ (@)
7j=1g=1m=1
— e, (14)
yp—1 1 p—1 p—1/, yp—1
where X; = (AL NTHT, WP =
p—1 . —1
Fe OO of = Tl ofay, el 7 € Rare
Jj=1 w=q
design parameters, ("' ... (P72 are arbitrary

positive constants, and (’f —Lp=1 _ .
Then, we consider the )/ ; -system to validate this result.

Step p. Define \ = o7
indicates that

P — gP, and from (11)—(13), it

(15)

p—1
p,.p J,.J
x; + E :Qz’xw
Jj=1
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. op—1l
where ¢/ = [] o/a!. Based upon (1) and (15), one
w=j
has
dA} =d(o}a] + Z gz})

k
= [az ( AR AR () YR <m,,x’:ﬂ>>

m=1
p—1 p—1 k
. i1 it . . .
+Y ool )+ el Yl
j=1 7=1 m=1

FJ (3: x) )]dt+ olgt 4—2@19Z

(16)
Consider the Lyapunov function
WP(t,\)

- 1
=W + eSO (17)

According to (14), (16) and (17), it can be calculated
that

W)
p—1
<= (=TI + g (W
7j=1
+€€z(t { Ap 1 )\p+0 ()\p) ( p+1.’IJZZ)+1
5p+1) P(\P) 5P+1 [ pfp+20

f+29192

T
NG AR a +f§)]+

(]~
S}
S

GO D (AR EAY

=3
Il

(-
Ql

3

4)3

L1(0
4\ 9

+
>
=3

&

<
Il

—
i

—_

! (vafl+lxig|)}

w
T
A

1) (O ap) = O ()

_

.

- il
-
- =
—~ 3

S0

+
| —
VR
|
N~ ~__
w
NS

m
=
o~
N
/—\
N
RS
\_/

(e at,)!

Il
—
=}
I
—
I
—

(18)
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Fori € K,j € N, from (11)-(13) and Assumptlon 1,
there exist positive constants @' and & such that

[J] ‘ ,1 ‘)\1“_

’Q(W\ -

N N, (19)
NN (20)

|t
gl (t, V)| <

By using (6), we obtain that
AT < !

-3
+ <§<é" ) (o),
(21)

~-1,1; : o
where ¢("""7"" is an arbitrary positive constant.

Based on (6) and (19), we arrive at

P NP <oP &M INTPON |+ + 1))

j,2 . s
where (7% is an arbitrary positive constant.

By (6) and (15), it derives that

e
(N + o 1N

p—1
<g? az?—l()\z))4 + Z(U]-_loﬂ_l + 0! ]) H al

7 2 (2N
w=j
-
AP
p—1
<2 POD
j=1

—1
11 3% ,
of Tt 3 Do)

J=1

4
p—1 3
-<<a£1a£1+azaz>ﬂa7> ](A?)‘& (23)
w=j

where ¢"7? is an arbitrary positive constant, and let

0_ .0 __
o; =a; =0.

Together (6), (15) with (19), one can obtain that

p—1
P> ol f]
7=1
p—1

p—1
7,1 j
<INPY et M+ I | T odad
=1 w=j

p—1

T E@ M T -0 [T o)

w=1

p—1

p]4 -1 —1,1_ p 1
> (d S(cf 7
Jj=1

<IN+

p—1

¢H<x

(24)

p—1 3
-1 1] al*“) (D),
w=1

4 . . ips
where (7" is an arbitrary positive constant,
_p—1,1 12,1 p—1,1 _p—1
e = &=}, and &7 =

max{¢;", ¢, ¢
max{o}

1
2_p}'

