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Abstract
This paper investigates a class of coupled
stochastic strict-feedback nonlinear systems
under asynchronous intermittent event-triggered
control (AIETC). Initially, stochastic analysis
technique, Lyapunov method and backstepping
design method are employed to design the virtual
and actual controllers. AIETC is achieved by an
auxiliary timer that grants each subsystem its
own control and rest time. In the meantime the
control input is applied only at the last node of
each subsystem. Then, a global Lyapunov function
is constructed. By utilizing graph theory, the
global exponential ultimate boundedness in mean
square of the systems can be obtained and Zeno
behavior is eliminated successfully. Finally, a
simulation example is provided to demonstrate the
effectiveness of our results.
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1 Introduction
Stochastic strict-feedback systems (SSFSs), which
preserve the classical strict-feedback structure [1–4]
while accounting for stochastic disturbances, have
attracted sustained attention in recent years. In general,
SSFSs typically employ backstepping techniques for
controller design to achieve system stabilization.
Backstepping designs for SSFSs were first proposed
by [5, 6] and further developed by the work of [7–
13]. However, the aforementioned results are
confined to a single SSFS. Motivated by the ubiquitous
interconnections among real-world systems, multiple
stochastic strict-feedback networks are considered in a
coupled configuration in [14–16]. Across these studies,
Guo et al. [14] demonstrated that, even when the
stochastic strict-feedback networks are not strongly
connected and subject to time-varying delays, pinning
control togetherwith a graph theory can still guarantee
exponential stabilisation or synchronization in mean
square.

In many practical control systems, control inputs
are not continuously available due to actuator faults,
communication constraints, network interruptions, or
energy-saving requirements. These limitations have
motivated the development of intermittent control
strategies. Intermittent control allows the controller
to be inactive over certain time intervals, thereby
reducing energy consumption and communication
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burden. Compared with continuous control,
intermittent control exhibits greater practicality and
flexibility and has been widely adopted in areas
such as networked control systems [17–21]. For
instance, Liu et al. [17] established synchronization
criteria for complex networks under aperiodically
intermittent pinning control. Li et al. [18] investigated
the exponential synchronization of stochastic
hybrid multi-weight coupled systems with mixed
delays using aperiodically adaptive intermittent
control, and derived less conservative conditions
by introducing novel Halanay-type differential
inequalities. Nevertheless, most existing intermittent
control schemes rely on time-triggered mechanisms,
in which control actions are executed according to
predetermined schedules. Although such strategies
are straightforward to implement, they fail to
exploit real-time system state information, which
may result in unnecessary control updates and
inefficient use of resources. To overcome these
drawbacks, event-triggered control (ETC) has been
proposed and has received increasing attention in
recent years [22–24]. In event-triggered control
systems, control signals are updated only when
predefined triggering conditions, determined by
the system state, are satisfied. Recently, the ETC of
stochastic strict-feedback nonlinear systems (SSFNSs)
has attracted considerable research interest, with
representative results reported in [25, 26]. Specifically,
an adaptive fuzzy event-triggered tracking controller
was developed in [25] to guarantee semi-global
uniform ultimate boundedness of all closed-loop
signals. Furthermore, Lu et al. [26] proposed an
adaptive event-triggered tracking control scheme for
SSFNSs with full-state constraints by integrating a
tan-type stochastic barrier Lyapunov function with
radial basis function neural networks.

To harness the flexibility of intermittent control and
the resource efficiency of ETC, the intermittent
event-triggered control strategy has been
proposed and validated in [27–29]. Note that
the aforementioned intermittent schemes require
all nodes to switch simultaneously. In [30], an
asynchronously intermittent decentralized framework
was introduced that allows each subsystem to
possess its own working and resting intervals,
thereby accommodating practical demands such
as staggered micro-grid duty cycles. Subsequently,
input-to-state practically exponential stability was
investigated by designing asynchronously intermittent
event-triggered control in [31]. To the best of the

authors’ knowledge, there are few results on SSFNSs
under intermittent event-triggered control, let alone
asynchronous intermittent event-triggered control
(AIETC) for coupled stochastic strict-feedback
nonlinear systems (CSSFNSs).

Motivated by the above discussions, we propose
an asynchronous intermittent event-triggered control
scheme is proposed for CSSFNSs. By designing
an auxiliary timer and employing the backstepping
technique as well as graph theory, AIETC is designed
for each subsystem, which can ensure the global
exponential ultimate boundedness in mean square of
the systems. The main contributions of this article can
be listed as follows:

(1) In contrast to the ETC for a single SSFNS
reported in previous works [25, 26], an intermittent
event-triggered control scheme for CSSFNSs is
investigated in this paper, which simultaneously
adopts intermittent control and explicitly accounts for
the topological structure among multiple SSFNSs.

(2) We devise an AIETC strategy that assigns each
subsystem its own working and resting intervals for
CSSFNSs. Compare to [30, 31], the control input is
applied only to the last state of each subsystem in this
paper.

The rest of the paper is organized as follows. Section
2 presents the corresponding preliminary work and
the model description. Section 3 details the design
of the controllers and primary results together with
proofs. In Section 4, the effectiveness of the our results
is verified through an example. The paper is concluded
in Section 5.

2 Preliminaries and Model Description
2.1 Preliminaries
Throughout this paper, the following notations will
be used. Let Z+, R and R+ be the sets of positive
integers, real numbers and non-negative real numbers,
respectively. Define Ñ = {1, 2, · · · , n − 1}, N =
{1, 2, · · · , n}, where n ∈ Z+, n > 1. Let N0 =
{0, 1, 2, · · · } and K = {1, 2, · · · , k}, k ∈ Z+. Rn is the
n-dimensional Euclidean space with norm | · |. For
a matrix or vector A, the symbol AT stands for its
transpose, and Tr(A)denotes its tracewhenA is square.
(Ω,F , {F}t≥0,P) represents a complete probability
space with a filtration {F}t≥0 satisfying the usual
conditions. Let B(t) be a one-dimensional Brownian
motion defined on the probability space. E(·) denotes
the expectationwith respect to the probabilitymeasure
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P. Assign C1,2(R+ × Rn;R+) be the family of all
nonnegative functionsW (t, x) on R+ × Rn which are
continuously once differentiable in t and twice in x.

Consider the following stochastic differential equation

dz(t) = f(t, z(t))dt+ g(t, z(t))dB(t),

where z ∈ Rn. For nonnegative function W (t, z) ∈
C1,2(R+ ×Rn;R+), the operators L andH are defined
as

LW =Wt(t, z) +Wz(t, z)f(t, z)

+
1

2
Tr(gT (t, z)Wzz(t, z)g(t, z)),

HW =Wz(t, z(t))g(t, z),

where Wt(t, z) = ∂W (t,z)
∂t , Wzz(t, z) =

(
∂2W (t,z)
∂zi∂zj

)
n×n

,

Wz(t, z) =

(
∂W (t,z)
∂z1

, · · · , ∂W (t,z)
∂zn

)
.

