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Abstract
Herein, we mainly focus on developing a new
two-gridCrank-Nicolson (CN)mixedfinite element
(MFE) (TGCNMFE) method for the generalized
nonlinear time fractional fourth-order reaction
diffusion equation. To do so, by introducing an
auxiliary function, the nonlinear time fractional
fourth-order reaction diffusion equation is first
split into two second-order nonlinear equations.
Thereafter, a new time semi-discrete mixed
CN (TSDMCN) scheme is constructed through
discretizing the time derivative and time fractional
derivative by the CN difference quotient, and the
existence, steadiness, and errors of the TSDMCN
solutions are analysed. Next, a new TGCNMFE
method is developed through using two-grid MFE
technique to discretize the spacial variables, and
the existence, steadiness, and error estimations for
the TGCNMFE solutions are discussed. Lastly, the
correctness of theory results and the superiority
of the TGCNMFE method are verified by some
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numerical experiments.
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1 Introduction
Let Ω ⊂ Rd (d = 2, 3) be a bounded and
connected domain with the boundary ∂Ω. For
given time upper-limit te, we study the following
generalized nonlinear time fractional fourth-order
reaction diffusion equation (GNTFFORDE).

Problem 1 Seek w : [0, te] → C4(Ω̄) from the following
equation:

wt(x, t) +Dα
t ∆w(x, t)

−∆w(x, t) + ∆2w(x, t)

= f(w(x, t)) + g(x, t), (x, t) ∈ Ω× (0, te),

w(x, t) = ∆w(x, t) = 0, (x, t) ∈ ∂Ω× (0, te),

w(x, 0) = w0(x), x ∈ Ω,

(1)

in which wt(x, t) = ∂w(x, t)/∂t, x = (x1, x2, · · · , xd),
∆ =

∑d
i=1 ∂

2/∂x2
i is the Laplacian operator, f(w) is
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a function with continuous second-order derivatives that
satisfies f(0) = 0, the source term g(x, t) and the initial
function w0(x) are sufficiently smooth known functions,
and Dα

t ϕ (0 < α < 1) stands for the αth-order
Gerasimov–Caputo fractional derivative (see [3, 4]), which
is denoted by

Dα
t w(x, t) =

∂αw(x, t)

∂tα

=
1

Γ(1− α)

∫ t

0

∂w(x, s)

∂s

ds

(t− s)α
, 0 6 s 6 t 6 te.(2)

Remark 1 There are various selections for the nonlinear
term f(w).

(i) If it is taken as f(w) = sin(w), it is a time fractional
fourth-order parabolic type sine-Gordon equation.

(ii) If it is taken as f(w) = (1−w2), it is just the nonlinear
time fractional fourth-order reaction diffusion equation in
[1].

Therefore, Problem 1 has wider applications than the
above-mentioned partial differential equations (PDEs),
named as so-called “GNTFFORDE".

The fractional derivative has been around for a
long time. It was first proposed in the letter from
Leibniz to L’Hospital in 1695 (see [2]). Later, it was
popularized by Gerasimov [3] and Caputo [4] to
propose the Gerasimov-Caputo fractional derivative
[5]. It has been found that the fractional PDEs
have very wide applications in fields such as physics,
chemistry, and biology (see [6–10]). Peculiarly, the
GNTFFORDE (Problem 1) is procured by adding
a time fractional-order derivative and a generalized
nonlinear term f(w) to the standard fourth-order
reaction-diffusion equation (see [11–13]), so its
application scope is wider. It can be accustomed to
describe other problems besides the interaction and
proliferation for organisms (see [14]), the mesoscopic
systems of phase transition for binary systems (see
[15]), the marching waves for reaction diffusion
system (see [16]), and the directingwavemovement in
nematic liquid crystals (see [17]), just like the standard
fourth-order reaction-diffusion equation. Thereby, the
research on the GNTFFORDE (i.e., Problem 1) has
great significance.