204", 0y

Combining (6), (15) with (20), it follows that

3
5O |otal +ZQ19,
3 o -1
<SON? o7 (IA%|+---+|A§’ [+ 1X7D)
p—l [p—1 - - .12
+> | T ode ) 2N+ + N+ IMD)
=1 \w=j
3 [ i
up,2 p,2
<500 st ne+ 3 ot
L j=1
p—1 /p—1 2
vq,2 ]
" afa;“) : )w]
g=j \w=q

q=J w=q
p—l ) ) 3 9 . PT 1
< St g (@)
j=1 Jj=1
p—1 /p—1 4
(aféf’2+Z<Ho?a;”> )}(A”) (25)
q=7 w=q

g5 . s
where ¢"° is an arbitrary positive constant.
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From (13) and (15), it yields that

~1 —1_p—1yp-1
2 = (o) TN — (o) Tl TN

which means that

|
) -

(@) <8((@) D!+ (D) o) ! ON* S~ ds
< (26) 19) 2(95)4(‘1%)4(05) 4()‘5)4
Together (6) with (26), one can get that , Smk:l |

k +a(5) Z<d>4<azm>4<oi>—4<az1>4<A31>4]
Ezt 3 ~ m=1
OoTON” 2 (o] + ) R |

i +1(5) T@ @) e
<|wotentont+ g (§) @ NS
AN - e 0(])"), (28)
k
n Z 9(oP) 3 3 =em(®) (\P)4 which implies that
m=1
3 k p—l ko , .
1 (5) S| OO T Y el 1o
m=1 7j=1 m=1
< k(o) + ey S [(p R+ ey
1/70\3F p\3PL k. . .
+3 <19) Z(&fm)“(xf)“] eV +4<?9> > (e @, (o)~ D
m=1 j=1m=1
1/0\> & A A A p\3P L k ) ,
105 2@ e Vah)t - e O +4(5) 22D (@D @) (@) e !
4\ 9 1 9 ) 4 «
m= J=1m=
y -1
< p 3 lTlN”rz 1 9 3R ~1
_{[kﬁ(02)3(1—|—e3 ) +Z 19) ZZ(d)4(azm)4(esm(t)($£n)4
- j=1m=1
“4(3) Z(af>—4<afm>4] ! — O, (29)
m=1
s <0> 3 Z (o) el V(@ )4(/\1?—1)4}651‘('5) For the sake of conciseness, we define that
19 (2 (2 m (2
m=1 -3
176} & ~P=1(4CP”’1’1> (o7
(2 =P \A(Eem(t) (0 VA _ ei(t) (P4 o4\ 37" t
+ 4 <19) z:l(azm) (6 (I‘ ) € (xz) ) 5 -1
m= 4 ; 1
(@7) o+ el Y ()T
j=1
1 _p—1
Similar to (27), it is deduced that +op o]

k 37! 4 Lo p-—1 3
PR + 254 ( (o7l + odad) [ o
O e Y @ (2] + |aa)) 44 E

m=1

1 3k ; . . 3p71 41 —1,1_p—1 = s
<esi!) kﬁ(Af)4+<> S (o) (@) () DI A RN |
4\V) —~ j=1 w=1
k 9 p—1 ‘ p—1 p—1 4
3 debeO-en )y # o L@ (a1t 4 Y [T ot
m=1 =1 g=j w=q
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+ §p(apép’2) + k(o )%(1 + eénl\u@ri) then we can derive from (31) and (32) that
2 171
+ (p— Dkv(1+ eETiN”i) EW-p(t AP)
9\ 3 k .
+4<ﬁ> > (D) M@k, (30) <=- E: = (PO +eatwy
m=1

Therefore, submitting (21)-(25), (27) and (29)

3 p k
into (18), it can be concluded that + i (Z) Z Z (~gm)4(esm(t) (1) a(t)( )
- j=1m=1
P4 \P
WA 1 (8 3zp:j_1§: ®

p—1 + - ( ) esmlt ( m>4
< - (CJ CPJ) eilt (Aj) —|—6Z(t)VVZp 4 j=1g¢g=1m=1

7j=1

— e,

() P p+1 p+1 p+1 P\3 op+1
+e [ ()‘)( /B )+U(>‘)ﬁ WhereCZPuP:O.