2.2 Model Description
Consider the following CSSFNSs constructed on
a strongly connected digraph (Gj , Aj) with Aj =

(ajim)k×k, j ∈ N,

dxji (t) =(σj+1
i xj+1

i + f ji (t, x
[j]
i ) +

k∑
m=1

ajim

· Γjim(xji , x
j
m))dt+ gji (t, x

[j]
i )dB(t), j ∈ Ñ,

(1)

dxni (t) =(ui + fni (t, x
[n]
i ) +

k∑
m=1

animΓnim(xni , x
n
m))dt

+ gni (t, x
[n]
i )dB(t), i ∈ K, (2)

where xji ∈ R is the j-th node state of the i-th SSFNS,
x

[j]
i = (x1

i , · · · , x
j
i )
T and x[n]

i = (x1
i , · · · , xni )T ; ui ∈ R is

the control input; f ji : R+×Rj → R, gji : R+×Rj → R
are all nonlinear functions; Γjim : R×R→ R is coupling
function and ajim represents coupling strength; σji is a
positive constant and let σ1

i = 1.

Denote x = ((x
[n]
1 )T , · · · , (x[n]

k )T )T ∈ Rkn. Assume
that f ji , g

j
i and Γjim satisfy the necessary conditions to

ensure system (1)–(2) has a unique solution for any
initial value x(0) = x0 ∈ Rkn. Suppose that f ji (t, 0) =

gji (t, 0) = Γjim(0, 0) = 0, then system (1)–(2) has a
trivial solution x(t) ≡ 0.

To this end, we introduce the following assumptions
and definitions.

Assumption 1. For i ∈ K, j ∈ N, there exist positive
constants cj,1i and cj,2i such that∣∣f ji (t, x

[j]
i )
∣∣ ≤ cj,1i (∣∣x1

i

∣∣+ · · ·+
∣∣xj−1
i

∣∣+
∣∣xji ∣∣),∣∣gji (t, x[j]

i )
∣∣ ≤ cj,2i (∣∣x1

i

∣∣+ · · ·+
∣∣xj−1
i

∣∣+
∣∣xji ∣∣).

Assumption 2. For any i,m ∈ K, j ∈ N, there exists a
nonnegative constant hjim such that∣∣Γjim(xji , x

j
m)
∣∣ ≤ hjim(|xji |+ |xjm|).

Remark 1. The two assumptions are crucial for
the boundedness analysis, and their rationality is
justified as follows. Assumption 1 imposes linear
growth constraints on f ji (·) and gji (·) with bounded
constants cj,1i , cj,2i which is a standard condition in
SSFNSs [13, 14] to ensure controller design tractability.
It accommodates practical nonlinearities like a sin t
and b cos t by choosing appropriate constants a and
b. Assumption 2 characterizes the coupling functions
are restricted to linear functions, which is general in
coupled nonlinear system analysis, as seen in [18, 31].

Definition 1. (see [32]) The intermittent control of
i-th subsystem is said to have an average control ratio
πi ∈ (0, 1), if there exists positive constant N̆πi such
that the following inequality holds:

N̆i(t2, t1) ≥ πi(t2 − t1)− N̆πi , ∀t2 > t1 ≥ 0,

where N̆i(t2, t1) denotes the total control time during
the interval (t1, t2).

Definition 2. (see [33]) System (1)–(2) is said to
be globally p-th moment exponentially ultimately
bounded if there exist constants C > 0, Π > 0 and
Ξ ≥ 0 such that for any solution with the initial value
x0,

E|x(t)|p ≤ C|x0|pe−Πt + Ξ, p > 0, t ≥ t0.

When p = 2, it is usually said to be globally
exponentially ultimately bounded in mean square.

3 Main Results
In this section, the design of continuous virtual
controllers is first designed by backstepping
technique. Then, according to these virtual controllers,
event-triggered mechanism is constructed. Combining
asynchronous intermittent control strategy, the
complete AIETC can be introduced. Finally, the
boundedness analysis of system (1)–(2) is given
through graph theory and Lyapunov method.
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3.1 Controller Design
In this subsection, we construct the Lyapunov function
and present the detailed design procedures for
the virtual and actual controllers. To implement
asynchronous intermittent control, we first introduce
the following auxiliary timer:

εi(t) =


τiN̆πi , t ∈ [T i0, S

i
0],

min
{
τiN̆πi , εi(T

i
l ) + [(1− πi)τi](t− T il )

}
,

t ∈ (T il , S
i
l ], l ∈ N0/{0},

εi(S
i
l )− πiτi(t− Sil ), t ∈ (Sil , T

i
l+1], l ∈ N0,

(3)

where τi (i ∈ K) are tuning parameters. From the
definition of (3), one can easily get that 0 ≤ εi(t) ≤
τiN̆πi (cf. [31]), and

ε̇i(t) ≤
{

(1− πi)τi, t ∈ [T il , S
i
l ),

−πiτi, t ∈ [Sil , T
i
l+1).

(4)

Next, we design the controllers step by step.

Step 1. Consider a Lyapunov function W 1
i (t, λ1

i ) =
1
4e
εi(t)(λ1

i )
4, λ1

i = x1
i . Denote ãjim = ajimh

j
im, i,m ∈

K, j ∈ N. According to Assumption 1 and 2, it can be
attained that

LW 1
i (t, λ1

i )

≤ε̇i(t)W 1
i + eεi(t)

[
(λ1
i )

3(σ2
i x

2
i + f1

i

+
k∑

m=1

a1
imΓ1

im(x1
i , x

1
m)) +

3

2
(λ1
i )

2|g1
i |2
]

≤ε̇i(t)W 1
i + eεi(t)(λ1

i )
3(σ2

i x
2
i − β2

i ) + eεi(t)(λ1
i )

3β2
i

+ eεi(t)(λ1
i )

4(c1,1
i +

3

2
(c1,2
i )2)

+ eεi(t)(λ1
i )

3
k∑

m=1

ã1
im

(
|x1
i |+ |x1

m|
)
, (5)

where β2
i is a virtual controller. By utilizing the

following inequality

r|I|a|L|b ≤ χ|I|a+b +
b

a+ b

[
a

χ(a+ b)

]a
b

r
a+b
b |L|a+b,

(6)

where I, L ∈ R, a, b, χ, r > 0, it can be attained that

eεi(t)(λ1
i )

3
k∑

m=1

ã1
im(|x1

i |+ |x1
m|)

≤
[
kϑ(λ1

i )
4 +

1

4

(
θ

ϑ

)3 k∑
m=1

(ã1
im)4(x1

i )
4

+

k∑
m=1

e
1
3

(εi(t)−εm(t))ϑ(λ1
i )

4

+
1

4

(
θ

ϑ

)3 k∑
m=1

eεm(t)−εi(t)(ã1
im)4(x1

m)4

]
eεi(t)

≤
[
kϑ+

1

2

(
θ

ϑ

)3 k∑
m=1

(ã1
im)4 + kϑe

1
3
τiN̆πi

]
eεi(t)(λ1

i )
4

+
1

4

(
θ

ϑ

)3 k∑
m=1

(ã1
im)4(eεm(t)(x1

m)4 − eεi(t)(x1
i )

4),

(7)

where ϑ is an arbitrary positive constant and θ = 3
4 .