However, owe to the complexity for the fractional
PDEs, they generally can not be solved by analytical
methods. It is the best selection to calculate their
approximate solutions by numerical methods. The
numerical methods for solving the fractional PDEs
mostly include the finite difference (FD) scheme (see

[18–22]), the finite element (FE)method (see [23–26]),
the discontinuous Galerkin method (see [30, 31]), the
collocation method (see [27–29]), and the meshless
method (see [32]).

Whereas, the GNTFFORDE (i.e., Problem 1) with the
nonlinear term f(w) and the time fractional derivative
as well as the fourth-order derivative term ∆2w is very
difficult to calculate through the usual FE method.

Thereupon, the primary task for this article is to create
a new TGCNMFE method to the GNTFFORDE. The
TGCNMFE method has at the fewest the next three
benefits. Firstly, by inducting an auxiliary function
ϕ = w − ∆w, the GNTFFORDE may be split into
two second-order equations to facilitate the solution
using lower-order FEs (such as linear or quadratic
FEs) and procure the optimal order error estimation.
Secondly, the TGCNMFE method is unconditionally
stable, thus allowing for a longer time step in numerical
calculations. Thirdly, the TGCNMFE method is made
up of a few nonlinear equations on coarser meshes
and the linear equations on sufficiently fine meshes,
which can greatly simplify the computing process and
enhance the calculating efficiency.

Although for the nonlinear time fractional fourth-order
reaction diffusion equation with nonlinear term
f(w) = w(1 − w2), a general two-grid MFE method
without adopting CN technique was provided in
[1], it is not a conditional stable scheme in time
and had not provided the theoretical analysis of
time semi-discrete solutions. Therefore, it completely
differs from the TGCNMFE method of this paper. In
another words, the TGCNMFE method of this paper
is a new development.

The rest for this article is composed of the following
four sections. In Section 2, we construct a new
TSDMCN scheme for the GNTFFORDE and discuss
the existence, stability, and error estimations of the
TSDMCN solutions. In Section 3, we design a new
TGCNMFE method for GNTFFORDE and analyze the
existence, unconditional stability, and errors of the
TGCNMFE solutions. In Section 4, we resort to some
numerical experiments to confirm the procured theory
results and the advantage of the TGCNMFE method.
Lastly, we offer the major conclusions of this paper and
the prospects for future research in Section 5.

2 A New TSDMCN Scheme
The Sobolev spaces and their norms adopted
subsequently are classical (see [33–35]). Let W =
H1

0 (Ω) and ϕ = w −∆w. In order to facilitate theory
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analysis and without loss of generality, we assume
that g(x, t) = 0. Thereupon, with the Green formula,
we may build the below weak form of Problem 1.

Problem 2 ∀t ∈ (0, te), seek (w,ϕ) ∈W×W from the
following system of equations:

(υ,wt) + (υ,Dα
t ϕ) + (∇υ,∇ϕ)

= (υ, f(w)), ∀υ ∈W,

(ϑ,w) + (∇ϑ,∇w) = (ϑ, ϕ), ∀ϑ ∈W,

w(x, 0) = w0(x),x∈Ω,

(3)

herein (ϕ, ϑ) =
∫

Ω ϕ · ϑdx.

By using the proof method in [8] or the proof method
as the next Theorem 1, the existence and stability for
generalized solutions to Problem 2 may be proven.

