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Abstract
The primary objective of this work is to establish
the existence, uniqueness, and exponential stability
of piecewise weighted pseudo–almost automorphic
solutions for impulsive high-order Hopfield
neural networks formulated within Clifford
algebras. Using the Banach fixed-point principle
together with a suitably adaptedGronwall–Bellman
inequality, we derive novel and verifiable sufficient
conditions that ensure these qualitative properties.
Themain contributions are as follows: (i) this study
is the first to analyze weighted pseudo–almost
automorphic (WPAA) dynamics for impulsive
high-order Hopfield neural networks directly in
the Clifford algebra setting, without reducing the
model to real-valued components; (ii) it offers
a unified framework that accommodates both
first- and second-order synaptic interactions under
impulsive perturbations and mixed delays; and
(iii) the resulting conditions explicitly capture
the geometric structure of Clifford-valued states,
providing a broader and algebraically consistent
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formulation compared to real or quaternion-valued
models. The theoretical findings are further
supported by a numerical example demonstrating
their applicability and effectiveness.
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1 Introduction and background
Recently, the theory of Artificial Neural Networks
(ANNs) has received growing interest, as these
models emulate key mechanisms of the human
brain to perform complex computational tasks.
Compared with classical numerical methods, ANNs
have demonstrated remarkable efficiency in medical
diagnosis, prognostic evaluation, signal and image
processing, handwritten digit recognition, drug
transport modeling and robotics [1–3]. Among
these architectures, high-order neural networks
constitute an important extension of standard
models by incorporating higher-order interactions
among neurons. Such structures offer improved
approximation power, faster convergence, and greater
robustness to disturbances (see [4–6], among others).

This growing interest has stimulated extensive
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research on the dynamical analysis of High-Order
Hopfield Neural Networks (HOHNNs), particularly
in the presence of various delay effects. Several
works have investigated their stability and qualitative
behaviors under different delay structures, including
pseudo–almost periodic, almost automorphic, and
anti-periodic regimes, as reported in [2, 5, 7, 8].
Collectively, these studies underscore that time delays
constitute an inherent and unavoidable aspect of
neural information processing, since real neuronal
interactions are not instantaneous.

It is important to stress that the neural network
models considered in the works cited above are
predominantly real-valued or quaternion-valued. Yet,
for problems involving large-scale spatial information
or complex spatial transformations, Clifford-valued
neural networks present a clear advantage, as
their algebraic structure naturally accommodates
multi-dimensional data in a compact and efficient
manner. More fundamentally, Clifford algebra
through its geometric product and multivector
structure provides a natural language for representing
high-order synaptic interactions. The geometric
product for two vectors u and v is given by the
displayed relation

uv = u · v + u ∧ v,

which unifies the inner and outer products, allowing
simultaneous capture of both magnitude alignment
and oriented area|volume relationships between
neuron states. This is especially relevant in high-order
networks, where products of neuron outputs appear
explicitly in Clifford algebra, such products are not
mere scalarmultiplications butmulti-vector operations
that preserve geometric and algebraic coherence across
dimensions. Research on the dynamical behavior of
such Clifford-valued architectures is still relatively
sparse. Research on Clifford-valued neural networks
has investigated equilibrium stability, anti-periodic
solutions, and almost automorphic synchronization
under various delays [7, 9, 16, 19]. Nevertheless, the
literature remains limited, highlighting the need for
further systematic studies in this area.
A wide range of dynamical systems are influenced
by sudden variations, such as external shocks,
harvesting events, or natural disasters. These abrupt
perturbations typically manifest instantaneously
and are therefore effectively captured through
impulsive effects. Mathematically, impulsive
differential equations provide an appropriate

framework for describing such discontinuous
dynamics and have been extensively applied in
areas such as physics, population dynamics, ecology,
biotechnology, industrial robotics, and artificial neural
networks. Several studies have addressed impulsive
phenomena in neural network models. For instance,
[11] investigated piecewise asymptotically almost
automorphic solutions for impulsive, HOHNNs with
mixed delays. Likewise, [12] examined the existence
of pseudo–almost periodic solutions in impulsive
recurrent neural networks.
In the analysis of neural network dynamics, periodic,
almost periodic, and pseudo almost periodic
functions have long served as fundamental tools for
characterizing the behavior of network outputs. More
recently, the concept of pseudo–almost automorphy
extending both almost periodicity and pseudo–almost
periodicity—has gained considerable attention. This
development has stimulated several generalizations,
among which the class of weighted pseudo–almost
automorphic (WPAA) functions, introduced by Blot
et al. [13] in 2009, has emerged as particularly well
suited for describing systems that deviate from strict
periodicity.

A key question arises: how do Clifford-valued
impulsive high-order Hopfield neural networks
behave when all parameters are weighted
pseudo–almost automorphic (WPAA)? To date,
no study has addressed the existence, uniqueness,
or stability of WPAA solutions for such networks
with mixed delays in Clifford algebra. This paper fills
this gap by establishing sufficient conditions for the
existence, uniqueness, and exponential stability of
WPAA solutions for these systems, governed by the
following nonlinear differential equations: For t ∈ R,

ẋi(t) = ci(t)xi(t) +

n∑
j=1

aij(t)fj(xj(t− ςj(t)))

+
n∑
j=1

n∑
l=1

bijl(t)gj(xj(t− σj(t)))

× gl(xl(t− υl(t)))
+ γi(t), t 6= tk, (1)

∆(xi(tk)) = Ik(x(tk)), k ∈ Z, t = tk.