Substitution of (7) into (5) gives

LW 1
i (t, λ1

i )

≤ε̇i(t)W 1
i + eεi(t)(λ1

i )
3(σ2

i x
2
i − β2

i )

+ eεi(t)(λ1
i )

3β2
i + eεi(t)(λ1

i )
4

[
c1,1
i +

3

2
(c1,2
i )2

+ kϑ(1 + e
1
3
τiN̆πi ) +

1

2

(
θ

ϑ

)3 k∑
m=1

(ã1
im)4

]

+
1

4

(
θ

ϑ

)3 k∑
m=1

(ã1
im)4(eεm(t)(x1

m)4 − eεi(t)(x1
i )

4).

(8)

Define α1
i = max{1, c1

i + c1,1
i + 3

2(c1,2
i )2 + kϑ(1 +

e
1
3
τiN̆πi ) + 1

2

(
θ
ϑ

)3 k∑
m=1

(ã1
im)4}, where c1

i ∈ R is a design

parameter. Design the virtual controller β2
i as

β2
i = −α1

iλ
1
i . (9)

Therefore, from (8) and (9), we have
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LW 1
i (t, λ1

i )

≤− c1
i e
εi(t)(λ1

i )
4 + ε̇i(t)W

1
i + eεi(t)(λ1

i )
3
(
σ2
i x

2
i − β2

i

)
+

1

4

(
θ

ϑ

)3 k∑
m=1

(ã1
im)4(eεm(t)(x1

m)4 − eεi(t)(x1
i )

4).

(10)

Deductive Step. Suppose that at step p− 1, there are
virtual controllers β2

i , β
3
i , · · · , β

p
i designed as

β2
i = −α1

iλ
1
i , λ1

i = x1
i , (11)

β3
i = −α2

iλ
2
i , λ2

i = σ2
i x

2
i − β2

i , (12)
...

...

βpi = −αp−1
i λp−1

i , λp−1
i = σp−1

i xp−1
i − βp−1

i , (13)

such that

LW p−1
i (t, λ̄p−1

i )

≤−
p−1∑
j=1

(cji − ζ
p−1,j
i )eεi(t)(λji )

4 + ε̇i(t)W
p−1
i

+ eεi(t)σp−1
i (λp−1

i )3(σpi x
p
i − β

p
i )

+
1

4

(
θ

ϑ

)3 p−1∑
j=1

k∑
m=1

(ãjim)4(eεm(t)(xjm)4 − eεi(t)(xji )
4)

+
1

4

(
θ

ϑ

)3 p−1∑
j=1

j−1∑
q=1

k∑
m=1

(%qi )
4(ãqim)4(eεm(t)(xqm)4

− eεi(t)(xqi )
4), (14)

where λ̄p−1
i = (λ1

i , · · · , λ
p−1
i )T , W p−1

i (t, λ̄p−1
i ) =

1
4e
εi(t)

p−1∑
j=1

(λji )
4, %qi =

j−1∏
w=q

σqiα
w
i , c1

i , · · · , c
p−1
i ∈ R are

design parameters, ζp−1,1
i , · · · , ζp−1,p−2

i are arbitrary
positive constants, and ζp−1,p−1

i = 0.

Then, we consider the λpi -system to validate this result.

Step p. Define λpi = σpi x
p
i − β

p
i , and from (11)–(13), it

indicates that

λpi = σpi x
p
i +

p−1∑
j=1

%jix
j
i , (15)

where %ji =
p−1∏
w=j

σjiα
w
i . Based upon (1) and (15), one

has

dλpi =d(σpi x
p
i +

p−1∑
j=1

%jix
j
i )

=

[
σpi

(
σp+1
i xp+1

i + fpi +
k∑

m=1

apimΓpim (xpi , x
p
m)

)

+

p−1∑
j=1

%ji (σ
j+1
i xj+1

i + f ji ) +

p−1∑
j=1

%ji

k∑
m=1

ajim

· Γjim(xji , x
j
m)

]
dt+ (σpi g

p
i +

p−1∑
j=1

%jig
j
i )dB(t).

(16)

Consider the Lyapunov function

W p
i (t, λ̄pi ) = W p−1

i (t, λ̄p−1
i ) +

1

4
eεi(t)(λpi )

4. (17)

According to (14), (16) and (17), it can be calculated
that

LW p
i (t, λ̄pi )

≤−
p−1∑
j=1

(cji − ζ
p−1,j
i )eεi(t)(λji )

4 + ε̇i(t)W
p
i

+ eεi(t)

{
σp−1
i (λp−1

i )3λpi + σpi (λ
p
i )

3
(
σp+1
i xp+1

i

− βp+1
i

)
+ σpi (λ

p
i )

3βp+1
i + (λpi )

3

[
σpi f

p
i +

p−1∑
j=1

%ji

· (σj+1
i xj+1

i + f ji )

]
+

3

2
(λpi )

2

∣∣∣∣σpi gpi +

p−1∑
j=1

%jig
j
i

∣∣∣∣2

+ σpi (λ
p
i )

3
k∑

m=1

ãpim

(
|xpi |+ |x

p
m|
)

+ (λpi )
3
p−1∑
j=1

%ji

k∑
m=1

ãjim(|xji |+ |x
j
m|)

}

+
1

4

(
θ

ϑ

)3 p−1∑
j=1

k∑
m=1

(ãjim)4(eεm(t)(xjm)4 − eεi(t)(xji )
4)

+
1

4

(
θ

ϑ

)3 p−1∑
j=1

j−1∑
q=1

k∑
m=1

(%qi )
4(ãqim)4(eεm(t)(xqm)4

− eεi(t)(xqi )
4). (18)
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For i ∈ K, j ∈ N, from (11)–(13) and Assumption 1,
there exist positive constants c̆j,1i and c̆j,2i such that

∣∣f ji (t, x
[j]
i )
∣∣ ≤ c̆j,1i (∣∣λ1

i

∣∣+ · · ·+
∣∣λj−1
i

∣∣+
∣∣λji ∣∣), (19)∣∣gji (t, x[j]

i )
∣∣ ≤ c̆j,2i (∣∣λ1

i

∣∣+ · · ·+
∣∣λj−1
i

∣∣+
∣∣λji ∣∣). (20)

By using (6), we obtain that

σp−1
i (λp−1

i )3λpi ≤ζ
p,p−1,1
i (λp−1

i )4

+
1

4

(
4

3
ζp,p−1,1
i

)−3

(σp−1
i )4(λpi )

4,

(21)

where ζp,p−1,1
i is an arbitrary positive constant.