In order to build the TGCNMFE method, we firstly
set up a bran-new TSDMCN scheme. To do so, we
suppose that N > 0 is an integer, ∆t = te/N
indicates the time step, and ϕn and wn stand for the
approximations to ϕ(x, t) andw(x, t) at tn = n∆t (0 6
n 6 N) separately. Thus, when ϕ = w −∆w, i.e., w is
fully smooth in time, the αth-order Gerasimov–Caputo
fractional derivative is expanded as follows (see [18])

Dα
t w(x, tn) =

∂αw(x, tn)

∂tα

=
∆t−α

Γ(1− α)

n∑
k=1

an−k(w
k − wk−1) + ε0(x), (4)

in which an−k = (n − k)1−α − (n − k − 1)1−α > 0,
|ε0| 6 Cϕ∆t2−α, and Cϕ is a constant dependent on ϕ
and te. The above-mentioned coefficients an−k meet

1 = a0 > a1 > a2 > · · · > an > 0,

an → 0 (n→∞),
n−1∑
j=1

(aj−1 − aj) = a0 − an−1 < 1, 1 6 n 6 N,

n−1∑
j=1

aj 6 k
1−α, 1 6 n 6 N.

(5)

Using an implicit FD scheme to discretize time for the
first equation in Problem 2 yields

1

∆t

(
wn − wn−1, υ

)
+ (∇ϕn,∇υ)

+
∆t−α

Γ(1− α)

n∑
k=1

an−k(w
k − wk−1, υ)

= (f(wn), υ), ∀υ ∈W. (6)

Using an explicit FD scheme to discretize time for the
first equation in Problem 2 yields

1

∆t

(
wn − wn−1, υ

)
+ (∇ϕn−1,∇υ)

+
∆t−α

Γ(1− α)

n∑
k=1

an−k(w
k − wk−1, υ)

= (f(wn−1), υ), ∀υ ∈W. (7)

By adding (6) to (7), we obtain the following
brand-new TSDMCN scheme, which is distinguished
from the existed time semi-discrete schemes, including
that in [1].

Problem 3 Seek {(wn, ϕn)} ∈ W×W (1 6 n 6 N) by
the following system of equations

1

∆t
(wn − wn−1, υ) +

1

2
(∇(ϕn + ϕn−1),∇υ)

+
∆t−α

Γ(1− α)

n∑
k=1

an−k(w
k − wk−1, υ)

=
1

2
(f(wn) + f(wn−1), υ),

∀υ ∈W, 1 6 n 6 N, (8)
(∇wn,∇ϑ) + (wn, ϑ)

= (ϕn, ϑ), ∀ϑ ∈W, 0 6 n 6 N, (9)
w0 = w0(x), ϕ0 = −∆w0(x), x∈Ω. (10)

The next discrete Gronwall lemma (see [36,
Lemma 3.1]) is often used in succeeding theoretical
analysis.

Lemma 1 Let {bn} be a nonnegative real number sequence,
{cn} is a non-descending real number sequence, {δn} be
also a nonnegative real number sequence, and they satisfy
bn 6 en +

∑n−1
j=1 δjbj (n > 1), then they also satisfy bn 6

en exp
(∑n−1

j=1 δj

)
(n > 1).

For Problem 3, we obtain the following results.

Theorem 1 From Problem 3 we can find a unique solution
set {(wn, ϕn)}Nn=1 ⊂ W × W to meet the following
boundedness (i.e., stability):

‖∇wn‖0 + ‖∇ϕn‖0 6 c‖w0‖1, 1 6 n 6 N. (11)

where and subsequent c > 0 is a constant independent of
∆t. Furthermore, while w0(x) is smooth enough, the error
estimations for the TSDCNM solutions {(wn, ϕn)}Nn=1 to
Problem 3 are reckoned by the following inequalities

‖∇(w(tn)− wn)‖0 + ‖∇(ϕ(tn)− ϕn)‖0
6 c∆t2−α, 1 6 n 6 N, (12)

where w(tn) = w(x, tn) and ϕ(tn) = ϕ(x, tn).

9
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Proof. Theorem 1 is proven by the below three parts.

(1) Prove the existence and uniqueness for the TSDCNM
solutions.