4~ Step n. Based on the induction, we can extend it to
+ ()\p) &y : A\ — ()1 n\T n(+ Y\ —
i) T n-th step. Define A} = (A, -+ ,A]")", and W' (¢, \}') =
1/0)° £ 4 t 4 t 4 % z_: eai(t)()\g)4'
+1(5) TX @Oy -eowpy E
j=tm=1 When ¢ € [T}, 5]], let A = ofa? — B, and B/ =
1/0\3~ 12 & 4eq 4 —a A where o] > 1 is a constant. Then it can be
T <§> Z Z(QZ) (@) acquired that
j=1g¢=1m=1
(Ot~ O ), (1) LW A
where <= (d =D + g (W
7 j=1
I = 3 + OO g — B
v=2 1 0 3 n k ‘
~4(3 )353 = +1(5) L X @ e - e 0u
o) —
j=1m=1
mk:1 L /g\3 it
0 3 . B . + = <) q\4 ad 4 esm(t) x;]n 4
+ 4 (ﬂ) (g]+1) ( ]+1) ( g+1) 4(0[27)4’ 4\ 9 ;qln;(gl) ( 7,m) ( ( )
m=1
i(t q\4
i1 p—2 —eVEhY, (33)
PPl el Z S where ¢! € R is a design parameter ¢l et
o are positive constants and (;"" = 0. Based on the
o\3 above analysis, the event-triggered control strategy is
+4 <> Z (af)*4(af_1)4(afm)4 designed as follows
v m=1
n+1
0\’ o= ptoasptna, p () = —(14 6| gn+ [OYPAE
+4(§) et = st (B
" - (A7)
+ntanh ( ——— ||, (34)
P
Let af = where ¢ € Ris a design (1) = wi(t] ), ¢ € [T}, 1) N [thgs th0): (35)
parameter. Des1gn the virtual controller as t%,k+1 — inf{t > tf,k wi(t) — wi(8)] > 8lus (8)] + 1),
B = —alX, (32) (0
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where0 < §; < 1,7 >0,77 >
design parameters, tli, . represents the update time, (36)
describes the event-triggered mechanism (ETM).

Whent € [T}, S;]N [t} ;,t] 1), it can be seen that there
exist two time-varying functions x(¢) and x2(t) such
that

5. and p are all positive

wi(t) — ui(t) = x1(t)d5ui(t) + x2(t)n, (37)

where |x1(t)] < 1 and |x2(t)| < 1. We rewrite (37) as
follows:

wty — )l

1+ Xl(t)(si 1+ Xl(t)(si '

From the definition of w;(t) as given in (34), it is
checked that (A\?)3w;(t) < 0. Then, the following two
inequalities hold:

(38)

A wit) _ () wilt)

a6 = 146 (39)

~ D xe(®n _ (A0

1+X1( )0i S’ 2 (40)
By [34], the hyperbolic tangent function tanh(-)
satisfies

0 < |o| — tanh (f) < 0.2785¢, (41)

where ¢ > 0 and o € R. Based on 7 > -, we have

)()\”) 77‘ + 25 [A7[? < 0. According to (38)—(41), it
yields that
(A7) ui(t)
_OPPwi®) () xe(t)n
L+ x1(0)d 1+ xa(t)d
n\3, .. .
R R

- 146 1-6;
n)3 gntl
< _ ()\Zn)?;ﬁinJrl tanh <()\z) /Bz )
p

D)3
- (Ay)i”manh(( p) 77) e

p
AT

o] - 0P (H)

+ )P - || +

<0.557p + (A})* B,

<|owEert] - om) 5"+1tnh<( >3ﬁ"“)
)

n n|3
Ty
(42)
which means that

e Do () (us — B71)
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<esOan0.557p + ()61 — ()28

<0.557po eV, (43)
Remark 2. The reason for designing (34) in this way is
that the first term of (34) is used to handle (A\})357+?,
and the second term can be used to deal with 7
appearing in (36) by the properties of hyperbolic
functions.