• The integer n denotes the total number of units
constituting the neural network.

• A stands for a real Clifford algebra; its precise
algebraic structure will be introduced in a
subsequent section.
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• For each i = 1, . . . , n, the function ci(·) ∈ A
describes the intrinsic rate at which the ith unit
relaxes to its equilibrium state when isolated from
the network.

• The functions aij(·) and bijl(·), taking values
in A, represent respectively the first-order
and second-order synaptic connection strengths
between the units.

• The nonnegative functions ςj(·), σj(·), and υl(·)
model the transmission delays associated with
the corresponding interactions.

• The signal processing within the network is
governed by the activation functions fj(·) and
gj(·),

• The external stimuli applied to the network are
denoted by γi(·) ∈ A.

• Impulsive effects are represented by functions
Ik(·) ∈ C(R,An) acting at prescribed instants tk,
where the jump of the state variable xi at tk is
defined by

∆(xi(tk)) = xi(t
+
k )− xi(t−k ).

• The sequence of impulse times {tk} is strictly
increasing and satisfies limk→∞ tk = +∞.

Note that the product gj(xj)gl(xl) in the high-order
term is the geometric product in Clifford algebra,
which inherently encodes both magnitude and
directional relationships between neuron states,
offering a richer representation of higher-order
synaptic interactions than real or quaternion-valued
products.
System (1) is considered together with the initial
conditions specified as follows:

xi(s) = φi(s), i = 1, . . . , n, s ∈ [−ζ, 0], (2)
such that φ(·) ∈ PC

(
[−ζ, 0],An

), and
ζ = max

{
max
1≤j≤n

sup
t∈R

ςj(t), max
1≤j≤n

sup
t∈R

σj(t),

max
1≤l≤n

sup
t∈R

υl(t)

}
.

Throughout this work, we adapt the following
notations:

f∗ = sup
t∈R
‖f(t)‖A or, if scalar, f∗ = sup

t∈R
|f(t)|.

Our principal contributions of this paper:

I This paper provides a novel analysis of the existence,
uniqueness, and exponential stability of impulsive
HOHNNs with WPAA-coefficients.

I In the considered system, we account for the effects
of both first-order and second-order interactions
among neurons, providing a more comprehensive
analysis of network dynamics.

I The class of WPAA-functions generalizes the
notions of almost periodicity, almost automorphy,
and pseudo almost automorphy. As such,
our results extend and improve many existing
findings in the literature, particularly those
reported in [10].

The paper is structured as follows: Section 2 covers
definitions, lemmas, and assumptions; Section 3
presents existence, uniqueness, and stability results;
Section 4 gives a numerical example; and Section 5
concludes with remarks.

2 Mathematical Background
2.1 Real Clifford algebra
The real Clifford algebra over Rm is:

A =

{ ∑
A⊆{1···m}

aAeA; aA ∈ R
}
,

where

eA = eh1eh2 · · · ehζ

with

A =

{
h1 · · ·hζ

}
, 1 ≤ h1 < h2 < · · · < hζ ≤ m.

A equipped with m generators is defined as the
Clifford algebra over the real number R with m
multiplicative generators e1, · · · , em satisfy the
following relations

e∅ = e0 = 1, e20 = 1

and
e0ei = eie0 = ei, i = 1, 2, · · · ,m,
eiej + ejei = 0, i 6= j, i, j ∈ {1, · · · ,m},

e2i = −1, i = 1, 2, · · · ,m.

The product in A is the geometric product, which for
vectors u,v ∈ Rm (viewed as elements of A) satisfies

uv = u · v + u ∧ v,
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where · is the symmetric inner product and ∧
the antisymmetric outer product. For general
multi-vectors, the geometric product is associative,
bilinear, and invertible for nonzero vectors, providing
a rich algebraic structure that unifies and extends real,
complex, and quaternion algebras.
Let

Ω =

{
∅, 1, 2, · · · , A, · · · , 12, · · · ,m

}
.

we can see that

A =

{ ∑
A⊆{1···m}

aAeA; aA ∈ R
}
,

and dimA =
m∑
k=0

(
m
k

)
= 2m.

Henceforth, we define the norm on An by
I If x = (x1, . . . , xn) ∈ An, where each component

xi =
∑

A⊆{1,...,m}

xiAeA,

the norm is extended as follows:

‖x‖A = max
1≤i≤n

(
max

A⊆{1,...,m}
|xiA|

)
.

2.2 Piecewiseweighted pseudo almost automorphic
functions

Throughout this paper we adapt the following
notations
• Let J ⊂ R and An be a vector space. The

space PC(J,An) consists of piecewise continuous
functions x : J → An that may have first-kind
discontinuities at a strictly increasing sequence
{tk} ⊂ J , with finite left and right limits.
In typical applications to impulsive systems,
functions are assumed left-continuous at each tk,
i.e.,

x(t−k ) = x(tk).

•
B =

{
{tk}∞k=−∞ : tk ∈ R, tk < tk+1, lim

k→±∞
tk = ±∞

}
represents the set of all sequences that are strictly
increasing and unbounded in both directions.

Definition 1 A bounded sequence u = {uk}k∈N0 is said to
be almost automorphic if for every sequence of nonnegative
integers {σm}m≥1, there exists a subsequence {τm}m≥1
such that, for each k ∈ N0, the limit

vk := lim
m→∞

uk+τm

exists, and moreover, the limiting sequence satisfies

lim
m→∞

vk−τm = uk, for all k ∈ N0.