Taking ϑ = wn − wn−1 in (9), we obtain

(ϕn − ϕn−1, wn − wn−1)

= (∇(wn − wn−1),∇(wn − wn−1))

+ (wn − wn−1, wn − wn−1)

= ‖∇(wn − wn−1)‖20 + ‖wn − wn−1‖20. (13)
(ϕk − ϕk−1, wn − wn−1)

= (∇(wk − wk−1),∇(wn − wn−1))

+ (wk − wk−1, wn − wn−1)

= ‖∇(wk − wk−1)‖20 + ‖wk − wk−1‖20
+‖∇(wn − wn−1)‖20 + ‖wn − wn−1‖20. (14)

Taking ϑ = wn in (9) and using the Hölder inequality,
we obtain

‖∇wn‖20 + ‖wn‖20 = (ϕn, wn)

6 ‖ϕn‖0‖wn‖0

6
1

2
(‖ϕn‖20 + ‖wn‖20), 1 6 n 6 N. (15)

Thereupon, we procure

‖∇wn‖20 + ‖wn‖20 6 ‖ϕn‖20, 1 6 n 6 N. (16)

Taking υ = ϕn − ϕn−1 in (10), and using (13), (14),
the Hölder and Cauchy inequalities, and differential
mean value theorem (DMVT), we obtain

‖∇(wn − wn−1)‖20 + ‖wn − wn−1‖20

+
∆t

2
(‖∇ϕn‖20 − ‖∇ϕn−1‖20)

= (ϕn − ϕn−1, wn − wn−1)

+
∆t

2
(∇(ϕn + ϕn−1),∇(ϕn − ϕn−1))

=
∆t

2
(f(wn) + f(wn−1), wn − wn−1)

− ∆t1−α

Γ(1− α)

n∑
k=1

an−k(ϕ
k − ϕk−1, wn − wn−1)

6
1

2
(‖∇(wn − wn−1)‖20 + ‖wn − wn−1‖20)

+c∆t2−2α
n−1∑
k=1

an−k‖∇(wk − wk−1)‖20

+c∆t2−2α
n−1∑
k=1

an−k‖wk − wk−1‖20

+c∆t2(‖wn‖20 + ‖wn−1‖20), 1 6 n 6 N. (17)

Simplifying (17) and using (16) yields

‖wn − wn−1‖20 + ‖∇(wn − wn−1)‖20
+∆t(‖∇ϕn‖20 − ‖∇ϕn−1‖20)

6 c∆t2−2α
n−1∑
k=1

an−k‖∇(wk − wk−1)‖20

+c∆t2−2α
n−1∑
k=1

an−k‖wk − wk−1‖20

+c∆t2(‖ϕn‖20 + ‖ϕn−1‖20), 1 6 n 6 N. (18)

Summating (18) from 1 until n (n 6 N), while4t is
sufficiently small to meet c∆t 6 1/2, we obtain

n∑
i=1

(‖∇(wi − wi−1)‖20 + ‖wi − wi−1‖20)

+∆t‖∇ϕn‖20

6 c∆t2−2α
n−1∑
i=1

i−1∑
k=1

an−k‖∇(wk − wk−1)‖20

+c∆t2−2α
n−1∑
i=1

i−1∑
k=1

an−k‖wk − wk−1‖20

+∆t‖∇ϕ0‖20 + c∆t2
n−1∑
i=0

‖ϕi‖20, 1 6 n 6 N.(19)

Applying Lemma 1 to (19), and using (5), we procure

n∑
i=1

(‖∇(wi − wi−1)‖20 + ‖wi − wi−1‖20)

+∆t‖∇ϕn‖20

6 ∆t‖∇ϕ0‖20 exp

(
c∆t2−2α

i−n∑
k=1

an−k + c∆t2n

)
6 c∆t‖∇ϕ0‖20, 1 6 n 6 N. (20)

Thereupon, by (20) and (16), we procure

‖∇wn‖0 + ‖∇ϕn‖0 6 c‖∇ϕ0‖0, 1 6 n 6 N. (21)

Thus, if ϕ0 = 0, then from (21) we can assert that
wn = ϕn = 0 (1 6 n 6 N). This means that Problem 3
exists at the fewest a solution set {(wn, ϕn)}Nn=1.