Based on (6) and (19), we arrive at

σpi (λ
p
i )

3fpi ≤σ
p
i c̆
p,1
i |λ

p
i |

3(|λ1
i |+ · · ·+ |λ

p
i |)

≤
p−1∑
j=1

ζp,j,2i (λji )
4 +

(
σpi c̆

p,1
i +

3

4
(σpi c̆

p,1
i )

4
3

·
p−1∑
j=1

(4ζp,j,2i )−
1
3

)
(λpi )

4, (22)

where ζp,j,2i is an arbitrary positive constant.

By (6) and (15), it derives that

(λpi )
3
p−1∑
j=1

%jiσ
j+1
i xj+1

i

≤|λpi |
3
p−1∑
j=1

p−1∏
w=j

σjiα
w
i

 (|λj+1
i |+ αji |λ

j
i |)

≤σp−1
i αp−1

i (λpi )
4 +

p−1∑
j=1

(σj−1
i αj−1

i + σjiα
j
i )

p−1∏
w=j

αwi

· |λpi |
3|λji |

≤
p−1∑
j=1

ζp,j,3i (λji )
4 +

[
σp−1
i αp−1

i +
3

4

p−1∑
j=1

(4ζp,j,3i )−
1
3

·

(
(σj−1
i αj−1

i + σjiα
j
i )

p−1∏
w=j

αwi

) 4
3
]

(λpi )
4, (23)

where ζp,j,3i is an arbitrary positive constant, and let
σ0
i = α0

i = 0.

Together (6), (15) with (19), one can obtain that

(λpi )
3
p−1∑
j=1

%jif
j
i

≤|λpi |
3
p−1∑
j=1

c̆j,1i (|λ1
i |+ · · ·+ |λ

j
i |)

p−1∏
w=j

σjiα
w
i


≤|λpi |

3(|λ1
i |+ · · ·+ |λ

p−1
i |)

(
c̄p−1,1
i σ̄p−1

i (p− 1)

p−1∏
w=1

αwi
)

≤
p−1∑
j=1

ζp,j,4i (λji )
4 +

3

4

p−1∑
j=1

(4ζp,j,4i )−
1
3

(
c̄p−1,1
i σ̄p−1

i

· (p− 1)

p−1∏
w=1

αwi

) 4
3

(λpi )
4, (24)

where ζp,j,4i is an arbitrary positive constant,
c̄p−1,1
i = max{c̆1,1

i , c̆2,1
i , · · · , c̆p−1,1

i }, and σ̄p−1
i =

max{σ1
i , σ

2
i , · · · , σ

p−1
i }.

Combining (6), (15) with (20), it follows that

3

2
(λpi )

2
∣∣∣σpi gpi +

p−1∑
j=1

%jig
j
i

∣∣∣2
≤3

2
(λpi )

2
[
σpi c̆

p,2
i (|λ1

i |+ · · ·+ |λ
p−1
i |+ |λpi |)

+

p−1∑
j=1

p−1∏
w=j

σjiα
w
i

 c̆j,2i (|λ1
i |+ · · ·+ |λ

j−1
i |+ |λji |)

]2

≤3

2
(λpi )

2

[
σpi c̆

p,2
i |λ

p
i |+

p−1∑
j=1

(
σpi c̆

p,2
i

+

p−1∑
q=j

(
p−1∏
w=q

σqiα
w
i

)
c̆q,2i

)
|λji |

]2

≤3

2
p(σpi c̆

p,2
i )2(λpi )

4 +
3

2
p

p−1∑
j=1

(
σpi c̆

p,2
i

+

p−1∑
q=j

(
p−1∏
w=q

σqiα
w
i

)
c̆q,2i

)2

(λpi )
2(λji )

2

≤
p−1∑
j=1

ζp,j,5i (λji )
4 +

[
3

2
p(σpi c̆

p,2
i )2 +

9

16
p2

p−1∑
j=1

(ζp,j,5i )−1

·
(
σpi c̆

p,2
i +

p−1∑
q=j

(
p−1∏
w=q

σqiα
w
i

)
c̆q,2i

)4]
(λpi )

4, (25)

where ζp,j,5i is an arbitrary positive constant.
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From (13) and (15), it yields that

xpi = (σpi )
−1λpi − (σpi )

−1αp−1
i λp−1

i ,

which means that

(xpi )
4 ≤ 8

(
(σpi )

−4(λpi )
4 + (σpi )

−4(αp−1
i )4(λp−1

i )4
)
.

(26)
Together (6) with (26), one can get that

eεi(t)σpi (λ
p
i )

3
k∑

m=1

ãpim(|xpi |+ |x
p
m|)

≤

[
kϑ(σpi )

4
3 (λpi )

4 +
1

4

(
θ

ϑ

)3 k∑
m=1

(ãpim)4(xpi )
4

+
k∑

m=1

ϑ(σpi )
4
3 e

1
3

(εi(t)−εm(t))(λpi )
4

+
1

4

(
θ

ϑ

)3 k∑
m=1

eεm(t)−εi(t)(ãpim)4(xpm)4

]
eεi(t)

≤

[
kϑ(σpi )

4
3 (1 + e

1
3
τiN̆πi )(λpi )

4

+
1

2

(
θ

ϑ

)3 k∑
m=1

(ãpim)4(xpi )
4

]
eεi(t)

+
1

4

(
θ

ϑ

)3 k∑
m=1

(ãpim)4(eεm(t)(xpm)4 − eεi(t)(xpi )
4)

≤

{[
kϑ(σpi )

4
3 (1 + e

1
3
τiN̆πi )

+ 4

(
θ

ϑ

)3 k∑
m=1

(σpi )
−4(ãpim)4

]
(λpi )

4

+ 4

(
θ

ϑ

)3 k∑
m=1

(σpi )
−4(αp−1

i )4(ãpim)4(λp−1
i )4

}
eεi(t)

+
1

4

(
θ

ϑ

)3 k∑
m=1

(ãpim)4(eεm(t)(xpm)4 − eεi(t)(xpi )
4).