Choosing ~;, = 4 1<m<m {d — ™.é, by
combining (4), (33), with (43), one has
LWt N) < = (i = (1 — m)Ti) Wi + My
£y Z W Rt ] b)) (44)
j=1m=1

where M; = 0.557,00”@”]\7"1' /#

(n = )e)"), and W, (t,27, )

efi(t) (az:f)4

For brevity,
simplification:

we use the following notational

n 1 4 n,nfl,l -3 n—1\4 nv’n,l
b= gCZ‘ (07 7)" +0i'¢

3 nyn,ly 4 = n,5,2\— n—1_n—1
+1( 1C)3 (4¢3 40
j=1
3 n—1 L ) n—1 3
35 g (wrlaz Leota I a;”>
Jj=1 w=j

j=1 w=1
9 n—1 n—1n—1 4
2 n,7,5\—1 nvn,2 q qu,z
+ 6" E (¢;") (ai ¢+ E H olaj’c]
Jj=1

3 n,
+ 5 E?)? + ki (07):

0\3 &
kO(1 + b m)+4( )

Y
m=1
where for j = 1,2,---,n — l,v = 2,3,---,7,
~1,1 ‘ . e
¢ and (""" are arbitrary positive constants,
n-11 1,1 on—1,1 n-1  _
c; = mai(c e, G }, and ] =
max{o}, -+, o

When ¢ € [S},T},,), it can be deduced that there exists

¢~ > 0 such that

EWin(tv 5‘?)
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n—1
<->(d-

=1

GO ()

)

i(H)wy

<
Il

n k

n\4 J J
YO+ D N
j=1m=1

n k

— (B + mim) W +ZZI@§mN{m
j=1m=1

n z—: J
i t,xl,xfn)

t, xl , xﬂn)

(45)

where%—él min {c/ — ¢ ).
<j<n—1

Here we introduce M) as the desired convergence rate

and we impose

My > 0,
My > 0.

(46)
(47)

Yi — (1 —mi)7i —

¥i + miTi —
From (44)—-(47), for any t > ty, one can derive that

LW, A} < — MOW” + M

+Z§j%»a

j=1m=1

Jo.J
t,x;, xm)

(48)

Up to this point, the AIETC design for each SSENS is
completed.

Remark 3. For conditions (46) and (47), it can be
noted that the value of v; and 4; can be tuned to some
extent through the choice of 017 . We first fix the desired
convergence rate M. Then the control interval is
chosen to yield the average control rate ;. Finally, the
tuning parameters 7; are adjusted so that the design
requirements are satisfied.

Remark 4. The controllers are designed recursively
via backstepping method. We first construct the initial
Lyapunov function W} and the virtual controller 5? =
—a} A\l with gain o] > 1. The variable )\? is then
introduced to link W and 32, forming the subsequent
Lyapunov function W2. Repeating this recursive
construction until the final step, we derive the actual
asynchronous intermittent event-triggered controller
and obtain the infinitesimal-operator estimates LW
for each subsystem. In the next subsection, we will
construct a global Lyapunov function and integrate
these results to complete the boundedness analysis.

3.2 Boundedness Analysis

Based upon the design of AIETC for each subsystem, a
strongly connected digraph (G7,N) is established with
N = (k] )kxk, and 7“] denotes the cofactor of the i-th

diagonal of Laplacian matrix of digraph (G7, 7). We
proceed to construct a global Lyapunov function

ann £ A7), (49)

_ _ _ T n .

where A = ()7, ()7, 7)o =TI,
j=1

Hence, along each directed cycle Cé of 9, it follows

that
)

(mi)EE(CY)

N (t,ad,2d)) = 0.

According to Theorem 2.2 in [35], one has

k

Z z szzm(t’xz’xgn)
i,m=1

=> WQ) > N (talal) =0,
[9]S0)

(mi)EB(CY)

where Q denotes the set of all spanning unicycle graphs
of (G7,N7), W(Q) stands for the weights of Q. And it
can be attained that

Z T4 Z Z ﬁgmNgm

i=1 j=1m=1

t,al 2l ) = 0. (50)
Consequently, according to (48), (49) and (50), it
yields

k
LW (t,\) < =MW + M, Z Ti
i=1

< —MyW + Mo, (51)

where r = max {r;}, and My = krM;.
1<i<k

Theorem 1. Under Assumption 1 and 2, considering
the system (1)—(2) based on the designed controllers
with the event-triggered rules as (34)—(36), then the
closed-loop system satisfies the following properties:
(i) The system (1)—(2) is globally exponentially
ultimately bounded in mean square.