If Problem 3 has another solution set {(w̃n, ϕ̃n)}Nn=1, it

10
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should meet the below system of equations:

1

∆t

(
w̃n − w̃n−1, υ

)
+

1

2

(
∇(ϕ̃n + ϕ̃n−1),∇υ

)
+

∆t−α

Γ(1− α)

n∑
k=1

an−k(ϕ̃
k − ϕ̃k−1, υ)

=
1

2

(
f(w̃n) + f(w̃n−1), υ

)
, ∀υ ∈W, 1 6 n 6 N,

(∇w̃n,∇ϑ) + (w̃n, ϑ)

= (ϕ̃n, ϑ),∀ϑ ∈W, 0 6 n 6 N,

w̃0 = w0(x), ϕ̃0 = −∆w0(x), x∈Ω.

(22)

Let En = wn− w̃n and en = ϕn− ϕ̃n. Subtracting (22)
from (8)–(8) produces

1

∆t

(
En − En−1, υ

)
+

1

2

(
∇(en + en−1),∇υ

)
+

∆t−α

Γ(1− α)

n∑
k=1

an−k(E
k − Ek−1, υ)

=
1

2

(
Enf ′(ξn) + En−1f ′(ξn−1), υ

)
,

∀υ ∈W, 1 6 n 6 N,

(∇En,∇ϑ) + (En, ϑ) = (en, ϑ),

∀ϑ ∈W, 0 6 n 6 N,

E0 = 0, e0 = 0, x∈Ω,

(23)

here ξi lies between wi and w̃i (i = n, n− 1).

Using the second equation of (23), the Hölder and
Cauchy inequalities, we procure

‖∇(En − En−1)‖20 + ‖En − En−1‖20
= (∇(En − En−1),∇(En − En−1))

+(En − En−1, En − En−1)

= (En − En−1, en − en−1)

6
1

2
(‖En − En−1‖20 + ‖en − en−1‖20), (24)

‖∇(En − En−1)‖20 + ‖En − En−1‖20
6 ‖en − en−1‖20. (25)
‖∇En‖20 + ‖En‖20 6 ‖en‖20, (26)
2∆t1−α

Γ(1− α)
(Ek − Ek−1, en − en−1)

=
2∆t1−α

Γ(1− α)
[(∇(Ek − Ek−1),∇(En − En−1))

+(Ek − Ek−1, En − En−1)]

6 c∆t2−2α(‖∇(Ek − Ek−1)‖20 + ‖Ek − Ek−1‖20)

+
1

2
(‖∇(En − En−1)‖20 + ‖En − En−1‖20), (27)

∆tf ′(ξn)(Ek, en − en−1)

= ∆tf ′(ξn)[(∇Ek,∇(En − En−1))

+ (Ek, En − En−1)]

6
1

4
(‖∇(Ek − Ek−1)‖20 + ‖Ek − Ek−1‖20)

+c∆t2(‖∇En‖20 + ‖En‖20)

6
1

4
(‖∇(Ek − Ek−1)‖20 + ‖Ek − Ek−1‖20)

+c∆t2‖en‖20, (28)
∆tf ′(ξn−1)(Ek−1, en − en−1)

= ∆tf ′(ξn−1)[(∇Ek−1,∇(En − En−1))

+ (Ek−1, En − En−1)]

6
1

4
(‖∇(Ek − Ek−1)‖20 + ‖Ek − Ek−1‖20)

+c∆t2(‖∇En−1‖20 + ‖En−1‖20)

6
1

24
(‖∇(Ek − Ek−1)‖20 + ‖Ek − Ek−1‖20)

+c∆t2‖en−1‖20. (29)