(27)

Similar to (27), it is deduced that

eεi(t)(λpi )
3%ji

k∑
m=1

ãjim(|xji |+ |x
j
m|)

≤eεi(t)
[
kϑ(λpi )

4 +
1

4

(
θ

ϑ

)3 k∑
m=1

(%ji )
4(ãjim)4(xji )

4

+

k∑
m=1

ϑe
1
3

(εi(t)−εm(t))(λpi )
4

+
1

4

(
θ

ϑ

)3 k∑
m=1

eεm(t)−εi(t)(%ji )
4(ãjim)4(xjm)4

]

≤eεi(t)
[
kϑ(1 + e

1
3
τiN̆πi )(λpi )

4

+ 4

(
θ

ϑ

)3 k∑
m=1

(%ji )
4(ãjim)4(σji )

−4(λji )
4

+ 4

(
θ

ϑ

)3 k∑
m=1

(%ji )
4(ãjim)4(σji )

−4(αj−1
i )4(λj−1

i )4

]

+
1

4

(
θ

ϑ

)3 k∑
m=1

(%ji )
4(ãjim)4

(
eεm(t)(xjm)4

− eεi(t)(xji )
4
)
, (28)

which implies that

eεi(t)(λpi )
3
p−1∑
j=1

%ji

k∑
m=1

ãjim(|xji |+ |x
j
m|)

≤eεi(t)
[

(p− 1)kϑ(1 + e
1
3
τiN̆πi )(λpi )

4

+ 4

(
θ

ϑ

)3 p−1∑
j=1

k∑
m=1

(%ji )
4(ãjim)4(σji )

−4(λji )
4

+ 4

(
θ

ϑ

)3 p−1∑
j=1

k∑
m=1

(%ji )
4(ãjim)4(σji )

−4(αj−1
i )4(λj−1

i )4

]

+
1

4

(
θ

ϑ

)3 p−1∑
j=1

k∑
m=1

(%ji )
4(ãjim)4

(
eεm(t)(xjm)4

− eεi(t)(xji )
4
)
. (29)

For the sake of conciseness, we define that

α̃pi =
1

4

(
4

3
ζp,p−1,1
i

)−3

(σp−1
i )4

+ σpi c̆
p,1
i +

3

4
(σpi c̆

p,1
i )

4
3

p−1∑
j=1

(4ζp,j,2i )−
1
3

+ σp−1
i αp−1

i

+
3

4

p−1∑
j=1

(4ζp,j,3i )−
1
3

(
(σj−1
i αj−1

i + σjiα
j
i )

p−1∏
w=j

αwi

) 4
3

+
3

4

p−1∑
j=1

(4ζp,j,4i )−
1
3

(
c̄p−1,1
i σ̄p−1

i (p− 1)

p−1∏
w=1

αwi

) 4
3

+
9

16
p2

p−1∑
j=1

(ζp,j,5i )−1

(
σpi c̆

p,2
i +

p−1∑
q=j

p−1∏
w=q

σqiα
w
i c̆

q,2
i

)4
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+
3

2
p(σpi c̆

p,2
i )2 + kϑ(σpi )

4
3 (1 + e

1
3
τiN̆πi )

+ (p− 1)kϑ(1 + e
1
3
τiN̆πi )

+ 4

(
θ

ϑ

)3 k∑
m=1

(σpi )
−4(ãpim)4, (30)

Therefore, submitting (21)–(25), (27) and (29)
into (18), it can be concluded that

LW p
i (t, λ̄pi )

≤−
p−1∑
j=1

(cji − ζ
p,j
i )eεi(t)(λji )

4 + ε̇i(t)W
p
i

+ eεi(t)

[
σpi (λ

p
i )

3(σp+1
i xp+1

i − βp+1
i ) + σpi (λ

p
i )

3βp+1
i

+ (λpi )
4α̃pi

]

+
1

4

(
θ

ϑ

)3 p∑
j=1

k∑
m=1

(ãjim)4(eεm(t)(xjm)4 − eεi(t)(xji )
4)

+
1

4

(
θ

ϑ

)3 p∑
j=1

j−1∑
q=1

k∑
m=1

(%qi )
4(ãqim)4

· (eεm(t)(xqm)4 − eεi(t)(xqi )
4), (31)

where

ζp,ji =ζp−1,j
i +

7∑
v=2

ζp,j,vi

+ 4

(
θ

ϑ

)3 k∑
m=1

(%ji )
4(ãjim)4(σji )

−4

+ 4

(
θ

ϑ

)3 k∑
m=1

(%j+1
i )4(ãj+1

im )4(σj+1
i )−4(αji )

4,

j = 1, · · · , p− 2,

ζp,p−1
i =ζp−1,p−1

i +
7∑
v=1

ζp,p−1,v
i

+ 4

(
θ

ϑ

)3 k∑
m=1

(σpi )
−4(αp−1

i )4(ãpim)4

+ 4

(
θ

ϑ

)3 k∑
m=1

(%p−1
i )4(ãp−1

im )4(σp−1
i )−4.

Let αpi = max{1, c
p
i+α̃pi
σpi
} where cpi ∈ R is a design

parameter. Design the virtual controller as

βp+1
i = −αpi λ

p
i , (32)

then we can derive from (31) and (32) that

LW p
i (t, λ̄pi )

≤−
p∑
j=1

(cji − ζ
p,j
i )eεi(t)(λji )

4 + ε̇i(t)W
p
i

+ eεi(t)σpi (λ
p
i )

3
(
σp+1
i xp+1

i − βp+1
i

)
+

1

4

(
θ

ϑ

)3 p∑
j=1

k∑
m=1

(ãjim)4(eεm(t)(xjm)4 − eεi(t)(xji )
4)

+
1

4

(
θ

ϑ

)3 p∑
j=1

j−1∑
q=1

k∑
m=1

(%qi )
4(ãqim)4(eεm(t)(xqm)4

− eεi(t)(xqi )
4),

where ζp,pi = 0.

Step n. Based on the induction, we can extend it to
n-th step. Define λ̄ni = (λ1

i , · · · , λni )T , andWn
i (t, λ̄ni ) =

1
4

n∑
j=1

eεi(t)(λji )
4.