The collection of all almost automorphic sequences from N0

into A is denoted by

AAS(N0,A).

LetUs be the collection of sequences (weights) σ : Z→
(0,+∞). For σ ∈ Us and s ∈ Z, s > 0, set

µs(s, σ) =

n∑
n=−n

σ(n).

Denote

Us,∞ :=

{
σ ∈ Us, lim

s→∞
µs(s, σ) =∞

}
.

Definition 2 Let σ ∈ Us,∞. A sequence w : N0 7→ A is
σ − PAA0 if it is bounded and satisfies

lim
s→∞

1

µs(s, σ)

s∑
−s
‖w(n)‖Aσ(n) = 0.

The collection of all such sequences is denoted by
PAA0S(N0,A, σ).

Definition 3 Let σ ∈ Us,∞. A sequence ω : N0 7→ A is
weighted pseudo almost automorphic sequence if

ω = ωaa + ωσ

where ωaa ∈ AAS(N0,A) and ωσ ∈ PAA0S(N0,A, σ).
Denote the set of all such sequences by PAAS(N0,A, σ).

Definition 4 Definition 5 Let φ ∈ PC(R,A) be a
bounded piecewise continuous mapping. The function φ is
said to be almost automorphic if the following conditions
are satisfied:

i) The family of discontinuity points {θj}j∈Z forms an
almost automorphic sequence.

ii) For any sequence of real numbers {ρ′m}m≥1, there
exists a subsequence {ρm}m≥1 such that, for every
t ∈ R, the limit

ψ(t) := lim
m→∞

φ(t+ ρm)

exists, and the function ψ satisfies the reversibility
condition

lim
m→∞

ψ(t− ρm) = φ(t), for all t ∈ R.
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The set of all almost automorphic functions from R into A
is denoted by AA(R,A).

Now, we introduce the concept of weighted pseudo
almost automorphy. For more details, one can see
papers [14]. Let

U :=
{
ρ : R→ (0,+∞)

∣∣∣ ρ ∈ L1
loc(R) and ρ(t) > 0 for a.e. t ∈ R

}
.

If ρ ∈ U, for T > 0 :

µ(T, ρ) :=

∫ T

−T
ρ(x)dx.

Let

U∞ =

{
ρ ∈ U : lim

T→∞
µ(T, ρ) =∞

}
.

Let ρ ∈ U∞. The weighted ergodic space in Clifford algebra is

PAA0(R,A
n
, ρ) =

{
f ∈ BC(R,An

) : lim
T−→∞

1

µ(T, ρ)

∫ T

−T
‖ f(t) ‖A ρ(t)dt = 0

}
.

Definition 6 Let ρ ∈ U∞. A function F ∈ PC(R,An) is weighted
pseudo almost automorphic if

F = F aa + F ρ,

where F aa ∈ AA(R,An) and F ρ ∈ PAA0(R,An, ρ). The set of all
such functions is denoted byWPAA(R,An, ρ).

Lemma 1 [14] Fix ρ ∈ U∞. The decomposition of WPAA function is
unique.

2.3 Main assumptions
Throughout this work, let ρ : R → (0,+∞), ρ ∈ U∞ is
continuous.
For each ς ∈ R,we assume that

sup
s∈R

[
ρ(s+ ς)

p(s)

]
<∞, sup

T>0

[
ρ(T + ς, ρ)

µ(T, ρ))

]
<∞. (3)

For the main results, we need the following basic assumptions.

Condition 1: For each 1 ≤ i ≤ n,

M [ci] = lim
T→+∞

1

T

∫ t+T

t

ci(s)ds > 0,

and ci is almost automorphic function with 0 < ci∗ = inf
t∈R

(ci(t)).

Condition 2: The functions aij , bijl, γi are piecewise WPAA and
the sequence Ik is piecewise WPAA.

Condition 3: There exist positive constants numbers lf , lg, Lg,
such that for all q1, q2 ∈ A,

‖fj(q1)− fj(q2)‖A ≤ lfj ‖q1 − q2‖A,
‖gj(q1)− gj(q2)‖A ≤ lgj ‖q1 − q2‖A, ‖gj(q1)‖A ≤ Lgj ,

Condition 4: There exists a positive constant lI such that:

‖Ik(q1)− Ik(q2)‖A ≤ LI‖q1 − q2‖A, k ∈ N0, q1, q2 ∈ A.

2.4 Technical lemmas
In this section, the following lemmas are fundamental.

Lemma 2 Let π, π1, π2 ∈WPAA(R,A, ρ), p ∈ R, and let f : A →
A be a Lipschitz continuous function with Lipschitz constant Lf > 0.
If ς ∈ AA(R,R), then the following properties hold:

1. The shifted function π(· − p) belongs toWPAA(R,A, ρ).

2. The pointwise product π1 · π2 belongs toWPAA(R,A, ρ).

3. For any φ ∈WPAA(R,A, ρ), the time-shifted composition t 7→
φ
(
t− ς(t)

)
belongs toWPAA(R,A, ρ).

4. For any φ ∈ WPAA(R,A, ρ), the composed function f ◦ φ
belongs toWPAA(R,A, ρ).

Remark 2.1 The proofs of these properties are similar to those given in
[18].

Remark 2.2 We suppose that fj(0) = gj(0) = 0.