Taking υ = en − en−1 in the first equation of (23), by
(24)–(29), the Hölder and Cauchy inequalities, and
the DMVT, noting that E0 = e0 = 0, we get

2(‖∇(En − En−1)‖20 + ‖En − En−1‖20)

+∆t(‖∇en‖20 − ‖∇en−1)‖20)

= 2
(
En − En−1, en − en−1

)
+∆t

(
∇(en + en−1),∇(en − en−1)

)
= ∆t

(
Enf ′(ξn) + En−1f ′(ξn−1), en − en−1

)
− 2∆t1−α

Γ(1− α)

n∑
k=1

an−k(E
k − Ek−1, en − en−1)

6 ‖∇(En − En−1)‖20 + ‖En − En−1‖20
+c∆t2(‖en‖20 + ‖en−1‖20)

+c∆t2−2α
n−1∑
k=1

an−k(‖∇(Ek − Ek−1)‖20

+‖Ek − Ek−1‖20), 1 6 n 6 N. (30)

It follows that

‖∇(En − En−1)‖20 + ‖En − En−1‖20
+ ∆t(‖∇en‖20 − ‖∇en−1)‖20)

6 c∆t2(‖en‖20 + ‖en−1‖20)

+c∆t2−2α
n−1∑
k=1

an−k(‖∇(Ek − Ek−1)‖20

+‖Ek − Ek−1‖20), 1 6 n 6 N. (31)

Summating (31) from 1 until n (n 6 N), when c∆t is
sufficiently small to satisfy c∆t 6 0.5, we procure

n∑
i=1

(‖∇(Ei − Ei−1)‖20 + ‖Ei − Ei−1‖20)

11
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+∆t‖∇en‖20 6 c∆t2
n−1∑
i=1

‖en‖20

+c∆t2−2α
n∑
i=1

i−1∑
k=1

an−k(‖∇(Ek − Ek−1)‖20

+‖Ek − Ek−1‖20), 1 6 n 6 N. (32)

Applying Lemma 1 to (32) procures

n∑
i=1

(‖∇(Ei − Ei−1)‖20 + ‖Ei − Ei−1‖20)

+∆t‖∇en‖20 = 0, 1 6 n 6 N. (33)

By (26) and (33), we obtain en = En = 0, i.e, wn = w̃n

and ϕn = ϕ̃n (1 6 n 6 N).

Thereupon, Problem 3 exists a sole solution set
{(wn, ϕn)}Nn=1.

(2) Analyze the stability of solutions {(wn, ϕn)}Nn=1.

The above first step has procured that Problem 3 has a
unique TSDMCN solution set {(wn, ϕn)}Nn=1. By (21),
we conclude that the set of solutions {wn, ϕn}Nn=1 for
Problem 3 is bounded, i.e., stable.

(3) Reckon the errors for the TSDMCN solutions
{(wn, ϕn)}Nn=1.

Using Taylor’s formula, we obtain

w′(tn− 1
2
) =

w(tn)− w(tn−1)

∆t

−∆t2

24
w′′′(ξn), tn−1 6 ξn 6 tn+1. (34)

w(tn− 1
2
) =

w(tn) + w(tn−1)

2

−∆t2

16
w′′(ςn), tn−1 6 ςn 6 tn− 1

2
. (35)

f(w(tn− 1
2
)) =

f(w(tn)) + f(w(tn−1))

2
−∆t2R(x, t), (36)

in which R(x, t) is a bounded remainder.

Thereupon, subtracting (8)–(10) from (3) after taking
t = tn− 1

2
and setting ρn = w(x, tn) − wn and %n =

ϕ(x, tn)− ϕn, we obtain the following system of error
equations.