When t ∈ [T il , S
i
l ], let λni = σni x

n
i − βni , and βn+1

i =
−αni λni where αni ≥ 1 is a constant. Then it can be
acquired that

LWn
i (t, λ̄ni )

≤−
n∑
j=1

(cji − ζ
n,j
i )eεi(t)(λji )

4 + ε̇i(t)W
n
i

+ eεi(t)σni (λni )3(ui − βn+1
i )

+
1

4

(
θ

ϑ

)3 n∑
j=1

k∑
m=1

(ãjim)4(eεm(t)(xjm)4 − eεi(t)(xji )
4)

+
1

4

(
θ

ϑ

)3 n∑
j=1

j−1∑
q=1

k∑
m=1

(%qi )
4(ãqim)4(eεm(t)(xqm)4

− eεi(t)(xqi )
4), (33)

where cni ∈ R is a design parameter, ζn,1i , · · · , ζn,n−1
i

are positive constants and ζn,ni = 0. Based on the
above analysis, the event-triggered control strategy is
designed as follows

ωi(t) = −(1 + δi)

[
βn+1
i tanh

(
(λni )3βn+1

i

ρ

)
+ η̄ tanh

(
(λni )3η̄

ρ

)]
, (34)

ui(t) = ωi(t
i
l,k), t ∈ [T il , S

i
l ) ∩ [til,k, t

i
l,k+1), (35)

til,k+1 = inf{t > til,k : |ωi(t)− ui(t)| > δi|ui(t)|+ η},
(36)
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where 0 < δi < 1, η > 0, η̄ > η
1−δi and ρ are all positive

design parameters, til,k represents the update time, (36)
describes the event-triggered mechanism (ETM).

When t ∈ [T il , S
i
l ]∩ [til,k, t

i
l,k+1), it can be seen that there

exist two time-varying functions χ1(t) and χ2(t) such
that

ωi(t)− ui(t) = χ1(t)δiui(t) + χ2(t)η, (37)

where |χ1(t)| ≤ 1 and |χ2(t)| ≤ 1. We rewrite (37) as
follows:

ui(t) =
ωi(t)

1 + χ1(t)δi
− χ2(t)η

1 + χ1(t)δi
. (38)

From the definition of ωi(t) as given in (34), it is
checked that (λni )3ωi(t) ≤ 0. Then, the following two
inequalities hold:

(λni )3ωi(t)

1 + χ1(t)δi
≤ (λni )3ωi(t)

1 + δi
, (39)

−(λni )3χ2(t)η

1 + χ1(t)δi
≤
∣∣∣(λni )3η

1− δi

∣∣∣. (40)

By [34], the hyperbolic tangent function tanh(·)
satisfies

0 ≤ |o| − tanh

(
o

ξ

)
≤ 0.2785ξ, (41)

where ξ > 0 and o ∈ R. Based on η̄ > η
1−δi , we have

−
∣∣∣(λni )3η̄

∣∣∣+ η
1−δi |λ

n
i |3 < 0. According to (38)–(41), it

yields that

(λni )3ui(t)

=
(λni )3ωi(t)

1 + χ1(t)δi
− (λni )3χ2(t)η

1 + χ1(t)δi

≤(λni )3ωi(t)

1 + δi
+

η

1− δi
|λni |3

≤− (λni )3βn+1
i tanh

(
(λni )3βn+1

i

ρ

)
− (λni )3η̄ tanh

(
(λni )3η̄

ρ

)
+

η

1− δi
|λni |3

≤
∣∣∣(λni )3βn+1

i

∣∣∣− (λni )3βn+1
i tanh

(
(λni )3βn+1

i

ρ

)
+
∣∣∣(λni )3η̄

∣∣∣− (λni )3η̄ tanh

(
(λni )3η̄

ρ

)
+ (λni )3βn+1

i −
∣∣∣(λni )3η̄

∣∣∣+
η

1− δi
|λni |3

≤0.557ρ+ (λni )3βn+1
i , (42)

which means that

eεi(t)σni (λni )3(ui − βn+1
i )

≤eεi(t)σni
[
0.557ρ+ (λni )3βn+1

i − (λni )3βn+1
i

]
≤0.557ρσni e

τiN̆πi . (43)

Remark 2. The reason for designing (34) in this way is
that the first term of (34) is used to handle (λni )3βn+1

i ,
and the second term can be used to deal with η
appearing in (36) by the properties of hyperbolic
functions.

Choosing γi = 4 min
1≤j≤n−1

{cji − ζn,ji , cni }, by

combining (4), (33), with (43), one has

LWn
i (t, λ̄ni ) ≤− (γi − (1− πi)τi)Wn

i +M1

+
n∑
j=1

k∑
m=1

κjimℵ
j
im(t, xji , x

j
m), (44)

whereM1 = 0.557ρσni e
τiN̆πi , κjim = 1

4

(
θ
ϑ

)3
(ãjim)4

(
1 +

(n − j)(%ji )
4
)
, and ℵjim(t, xji , x

j
m) = eεm(t)(xjm)4 −

eεi(t)(xji )
4.

For brevity, we use the following notational
simplification:

ιni =
1

4

(
4

3
ζn,n−1,1
i

)−3

(σn−1
i )4 + σni c̆

n,1
i

+
3

4
(σni c̆

n,1
i )

4
3

n−1∑
j=1

(4ζn,j,2i )−
1
3 + σn−1

i αn−1
i

+
3

4

n−1∑
j=1

(4ζn,j,3i )−
1
3

(
(σj−1
i αj−1

i + σjiα
j
i )

n−1∏
w=j

αwi

) 4
3

+
3

4

n−1∑
j=1

(4ζn,j,4i )−
1
3

(
c̄n−1,1
i σ̄n−1

i (n− 1)
n−1∏
w=1

αwi

) 4
3

+
9

16
n2

n−1∑
j=1

(ζn,j,5i )−1

(
σni c̆

n,2
i +

n−1∑
q=j

n−1∏
w=q

σqiα
w
i c̆

q,2
i

)4

+
3

2
n(σni c̆

n,2
i )2 + kϑ(σni )

4
3 (1 + e

1
3
τiN̆πi ) + (n− 1)

· kϑ(1 + e
1
3
τiN̆πi ) + 4

(
θ

ϑ

)3 k∑
m=1

(σni )−4(ãnim)4,

where for j = 1, 2, · · · , n − 1, v = 2, 3, · · · , 7,
ζn,n−1,1
i and ζn,j,vi are arbitrary positive constants,
c̄n−1,1
i = max{c̆1,1

i , · · · , c̆n−1,1
i }, and σ̄n−1

i =
max{σ1

i , · · · , σ
n−1
i }.