Lemma 3 Suppose that all the previously stated assumptions are
satisfied.
For each index i with 0 ≤ i ≤ n, assume that

sup
T>0

{∫ T

−T
e−ci∗(T+t)ρ(t) dt

}
<∞. (4)

Define a nonlinear operator Σ by

Σ : WPAA(R,A, ρ)→ An,

where, for any φ ∈WPAA(R,A, ρ),

(Σφ)i(t) :=

∫ t

−∞
e−

∫ t
s ci(u) du (Gφ)i(s) ds, (5)

and

(Gφ)i(s) =

n∑
j=1

aij(s)fj
(
φj(s− ςj(s))

)
+

n∑
j=1

n∑
l=1

bijl(s) gj
(
φj(s− σj(s))

)
gl
(
φl(s− υl(s))

)
+ γi(s).

Then,
Σ
(
WPAA(R,A, ρ)

)
⊂WPAA(R,A, ρ).

Proof 1 For 1 ≤ i ≤ n, the function (Gφ)i(·) is piecewise WPAA.
By definition, Gi = 1iג + 2iג where 1iג (·) ∈ AA(R,A) and 2iג (·) ∈
PAA0(R,A, ρ).
Then,

(Σφ)i(t) := Σi1גi (t) + Σi2גi (t). (6)

We observe that M [ci] > 0. By applying the exponential dichotomy
framework, it follows that∫ t

−∞
e−

∫ t
s ci(u) du i(s)(1φג) ds ∈ AA(R,A) (7)

provides a solution to the almost automorphic differential equation

ẏ(t) = −ci(t)y(t) + ,i(t)(1φג) 1 ≤ i, j ≤ n.
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Now we deal with Σi2גi .
We can see that

lim
T−→∞

1

µ(T, ρ)

∫
[−T,T ]

‖Σi2גi (t)‖Aρ(t)dt

≤ lim
T−→∞

1

µ(T, ρ)

∫
[−T,T ]

‖
t∫

−∞

e−(t−s)ci∗2גi (s)ds‖Aρ(t)dt.

Let

α1 = lim
T−→∞

1

µ(T, ρ)

∫
[−T,T ]

(

t∫
−T

e−(t−s)ci∗‖2גi (s)‖Ads)ρ(t)dt

α2 = lim
T−→∞

1

µ(T, ρ)

∫
[−T,T ]

(

−T∫
−∞

e−(t−s)ci∗‖2גi (s)‖Ads)ρ(t)dt

Letm = t− s, then by Fubini’s theorem, we obtain

α
1

= lim
T−→∞

1

µ(T, ρ)

∫
[−T,T ]

( t+T∫
0

e
−mci∗‖2גi (t−m)‖Adm

)
ρ(t)dt

≤ lim
T−→∞

1

µ(T, ρ)

∫
[−T,T ]

( +∞∫
0

e
−mci∗‖2גi (t−m)‖Adm

)
ρ(t)dt

≤
+∞∫
0

e
−mci∗

(
lim

T−→∞

1

µ(T, ρ)

∫
[−T,T ]

2iג‖ (t−m)‖Aρ(t)dt
)
dm

=

+∞∫
0

e
−mci∗

(
lim

T−→∞

1

µ(T, ρ)

∫
[−T−m,T−m]

2iג‖ (t)‖Aρ(t +m)dt

)
dm

≤
+∞∫
0

e
−mci∗

(
lim

T−→∞

µ(T +m, ρ)

µ(T, ρ)

µ(T, ρ)

µ(T +m, ρ)

×
∫
[−T−m,T−m]

2iג‖ (t)‖Aρ(t +m)dt

)
dm.

Then α1 = 0.
Also,

α2 ≤ lim
T−→∞

1

µ(T, ρ)

−T∫
−∞

esci∗‖2גi (s)‖Ads
∫ T

−T
etci∗ρ(t)dt

= lim
T−→∞

2iג‖ (s)‖A
µ(T, ρ)ci∗

∫ T

−T
e−(T+t)ci∗ρ(t)dt = 0.

Combining with with equation 7 it leads to

Σ
(
WPAA(R,A, ρ)

)
⊂WPAA(R,A, ρ).

Lemma 4 Let φ(·) ∈WPAA(R,A, ρ).We obtain∑
tk<t

e
−
∫ t
tk
ci(u)duIk(φi(tk)) ∈WPAA(R,A, ρ). (8)

Proof 2 We have Ik(φi(tk)) ∈WPAA(R,A, ρ). It can be expressed
as

Ik(φi(tk)) = I1k(φi(tk)) + I2k(φi(tk)), (9)

where I1k(φi(tk)) ∈ AA(R,A) and I2k(φi(tk)) ∈ PAA0(R,A, ρ).
Then

∑
tk<t

e
−

t∫
tk

ci(u)du

Ik(φi(tk)) =
∑
tk<t

e
−

t∫
tk

ci(u)du

I1k(φi(tk))

+
∑
tk<t

e
−

t∫
tk

ci(u)du

I2k(φi(tk)).

For every real sequence (tn)n∈N, there exists a subsequence (tnk )nk∈N
such that

lim
nk→+∞

I11 (φi(tk + tnk )) = Î1k(φi(tk)),

lim
nk→+∞

Î1k(φi(tk − tnk )) = I1k(φi(tk)).

Therefore

∑
tk<t+tnk

e
−

t+tnk∫
tk

ci(u)du

I1k(φi(tk))

=
∑
tk<t

e
−

t+tnk∫
tk+tnk

ci(u)du

I1k(φi(tk + tnk )),

then

lim
nk→+∞

∑
tk<t

e
−

t+tnk∫
tk+tnk

ci(u)du

I1k(φi(tk + tnk ))

=
∑
tk<t

e
−

t∫
tk

ci(u)du

Î1k(φi(tk)).