1

∆t

(
ρn − ρn−1, υ

)
+

1

2

(
∇(%n + %n−1),∇υ

)
=

1

2

(
f ′(ηn)ρn + f ′(ηn−1)ρn−1, υ

)

− ∆t−α

Γ(1− α)

n∑
k=1

an−k(ρ
k − ρk−1, υ)

+ (ε0(x, t), υ) +
∆t2

24

(
w′′′(ξn), υ

)
+

∆t2

16

(
ϕ′′(ςn), υ

)
+

∆t2

16

(
∇ϕ′′(ςn),∇υ

)
−∆t2 (R(x, t), υ) , 1 6 n 6 N, ∀υ ∈W, (37)
(∇ρn,∇ϑ) + (ρn, ϑ) = (%n, ϑ),

0 6 n 6 N, ∀ϑ ∈W, (38)
ρ0 = %0 = 0. (39)

By (38), the Hölder and Cauchy inequalities, we
procure

‖∇(ρn−1 − ρn)‖20 + ‖ρn−1 − ρn‖20
= (∇(ρn−1 − ρn),∇(ρn−1 − ρn))

+(ρn−1 − ρn, ρn−1 − ρn)

= (ρn−1 − ρn, %n−1 − %n)

6
1

2
(‖ρn−1 − ρn‖20 + ‖%n−1 − %n‖20), (40)

‖∇(ρn−1 − ρn)‖20 + ‖ρn−1 − ρn‖20
6 ‖%n−1 − %n‖20. (41)
‖∇ρn‖20 + ‖ρn‖20 6 ‖%n‖20, (42)
2∆t1−α

Γ(1− α)
(ρk−1 − ρk, %n−1 − %n)

=
2∆t1−α

Γ(1− α)
[(∇(ρk−1 − ρk),∇(ρn−1 − ρn))

+(ρk−1 − ρk, ρn−1 − ρn)]

6 c∆t2−2α(‖∇(ρk−1 − ρk)‖20 + ‖ρk−1 − ρk‖20)

+
1

2
(‖∇(ρn−1 − ρn)‖20 + ‖ρn−1 − ρn‖20), (43)

∆tf ′(ηn)(ρk, %n − %n−1)

= ∆tf ′(ηn)[(∇ρk,∇(ρn − ρn−1))

+ (ρk, ρn − ρn−1)]

6
1

4
(‖∇(ρk − ρk−1)‖20 + ‖ρk − ρk−1‖20)

+c∆t2(‖∇ρn‖20 + ‖ρn‖20)

6
1

4
(‖∇(ρk−1 − ρk)‖20 + ‖ρk−1 − ρk‖20)

+c∆t2‖%n‖20, (44)
∆tf ′(ηn−1)(ρk−1, %n − %n−1)

= ∆tf ′(ξn)[(∇ρk−1,∇(ρn − ρn−1))

+ (ρk−1, ρn − ρn−1)]

6
1

4
(‖∇(ρk−1 − ρk)‖20 + ‖ρk−1 − ρk‖20)

+c∆t2(‖∇ρn−1‖20 + ‖ρn−1‖20)

6
1

24
(‖∇(ρk−1 − ρk)‖20 + ‖ρk−1 − ρk‖20)

12
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+c∆t2‖%n−1‖20. (45)

Taking υ = %n−%n−1 in (37), by (40)–(45), the Hölder
and Cauchy inequalities, the Green formula as well as
the DMVT, we procure

2(‖∇(ρn − ρn−1)‖20 + ‖ρn − ρn−1‖20)

+∆t(‖∇%n‖20 − ‖∇%n−1‖20)

= 2(ρn − ρn−1, %n − %n−1)

+∆t(%n + %n−1, %n − %n−1)

= ∆t
(
f ′(ηn)ρn + f ′(ηn−1)ρn−1, %n − %n−1

)
+

∆t5

12

(
w′′′(ξn), %n − %n−1

)
− 2∆t1−α

Γ(1− α)

n∑
k=1

an−k(ρ
k − ρk−1, %n − %n−1)