When t ∈ [Sil , T
i
l+1), it can be deduced that there exists

ζn−1,j
i > 0 such that

LWn
i (t, λ̄ni )
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≤−
n−1∑
j=1

(cji − ζ
n−1,j
i )eεi(t)(λji )

4 + ε̇i(t)W
n
i

+ ιni e
εi(t)(λni )4 +

n∑
j=1

k∑
m=1

κjimℵ
j
im(t, xji , x

j
m)

≤− (γ̃i + πiτi)W
n
i +

n∑
j=1

k∑
m=1

κjimℵ
j
im(t, xji , x

j
m), (45)

where γ̃i = 4 min
1≤j≤n−1

{cji − ζ
n−1,j
i ,−ιni }.

Here we introduceM0 as the desired convergence rate
and we impose

γi − (1− πi)τi −M0 > 0, (46)
γ̃i + πiτi −M0 > 0. (47)

From (44)–(47), for any t ≥ t0, one can derive that

LWn
i (t, λ̄ni ) ≤−M0W

n
i +M1

+

n∑
j=1

k∑
m=1

κjimℵ
j
im(t, xji , x

j
m). (48)

Up to this point, the AIETC design for each SSFNS is
completed.

Remark 3. For conditions (46) and (47), it can be
noted that the value of γi and γ̃i can be tuned to some
extent through the choice of cji . We first fix the desired
convergence rate M0. Then the control interval is
chosen to yield the average control rate πi. Finally, the
tuning parameters τi are adjusted so that the design
requirements are satisfied.

Remark 4. The controllers are designed recursively
via backstepping method. We first construct the initial
Lyapunov functionW 1

i and the virtual controller β2
i =

−α1
iλ

1
i with gain α1

i ≥ 1. The variable λ2
i is then

introduced to linkW 1
i and β2

i , forming the subsequent
Lyapunov function W 2

i . Repeating this recursive
construction until the final step, we derive the actual
asynchronous intermittent event-triggered controller
and obtain the infinitesimal-operator estimates LWn

i

for each subsystem. In the next subsection, we will
construct a global Lyapunov function and integrate
these results to complete the boundedness analysis.

3.2 Boundedness Analysis
Based upon the design of AIETC for each subsystem, a
strongly connected digraph (Gj ,ℵj) is establishedwith
ℵj = (κjim)k×k, and rji denotes the cofactor of the i-th

diagonal of Laplacian matrix of digraph (Gj ,ℵj). We
proceed to construct a global Lyapunov function

W (t, λ) =

k∑
i=1

riW
n
i (t, λ̄ni ), (49)

where λ =
(

(λ̄n1 )T , (λ̄n2 )T , · · · , (λ̄nk)T
)T

, ri =
n∏
j=1

rji .

Hence, along each directed cycle CjQ of Q, it follows
that ∑

(m,i)∈E(CjQ)

ℵjim(t, xji , x
j
m) = 0.

According to Theorem 2.2 in [35], one has
k∑

i,m=1

rjiκ
j
imℵ

j
im(t, xji , x

j
m)

=
∑
Q∈Q
W(Q)

∑
(m,i)∈E(CjQ)

ℵjim(t, xji , x
j
m) = 0,

whereQdenotes the set of all spanning unicycle graphs
of (Gj ,ℵj),W(Q) stands for the weights of Q. And it
can be attained that

k∑
i=1

ri

n∑
j=1

k∑
m=1

κjimℵ
j
im(t, xji , x

j
m) = 0. (50)

Consequently, according to (48), (49) and (50), it
yields

LW (t, λ) ≤ −M0W +M1

k∑
i=1

ri

≤ −M0W +M2, (51)

where r = max
1≤i≤k

{ri}, andM2 = krM1.

Theorem 1. Under Assumption 1 and 2, considering
the system (1)–(2) based on the designed controllers
with the event-triggered rules as (34)–(36), then the
closed-loop system satisfies the following properties:

(i) The system (1)–(2) is globally exponentially
ultimately bounded in mean square.

(ii) Zeno behavior of ETM (36) can be avoided.

Proof. From (51), it can be attained that

EW (t, λ) ≤W (t0, λ0)e−M0t +
M2

M0
. (52)

Let σn+1
i = 1, F1 = max

1≤i≤k,1≤j≤n

{
(σji )

−2
}
, F2 =

max
1≤i≤k,1≤j≤n

{
(σj+1
i )−2(αji )

2
}
. It follows that

|x(t)|
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=

[ k∑
i=1

n∑
j=1

(xji )
2

] 1
2

=

[ k∑
i=1

n∑
j=1

(
(σji )

−1λji − (σji )
−1αj−1

i λj−1
i

)2
] 1

2

≤
[
2

k∑
i=1

n∑
j=1

((σji )
−1λji )

2 + 2

k∑
i=1

n−1∑
j=0

((σj+1
i )−1αjiλ

j
i )

2

] 1
2

≤(2(F1 + F2))
1
2 |λ(t)|. (53)

By (52), (53) and Schwarz inequality, one obtains

E|x(t)|2 ≤ 2(F1 + F2)E|λ(t)|2

≤4(F1 + F2)(kn)
1
2 {EW (t, λ)}

1
2

≤4(F1 + F2)(kn)
1
2 (W (t0, λ0)e−M0t +

M2

M0
)
1
2

≤4(F1 + F2)
(

(knW (t0, λ0))
1
2 e−

1
2
M0t +

√
knM2

M0

)
(54)

DefineM3 = 4(F1 + F2)
√

knM2
M0

. By the definition of
W (t0, λ0), there exists a constant κ, such that

E|x(t)|2 ≤ κ|x0|2e−
1
2
M0t +M3. (55)

Based on the above analysis, it is obvious that the
system (1)–(2) is globally exponentially ultimately
bounded in mean square.

Next, we prove that the Zeno behavior does not
happen. Based on Itô rule, ωi(t) satisfies the diffusion
process

dωi(t) = Lωi(t, x)dt+Hωi(t, x)dB(t). (56)

Note that x(t) is bounded almost surely, there are
two positive constants J1, J2 such that |Lωi| ≤ J1 and
|Hωi| ≤ J2.

Let π be the solution of J1π + 4
√

2J2
√
π = η.

Then we can obtain that
√
π =

−4
√

2J2+
√

32J2
2+4J1η

2J1
.