Similarly

∑
tk<t−tnk

e
−

t−tnk∫
tk

ci(u)du

I1k(φi(tk))

=
∑
tk<t

e
−

t−tnk∫
tk−tnk

ci(u)du

Î1k(φi(tk − tnk )),

then

lim
nk→+∞

∑
tk<t

e
−

t−tnk∫
tk−tnk

ci(u)du

Î1k(φi(tk − tnk ))

=
∑
tk<t

e
−

t∫
tk

ci(u)du

I1k(φi(tk)).

Now, et

ξ(t) = e
−

t∫
tk

ci(u)du

I2k(φi(tk)), tk ≤ t ≤ tk+1, k ∈ Z.

Then

lim
t→+∞

‖ξ(t)‖A = lim
t→+∞

‖e
−

t∫
tk

ci(u)du

I2k(φi(tk))‖A

≤ lim
t→+∞

e−(t−tk)ci∗ sup
k∈Z
‖I2k‖A = 0.

Let

ξn(t) = e
−

t∫
tk−n

ci(u)du

I2k−n, tk ≤ t ≤ tk+1, n ∈ N,

then ξn ∈ PAA0(R,A, ρ).
One has

‖ξ(t)‖A = ‖e
−

t∫
tk

ci(u)du

I2k‖A
≤ e−(t−tk−n)ai∗ sup

k∈Z
‖I2k‖A

≤ e−(t−tk)ai∗e−ai∗n sup
k∈Z
‖I2k‖A.

6
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The series
∞∑
n=1

ξn is uniformly convergent on A. Then

∑
tk<t

e
−

t∫
tk

ci(u)du

I2k(φi(tk)) ∈ PAA0(R,A, ρ).

3 Main Results
3.1 Existence and uniqueness
For φ = (φ1, φ2, · · · , φn)T ∈ WPAA(R,An, ρ), we define the
norm of φ as

‖ φ ‖∗:= max
1≤i≤n

sup
t∈R
{‖φi(t)‖A}.

Lemma 5 We suppose that Conditions 1-4 hold. For each φ(·) ∈
WPAA(R,A, µ), define the nonlinear operator Π as follows:

(Πφ)i(t) := (Σφ)i(t) +
∑
tk<t

e
−
∫ t
tk
ci(u)duIk(φi(tk)).

Then, Π mapsWPAA(R,A, µ) into itself.

Theorem 1 Under assumptions (1)–(4) and in accordance with
Lemma 5, suppose there exist nonnegative constants ρ1 and ρ2 such
that:

ρ1 = max
1≤i≤n

{
1

ci∗
(

n∑
j=1

a∗ij l
f
j +

n∑
j=1

n∑
l=1

b∗ijll
g
jL

g
l )

+
lI

1− e−ci∗

}
< 1, (10)

ρ2 = max
1≤i≤n

{
1

ci∗

( n∑
j=1

a∗ij l
f
j +

n∑
j=1

n∑
l=1

b∗ijl(l
g
jL

g
l + lgl L

g
j )

)

+
lI

1− e−ci∗

}
< 1. (11)

Then, system (1) has a unique WPAA solution in the region

k =

{
φ ∈WPAA(R,An, µ), ‖φ− φ0‖∗ ≤

ρ1

1− ρ1 ρ
0

}
.

Proof 3 Define the function φ0,i(t) = (φ0,1(t), . . . , φ0,n(t))T by

φ0,i(t) =



t∫
−∞

e−
∫ t
s c1(u)duγ1(s)ds

...
t∫
−∞

e−
∫ t
s cn(u)duγn(s)ds

 .

Clearly, φ0,i ∈ WPAA(R,An, µ). Moreover, using Condition 1 and
the boundedness of γi, we have

‖φ0,i‖∗ ≤ ‖
t∫

−∞

e−
∫ t
s ci(u)duγi(s)ds‖∗

≤ max
1≤i≤n

(
γ∗i
ci∗

)
= ρ0. (12)

Let φ ∈ k. Then

‖φ− φ0‖∗ ≤
ρ1

1− ρ1 ρ
0,

and consequently

‖φ‖∗ ≤ ‖φ− φ0‖∗ + ‖φ0‖∗ ≤
ρ1

1− ρ1 ρ
0 + ρ0 =

ρ0

1− ρ1 .

Now, consider (Πφ)i(t)− φ0,i(t). Using the definition of Π and φ0, we
have

(Πφ)i(t)− φ0,i(t) =

∫ t

−∞
e−

∫ t
s ci(u)du

[
n∑
j=1

aij(s)fj(φj(s− ζj(s)))

+

n∑
j=1

n∑
l=1

bijl(s)gj(φj(s− σj(s)))

× gl(φl(s− υl(s)))

]
ds

+
∑
tk<t

e
−
∫ t
tk
ci(u)duIk(φi(tk)).

Taking norms and using the Lipschitz conditions (Condition 3) and the
boundedness of gj , we obtain

‖(Πφ)i(t)− φ0,i(t)‖A

≤
∫ t

−∞
e−ci∗(t−s)

(
n∑
j=1

a∗ij l
f
j ‖φj(s− ζj(s))‖A

+

n∑
j=1

n∑
l=1

b∗ijll
g
jL

g
l ‖φj(s− σj(s))‖A

)
ds

+
∑
tk<t

e−ci∗(t−tk)lI‖φi(tk)‖A.