(ii) Zeno behavior of ETM (36) can be avoided.

Proof. From (51), it can be attained that

—Mpt + %
0

EW (t,\) < W (to, Ao )e (52)

Let a;”rl =1, I = max {(ag)_z}, =
1<i<k,1<j<n

{(U{Jrl)_Q(ag)Z}. It follows that

max
1<i<k,1<j<n

()]
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L =1 j=1 i=1 j=0

<(2(Fy + F2)) 2 |A(t))- (53)

By (52), (53) and Schwarz inequality, one obtains

Elz(t)]* < 2(F1 + F)EA®)

<A(Fy + F)(kn) 2 {EW (£, \)}2

My 1

243

My
ang)

My

(54)

<A(Fy + Fy)(kn)2 (W (to, Ao)e Mot +

<A(Fy + Fy) ((lmW(tO, Xo))Ee3Mot 4

Define M3 = 4(Fy + Fy),/ k2.

W (to, o), there exists a constant s, such that

By the definition of

E|z(t)|? < s|wo?e 20! 1 M. (55)
Based on the above analysis, it is obvious that the
system (1)—(2) is globally exponentially ultimately
bounded in mean square.

Next, we prove that the Zeno behavior does not
happen. Based on It6 rule, w;(t) satisfies the diffusion
process

dw;(t) = Lw;(t,x)dt + Hw;(t, z)dB(t). (56)

Note that z(t) is bounded almost surely, there are
two positive constants J1, Jo such that |Lw;| < J; and
|7-[w,~] < Js.

Let 7 be the solution of Jim + 4v2Joy/m1 = 1.
— 2
Then we can obtain that /7 = 4*/§J2+;L/]§m‘

Integrating (56) from tf, i to t?  + ™ with respect to ¢
and utilizing Burkholder-Davis-Gundy inequality [36],
one has

Eflwi(ti + ) — wilti) 17y

tf7k+7r
SE[ / Lw;(s,z(s))ds ftlik:|
Lk ’
t}"k—Hr
+E[ / Heor(s, 2(5))dB(s) fm]
thk ’
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t%,k+7r
SEU \Ewi(s,x(s))\ds\}';k}

7
tl,k

+E[ sup / T (s, 2())AB(s)

Lk
to<s<t tr )

<h(tp+m—t)+ 4¢§J2\/m

ST+ AV2J57/T < Silus ()] + .

(57)

According to the event-triggered mechanism of (36),
we find that the controller is triggered only when
lwi(t) — ui(t)] > d;|ui(t)| + n. As a result of (57), no
event will be triggered at least 7 units of time after
every t;,, which implies that at least one positive
constant 7 exists so that ¢t — tf x = 7. Therefore, Zeno
behavior can be avoided. ’

This completes the proof of Theorem 1. O

4 A Numerical Example

In this section, we give a simulation example to validate
the effectiveness of the results in this article. Consider
a robot arm system as follow:

JE&i(t) + DE;(t) + MgLsin(&(t)) = 0,

where &(t), &(t), and &(t) represent angular position,
velocity, and acceleration. J, D, M, g and L denote
rotational inertia, damping coefficient, total mass,
gravitational constant, and the center-of-mass offset
from the joint axis, respectively.

Letz}(t) = &(t), 22(t) = A%_Si(t), where A; is a positive

constant, one has

dri(t) = A22(t)dt,
{ da2(t) —JLAi(ng(t) —i—MgLsin(m%(t)))dt.