Integrating (56) from til,k to til,k + π with respect to t
and utilizing Burkholder-Davis-Gundy inequality [36],
one has

E[|ωi(til,k + π)− ωi(til,k)||Ftil,k ]

≤E
[∣∣∣∣ ∫ til,k+π

til,k

Lωi(s, x(s))ds

∣∣∣∣∣∣∣∣Ftil,k
]

+ E
[∣∣∣∣ ∫ til,k+π

til,k

Hωi(s, x(s))dB(s)

∣∣∣∣∣∣∣∣Ftil,k
]

≤E
[ ∫ til,k+π

til,k

|Lωi(s, x(s))|ds|Ftil,k

]
+ E

[
sup
t0≤s≤t

∣∣∣∣ ∫ tk+π

tk

Hωi(s, x(s))dB(s)

∣∣∣∣∣∣∣∣Ftil,k
]

≤J1(til,k + π − til,k) + 4
√

2J2

√
til,k + π − til,k

≤J1π + 4
√

2J2

√
π ≤ δi|ui(t)|+ η. (57)

According to the event-triggered mechanism of (36),
we find that the controller is triggered only when
|ωi(t) − ui(t)| > δi|ui(t)| + η. As a result of (57), no
event will be triggered at least π units of time after
every til,k, which implies that at least one positive
constant π exists so that t− til,k ≥ π. Therefore, Zeno
behavior can be avoided.

This completes the proof of Theorem 1.

4 A Numerical Example
In this section, we give a simulation example to validate
the effectiveness of the results in this article. Consider
a robot arm system as follow:

Jξ̈i(t) +Dξ̇i(t) +MgL sin(ξi(t)) = 0,

where ξi(t), ξ̇i(t), and ξ̈i(t) represent angular position,
velocity, and acceleration. J,D,M, g and L denote
rotational inertia, damping coefficient, total mass,
gravitational constant, and the center-of-mass offset
from the joint axis, respectively.

Let x1
i (t) = ξi(t), x2

i (t) = 1
Ai
ξ̇i(t), whereAi is a positive

constant, one has{
dx1

i (t) = Aix
2
i (t)dt,

dx2
i (t) = − 1

JAi

(
Dx2

i (t) +MgL sin(x1
i (t))

)
dt.

Take stochastic perturbations, coupling factors and
control input into account, the system can be written
as

dx1
i (t) =

(
σ2
i x

2
i +

k∑
m=1

a1
imx

1
m

)
dt+ q1

i x
1
i dB(t),

dx2
i (t) =

(
ui − µ1

ix
2
i − µ2

i sinx1
i +

k∑
m=1

a2
imx

2
m

)
dt

+q2
i x

2
i dB(t),

(58)
where σ2

i = Ai, µ1
i = D

JAi
, and µ2

i = MgL
JAi

. By the
design scheme developed in Section 3, we first give the
following notations:

α1
i = max

{
1, c1

i +
3

2
(q1
i )

2 +
1

4

(
θ

ϑ

)3 k∑
m=1

(a1
im)4
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+ kϑe
1
3
τiN̆πi

}
,

λ2
i =σ2

i x
2
i + α1

i x
1
i ,

β3
i =− 1

σ2
i

[
c2
i +

27

4
+

3

4
(σ2
i µ

1
i )

4
3 +

3

4
(µ2
iα

1
i )

4
3 + µ2

i

+ α1
i +

3

4
(α1

i )
8
3 + 6(q2

i )
2 +

3

2
(q1
i )

2(α1
i )

4

+ 3(q2
i )

2(α1
i )

4 + 2

(
θ

ϑ

)3 k∑
m=1

(a2
im)4(σ2

i )
−4

+ kϑ(σ2
i )

4
3 e

1
3
τiN̆πi + kϑe

1
3
τiN̆πi

]
(σ2
i x

2
i + α1

i x
1
i ).

Then we design the controllers as

ωi(t) =− (1 + δi)

[
β3
i tanh

(
(λ2
i )

3β3
i

ρ

)
+ η̄ tanh

(
(λ2
i )

3η̄

ρ

)]
,

ui(t) =ωi(t
i
l,k), t ∈ [T il , S

i
l ) ∩ [til,k, t

i
l,k+1).
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Figure 1. (a) The state trajectories of system (58) without
control. (b) The state trajectories of system (58) with

control.

For simulation, select k = 5, J = 4.9, D = 0.637,M =
0.5, g = 9.8, L = 0.13. For i = 1, · · · , 5, we choose

Ai = 2.6 which means that σ2
i = 2.6, µ1

i = µ2
i = 0.05.

Let q1
i = q2

i = 0.1, i = 1, 2, 3, q1
i = 0.2, q2

i = 0.1, i = 4, 5.
Set δi = 0.7, i = 1, · · · , 5, and η = 0.1, η̄ = 5, ρ = 0.25,
ϑ = 0.018. For i = 1, · · · , 4, let a1

i+1,i = a1
1,5 = 0.005,

a2
i,i+1 = a2

5,1 = 0.006, else ajim = 0.
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Figure 2. (a) The mean square trajectories of system (58)
without control. (b) The mean square trajectories of

system (58) with control.

The control intervals for subsystems i = 1, 2, 3 are
chosen as ∪∞l=0([0.4l, 0.4l + 0.3) ∪ [0.4l + 0.313, 0.4l +
0.389), while for i = 4, 5, they are ∪∞l=0([0.5l, 0.5l +
0.2) ∪ [0.5l + 0.212, 0.5l + 0.487)). Clearly, the
intermittent control is asynchronous. One can
calculate that πi = 0.94, N̆πi = 0.01222, i = 1, 2, 3
and πi = 0.95, N̆πi = 0.01235, i = 4, 5. Choosing
τi = 107.5, c1

i = 2.67, c2
i = 1.65, i = 1, 2, 3, and

τi = 126, c1
i = 2.68, c2

i = 1.6, i = 4, 5. Additionally,
set M0 = −0.001. It can be attained that γi − (1 −
πi)τi −M0 = 0.0294 > 0, γ̃i + πiτi −M0 = 0.0581 >
0, i = 1, 2, 3 and γi − (1 − πi)τi − M0 = 0.099 >
0, γ̃i + πiτi −M0 = 1.4468 > 0, i = 4, 5. It is evident
that all required conditions are satisfied. Figure 1 (a)
presents the state trajectories of system (58) without
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Figure 3. Event-triggered time intervals of 5 subsystems.

control. The state trajectories of system (58) with
control are shown in Figure 1 (b), which indicates
that they are all bounded under AIETC. The mean
square trajectories of system (58) without control and
with control are exhibited in Figure 2 (a) and (b),
respectively. Figure 3 describes the intervals of ETM.
Therefore, the effectiveness of our theoretical results is
demonstrated.

5 Conclusion
In the paper, an AIETC scheme has been investigated
for a class of CSSFNSs. Based on the backstepping
technique, graph theory and Lyapunov approach, the
asynchronous intermittent event-triggered controllers
were designed. The proposed control strategy
synergistically integrated the energy-saving merits
of both intermittent control and ETC. Moreover, by
accommodating potential real-world implementation
constraints, the designed controllers were permitted
to operate in an asynchronous manner. In the end,
a simulation example was proposed to show the
effectiveness of the control strategy. In the future, we
will consider the time delay of CSSFNSs.
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