Since ‖φj(·)‖A ≤ ‖φ‖∗ for all j, we get

‖(Πφ)i(t)− φ0,i(t)‖A

≤ ‖φ‖∗

[∫ t

−∞
e−ci∗(t−s)

( n∑
j=1

a∗ij l
f
j +

n∑
j=1

n∑
l=1

b∗ijll
g
jL

g
l

)
ds

+
∑
tk<t

e−ci∗(t−tk)lI
]
.

Computing the integrals and sums:∫ t

−∞
e−ci∗(t−s)ds =

1

ci∗
,

and ∑
tk<t

e−ci∗(t−tk) ≤ 1

1− e−ci∗ .

Therefore,

‖(Πφ)i(t)− φ0,i(t)‖A

≤ ‖φ‖∗

[
1

ci∗

( n∑
j=1

a∗ij l
f
j +

n∑
j=1

n∑
l=1

b∗ijll
g
jL

g
l

)

+
lI

1− e−ci∗

]
.

Then, we obtain

‖Πφ− φ0‖∗ ≤ ‖φ‖∗ · ρ1

≤ ρ0
1− ρ1 · ρ

1

=
ρ1

1− ρ1 ρ
0.
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Thus, Πφ ∈ k, i.e., Π maps k into k.

Let φ, ψ ∈ k. For each i = 1, . . . , n and t ∈ R, we have

(Πφ)i(t)− (Πψ)i(t)

=

∫ t

−∞
e−

∫ t
s ci(u)du

[
n∑
j=1

aij(s)
(
fj(φj(s− ζj(s)))

− fj(ψj(s− ζj(s)))
)

+

n∑
j=1

n∑
l=1

bijl(s)
(
gj(φj(s− σj(s)))gl(φl(s− υl(s)))

− gj(ψj(s− σj(s)))gl(ψl(s− υl(s)))
)]
ds

+
∑
tk<t

e
−
∫ t
tk
ci(u)du

(
Ik(φi(tk))− Ik(ψi(tk))

)
.

Using the Lipschitz conditions and the triangle inequality, we estimate
the norm:

‖(Πφ)i(t)− (Πψ)i(t)‖A

≤
∫ t

−∞
e−ci∗(t−s)

[
n∑
j=1

a∗ij l
f
j ‖φj(s− ζj(s))− ψj(s− ζj(s))‖A

+

n∑
j=1

n∑
l=1

b∗ijl

(
lgjL

g
l ‖φj(s− σj(s))− ψj(s− σj(s))‖A

+ lgl L
g
j‖φl(s− υl(s))− ψl(s− υl(s))‖A

)]
ds

+
∑
tk<t

e−ci∗(t−tk)lI‖φi(tk)− ψi(tk)‖A.

Since ‖φj(·)− ψj(·)‖A ≤ ‖φ− ψ‖∗ for all j, we obtain

‖(Πφ)i(t)− (Πψ)i(t)‖A ≤ ‖φ− ψ‖∗

[∫ t

−∞
e−ci∗(t−s)

( n∑
j=1

a∗ij l
f
j

+

n∑
j=1

n∑
l=1

b∗ijl
(
lgjL

g
l + lgl L

g
j

))
ds

+
∑
tk<t

e−ci∗(t−tk)lI
]
.

Computing the integrals and sums as before yields

‖(Πφ)i(t)− (Πψ)i(t)‖A ≤ ‖φ− ψ‖∗

[
1

ci∗

( n∑
j=1

a∗ij l
f
j

+

n∑
j=1

n∑
l=1

b∗ijl(l
g
jL

g
l + lgl L

g
j )

)

+
lI

1− e−ci∗

]
.

Then, we get

‖Πφ−Πψ‖∗ ≤ ρ2‖φ− ψ‖∗.

Since ρ2 < 1, Π is a contraction on k.

Applying the Banach fixed-point theorem, we conclude that the operator
Π possesses exactly one fixed point in k.

This fixed point therefore represents the unique WPAA solution of system
(1) within the the region k.

3.2 Global exponential stability
Theorem 2 Let the assumptions of Theorem 1 hold, so that system (1)
possesses a unique WPAA solution z∗(t). Suppose, in addition, that the
following conditions are satisfied:

(i) 1 + lI < e,

(ii) min
1≤i≤n

[
ci∗ −

n∑
j=1

a∗ij l
f
j −

n∑
j=1

n∑
l=1

b∗ijl
(
Lgl l

g
j + Lgj l

g
l

)
−N ln(1 + lI)

]
> 0,

where N is the number of impulse times tk within any interval of unit
length. Then the unique WPAA solution of (1) is globally exponentially
stable.

Proof 4 Let

• z∗(·) : The unique WPAA solution of (1) with initial condition
φ∗(·),

• z(·) : Any other arbitrary solution of (1) with initial condition
φ(·).

Let
Z(t) = z(t)− z∗(t).

For t 6= tk, the error dynamics are :

Żi(t) = −ci(t)Zi(t)

+

n∑
j=1

aij(t)
[
fj
(
zj(t− ςj(t))

)
− fj

(
z∗j (t− ςj(t))

)]
+

n∑
j=1

n∑
l=1

bijl(t)
[
gj
(
zj(t− σj(t))

)
gl
(
zl(t− υl(t))

)
− gj

(
z∗j (t− σj(t))

)
gl
(
z∗l (t− υl(t))

)]
.

At impulse instants t = tk, we have:

∆Zi(tk) = Ik
(
zi(tk)

)
− Ik

(
z∗i (tk)

)
.