Take stochastic perturbations, coupling factors and
control input into account, the system can be written
as

k
dal(t) = (o%a?+ 3 aboh)dt+qlaldB(1),
m=1
k
Qf() = (wi = pele? = pfsinel + 32 adel, ar
m=1
+qiadB(t),
(58)
where a? = A, uil = JAAZJ and ,u% = Af—%. By the

design scheme developed in Section 3, we first give the
following notations:

k
> (ain)?

m=1

3 1/6\°
1_ 1.l (22 (2
o max{ ,cl—l—z(ql) —1—4 3
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212/, 1\4 0\’ : 2 \4/ _2\—4
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Then we design the controllers as

wi(t) =— (14 ) [53 tanh (

7))

[Tl7Sl ) OVt gt s)-

+ ntanh <

ui(t) =w;(t] )t

201

104

Figure 1. (a) The state trajectories of system (58) without
control. (b) The state trajectories of system (58) with
control.

For simulation, select k =5, J =4.9, D = 0.637, M =
0.5,9g =98, L =0.13. Fori = 1,---,5, we choose

A; = 2.6 which means that 0? = 2.6, u} = p? = 0.05.
Letgl =¢?=0.1,i=1,2,3,¢} =0.2,¢? =0.1,i = 4,5.
Setd; =0.7,i=1,---,5,andn=0.1,7 =5, p = 0.25,
¥ = 0.018. Fori = 1,---,4,leta},, ; = aj 5 = 0.005,

2 _ .2 _ -
a; ;41 = a5, = 0.006, else a;,,, = 0.
800 F 3
700 —
S 600 -
I
=500
~ 400
!
2;300—
L%2()[)
100 -
b
0 05
(a)
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.l i
R i
Il
=
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b i
o ‘ ‘ |
0 05 1 15 2 25 3 35 4 45 5
t
(b)

Figure 2. (a) The mean square trajectories of system (58)
without control. (b) The mean square trajectories of
system (58) with control.

The control intervals for subsystems ¢ = 1,2,3 are
chosen as Uj°([0.41,0.4] + 0.3) U [0.4] + 0.313,0.4] +
0.389), while for i = 4,5, they are U;°,([0.5/,0.5] +
0.2) U [0.5] 4+ 0.212,0.5] 4 0.487)). Clearly, the
intermittent control is asynchronous. One can
calculate that 7, = 0.94, N, = 0.01222,i = 1,2,3
and m; = 0.95,N;, = 0.01235,i = 4,5. Choosing
m = 1075, ¢} = 2.67, ¢} = 1.65,i = 1,2,3, and
7, = 126, ¢} = 2.68, ¢ = 1.6, i = 4,5. Additionally,
set My = —0.001. It can be attained that v; — (1 —
7TZ')T2' — My = 0.0294 > 0, 4; + w7 — My = 0.0581 >
0,7 = 1,2,3 and ~; — (1 — 7T7;)7'i — My = 0.099 >
0,7%; + m7 — My = 1.4468 > 0,7 = 4,5. Itis evident
that all required conditions are satisfied. Figure 1 (a)
presents the state trajectories of system (58) without
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Figure 3. Event-triggered time intervals of 5 subsystems.

control. The state trajectories of system (58) with
control are shown in Figure 1 (b), which indicates
that they are all bounded under AIETC. The mean
square trajectories of system (58) without control and
with control are exhibited in Figure 2 (a) and (b),
respectively. Figure 3 describes the intervals of ETM.
Therefore, the effectiveness of our theoretical results is
demonstrated.

5 Conclusion

In the paper, an AIETC scheme has been investigated
for a class of CSSFNSs. Based on the backstepping
technique, graph theory and Lyapunov approach, the
asynchronous intermittent event-triggered controllers
were designed. The proposed control strategy
synergistically integrated the energy-saving merits
of both intermittent control and ETC. Moreover, by
accommodating potential real-world implementation
constraints, the designed controllers were permitted
to operate in an asynchronous manner. In the end,
a simulation example was proposed to show the
effectiveness of the control strategy. In the future, we
will consider the time delay of CSSFINSs.
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