Using the Lipschitz conditions, we obtain:

‖gj(zj)gl(xl)− gj(z∗j )gl(x
∗
l )‖A ≤ Lgj l

g
l ‖Zl‖A + lgjL

g
l ‖Zj‖A.

For t ≥ 0, the solution of the error equation can be written as:

Zi(t) = Zi(0)e−
∫ t
0 ci(u)du

+

∫ t

0

e−
∫ t
s ci(u)du

[
n∑
j=1

aij(s)
(
fj(zj(s− ςj(s)))

− fj(z
∗
j (s− ςj(s)))

)
+

n∑
j=1

n∑
l=1

bijl(s)
(
gj(zj(s− σj(s)))gl(zl(s− υl(s)))

− gj(z
∗
j (s− σj(s)))gl(z∗l (s− υl(s)))

)]
ds

+
∑

0<tk<t

e
−
∫ t
tk
ci(u)du

(
Ik(zi(tk))− Ik(z∗i (tk))

)
.

8
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Let
Z = max

1≤i≤n
‖Zi(t)‖A.

Define:

c∗ = min
i
ci∗,

α = max
i

n∑
j=1

a∗ij l
f
j ,

β = max
i

n∑
j=1

n∑
l=1

b∗ijl
(
Lgl l

g
j + Lgj l

g
l

)
.

Then

Z(t) ≤ Z(0)e−c∗t + (α+ β)

∫ t

0

e−c∗(t−s)Z(s) ds

+ lI
∑

0<tk<t

e−c∗(t−tk)Z(tk).

Set v(t) = ec∗tZ(t), So

v(t) ≤ v(0) + (α+ β)

∫ t

0

v(s) ds+ lI
∑

0<tk<t

v(tk).

Applying the generalized Gronwall inequality for impulsive systems (see
[18]), we have:

v(t) ≤ v(0)
∏

0<tk<t

(1 + lI) e(α+β)t.

Consequently:

Z(t) ≤ Z(0)
∏

0<tk<t

(1 + lI) e−[c∗−(α+β)]t.

Let N(t) denote the number of impulses in [0, t). By assumption,

N(t) ≤ Nt

. Hence: ∏
0<tk<t

(1 + lI) ≤ (1 + lI)Nt = eN ln(1+lI )t.

Therefore:

Z(t) ≤ Z(0) e

[
N ln(1+lI )−(c∗−(α+β))

]
t.

Condition (ii) of the theorem ensures that the exponent is negative:

N ln(1 + lI)−
[
c∗ − (α+ β)

]
< 0.

Thus, there exists λ > 0 such that:

Z(t) ≤ Z(0)e−λt, ∀t ≥ 0.

This proves that the unique WPAA solution z∗(t) is globally
exponentially stable.

Remark 3.1 All our conditions are structurally tighter than those in
real or quaternion-valued studies because they must control both the
magnitude and oriented geometric relations encoded in multi-vector
products, particularly in the second-order terms gj(·)gl(·). The impulse
terms also differ substantially from previous work.

4 From Theory to Practice: Applications and
Benchmarking Against Existing Work

4.1 An example and its numerical simulations
For 1 ≤ i ≤ 2, we consider the following HOHNNs model in
Clifford algebra:



ẋi(t) = ci(t)xj(t) +
2∑
j=1

aij(t)fj(xj(t− ςj(t)))

+
2∑
j=1

2∑
l=1

bijl(t)gj(xj(t− σj(t)))

×gl(xl(t− υl(t))) + γi(t), t 6= tk,
∆(xi(tk)) = Ik(x(tk)), k ∈ Z, t ∈ R, t = tk.

(13)

For 1 ≤ i ≤ 2, and ρ = et,we take f(xi) = g(xi) such that

f(x) =

√
2

40
sin(
√

2x)e0 +
1

90
|x|e1

+
1

70
cos(x)e2 +

1

60
sin(x)e12

lfj = lgj = Lgj = LI = 1

ςj(t) = σj(t) = υl(t) = 3− sin

√
5

7
t,

c1(t) = 0.4 + 0.05 sin(
√

2 t), c2(t) = 0.3 + 0.03 cos(3 t),

a11(t) = 0.03 sin(
2π

2 + sin t+ sin
√

3t
)

+ 0.03

(
sin(

2π

2 + sin t+ sin
√

3t
) + e−t

)
e1

+

(
0.05 cos(t) + 0.2e−t

)
e2

a22(t) =

(
0.05 sin(

√
2t) + 0.02e−t

)
e1

+ 0.05 cos(
2π

2 + sin t+ sin
√

3t
)e2

+ 0.04

(
cos(
√

5t) + e−t
)
e12

a12(t) = a21(t) = 0.

γ1(t) = 0.2 sin
( 1

2 + sin t+ sin
√

2t

)
+

0.1

1 + t
+ 0.3 sin(

2π

2 + sin t+ sin
√

3t
)e1

+ 0.3

(
cos(

2π

2 + sin t+ sin
√

3t
) + e−t

)
e2

+

(
0.5 cos(t) + 0.2e−t

)
e12

γ2(t) =

(
0.5 sin(

√
2t) + 0.02e−t

)
+ 0.5 cos(

2π

2 + sin t+ sin
√

3t
)e1

+ 0.4

(
cos(
√

2t) + e−t
)
e2

+ 0.4

(
sin(
√

5t) + e−t
)
e12

b111(t) = 0,

9
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b112(t) =
(

0.03 cos
( 1

2 + sin t+ sin(
√

2t)

)
+

0.01

1 + t2

)
e1

+
(

0.05 +
0.1

1 + t

)
e12,

b121(t) = 0,

b122(t) =
(

0.03 cos
( 1

2 + cos t+ cos(
√

5t)

)
+

0.01

1 + t

)
e1

+
(

0.05 +
0.1

1 + t

)
e2.

b211(t) =
(

0.03 sin
( 1

2 + cos t+ sin(
√

5t)

)
+

0.01

1 + t

)
e1,

b212(t) = 0,

b221(t) = 0,

b222(t) = 0.03 sin
( 1

2 + cos t+ sin(
√

2t)

)
e2,

and

∆x0(2k) = − 1

40
x0(2k) +

1

80
sin(x0(2k)) +

1

20
,

∆x0(2k) = − 1

40
x0(2k) +

1

80
cos(x0(2k)) +

1

30
,

∆x1(2k) = − 1

30
x1(2k) +

1

30
sin(x1(2k)) +

1

20
,

∆x1(2k) = − 1

30
x2(2k) +

1

30
cos(x1(2k)) +

1

30
,

∆x2(2k) = − 1

40
x2(2k) +

1

80
sin(x2(2k)) +

1

20
,

∆x2(2k) = − 1

40
x2(2k) +

1

80
cos(x2(2k)) +

1

30
,

∆x12(2k) = − 1

40
x12(2k) +

1

80
sin(x12(2k)) +

1

20
,

∆x12(2k) = − 1

40
x12(2k) +

1

80
cos(x12(2k)) +

1

80
,

Under the conditions of Theorem 1, system (13) possesses a unique
exponentially stable WPAA solution. Numerical simulations
(Figures 1–4) confirm this stability and reveal local chaotic
behavior in the WPAA dynamics.
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Figure 1. Curves of x01 and x02 of model (13).
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Figure 2. Curves of x11 and x12 of model (13).
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Figure 3. Curves of x21 and x22 of model (13).

0 10 20 30 40 50 60

−0.5

0

0.5

1

 

 

x
1

12
x

2

12

Figure 4. Curves of x121 and x122 of model (13).

Here, each figure displays the time evolution of one component
of the Clifford-valued states for the two neurons. All trajectories
remain bounded and exhibit irregular, non-periodic oscillations
characteristic of weighted pseudo almost automorphic dynamics.
The solutions do not diverge, confirming the exponential stability.
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The observed complex patterns, including local chaotic like
fluctuations, demonstrate the rich dynamical behavior that the
Clifford-valued model can capture under the combined effects
of high-order interactions, mixed delays, and impulses. These
simulations validate the theoretical results and show the feasibility
of the derived conditions.

4.2 Comparison with existing literature
• Our work differs substantially from recent studies such as Dong

et al. in [15] analysis of piecewise pseudo almost periodic
solutions for interval general BAM neural networks with
mixed delays and impulsive perturbations. While their work
employs real valued interval analysis in first-order BAM
architectures, we investigate high-order Hopfield networks
within the Clifford-algebraic framework, which naturally
encodes geometric relationships via the geometric product
without requiring decomposition. Furthermore, we consider
weighted pseudo almost automorphic (WPAA) dynamics a
broader function class than pseudo almost periodicity.

• Our study addresses a different line of inquiry compared
to works such as Huo and Li’s analysis of µ-almost
periodic octonion-valued stochastic shunting inhibitory
neural networks [17]. Their research examines stochastic
dynamics and almost periodic behavior in distribution,
whereas our focus is on deterministic Clifford-algebra–based
systems governed by weighted pseudo almost automorphic
(WPAA) solutions. Instead of using octonions which are
non-associative and limited to eight dimensions, we employ
Clifford algebra, an associative framework that can naturally
scale to higher dimensions.

• Our work distinguishes itself from Clifford-valued
Cohen–Grossberg networks [20] by establishing weighted
pseudo almost automorphic solutions for non-decomposed
Clifford-valued high-order Hopfield networks with mixed
delays and impulsive perturbations, thereby extending
and unifying these previous approaches within a broader
algebraic and dynamical framework.

5 Conclusions
In this work, we have investigated impulsive HOHNNs in Clifford
algebra with mixed delays. By employing the Banach fixed point
theorem and a generalized Gronwall–Bellman inequality, we have
established sufficient conditions for the existence, uniqueness,
and exponential stability of weighted pseudo almost automorphic
(WPAA) solutions. The key contributions and novel aspects of
this paper are:

• First study of WPAA solutions in Clifford algebra: This is
the first work to address the existence, uniqueness, and
stability of WPAA solutions for impulsive HOHNNs within
the Clifford-algebraic framework.

• Non-decomposed approach: All results are obtainedwithout
decomposing the Clifford-valued system into real-valued
components.

• Unified modeling of high-order interactions: The model
incorporates both first- and second-order synaptic
connections, and the sufficient conditions explicitly
account for the combined effects of continuous dynamics,
time-varying delays, and impulsive jumps.

• Generalization of existing results: By working in the
weighted pseudo almost automorphic setting, our results

extend and unify earlier findings restricted to periodic,
almost periodic, or almost automorphic solutions.

• Algebraic and geometric consistency: The conditions are
formulated directly in terms of Clifford-algebraic norms and
operations, maintaining the natural relationship between
algebraic structure and dynamical behavior.

The theoretical findings are supported by a numerical example.
This work opens a new direction for studying complex neural
dynamics in hypercomplex algebras and provides a foundation for
further research with discontinuous perturbations and high-order
connections.
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