+∆t
(
ε0(x, t), %n − %n−1

)
−∆t3

8

(
∆ϕ′′(ςn), %n − %n−1

)
+

∆t3

8

(
ϕ′′(ςn), %n − %n−1

)
−∆t3

(
R(x, t), %n − %n−1

)
6 c∆t5 −∆t(‖%n‖20 − ‖%n−1‖20) + c∆t5−2α

+‖∇(ρn − ρn−1)‖20 + ‖ρn − ρn−1‖20

+c∆t2−2α
n−1∑
k=1

an−k[‖∇(ρk − ρk−1)‖20

+‖ρk − ρk−1‖20], 1 6 n 6 N. (46)

Simplifying (46) yiels

‖∇(ρn − ρn−1)‖20 + ‖ρn − ρn−1‖20
+∆t(‖∇%n‖20 − ‖∇%n−1‖20)

6 c∆t2−2α
n−1∑
k=1

an−k(‖∇(ρk − ρk−1)‖20

+‖ρk − ρk−1‖20) + c∆t5−2α, 1 6 n 6 N. (47)

Summating (47) from 1 until n (n 6 N) and noting
that ρ0 = 0, we procure

n∑
i=1

(‖∇(ρn − ρn−1)‖20 + ‖ρn − ρn−1‖20)

+∆t‖∇%n‖20

6 c∆t2−2α
n∑
i=1

i−1∑
k=1

an−k(‖∇(ρk − ρk−1)‖20

+‖ρk − ρk−1‖20) + c∆t5−2α, 1 6 n 6 N. (48)

Applying Lemma 1 to (48) procures
n∑
i=1

(‖∇(ρn − ρn−1)‖20 + ‖ρn − ρn−1‖20)

+∆t‖∇%n‖20

6 c∆t5−2α exp

(
c∆t2−2α

n∑
i=1

i−1∑
k=1

an−k

)
6 c∆t5−2α, 1 6 n 6 N. (49)

By (49) and (42), we get (12). Theorem 1 is proved.�

Remark 2 Theorem 1 shows that the error estimations
of the TSDMCN solutions can achieve the optimal order
O(∆t2−α).

3 The TGCNMFE Method
To build the TGCNMFE method needs to further
resort to the two-grid MFE method to discretize the
spacial variables of Problem 3. To do so, let =H
be a quasi-uniform coarse mesh partition on Ω̄ and
H = sup

E∈JH
{ sup
x,y∈E

‖x− y‖} . For ∀E ∈ =H and integer

l > 1, if Pl(E) indicates the polynomial space on E
with degree 6 l, then the FE subspace on the coarse
meshes =H can be defined in the following

WH =
{
wH ∈W ∩ C(Ω̄) : wH |E ∈ Pl(E), ∀E ∈ =H

}
.

Similarly, let=h be a quasi-uniform fine mesh partition
on Ω̄ and h = sup

e∈Jh
{ sup
x,y∈e

‖x− y‖} (h� H). Then the

FE subspace on the fine meshes =h can be defined in
the following

Wh =
{
wh ∈W ∩ C(Ω̄) : wh|e ∈ Pl(e), ∀e ∈ =h

}
.

Supposed that Pδ : W → Wδ (δ = h,H) is two
H1-projections that for any q ∈W, there are two sole
Pδq ∈Wδ satisfying the below equality

(∇(q − Pδq),∇qδ) = 0, ∀qδ ∈Wδ, δ = h, H, (50)

and the following error estimations

|q − Pδq|r 6 cδl+1−r, ∀q ∈ H l+1(Ω) ∩W,

δ = h, H, r = −1, 0, 1. (51)

Thus, a fire-new TGCNMFE method may be built in
the following.

Problem 4 Step 1. On the coarse mesh =H , calculate
(wnH , ϕ

n
H) ∈ WH ×WH (1 6 n 6 N) from the below

13
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nonlinear system:

(
wnH − wn−1

H , υH
)

+
∆t

2
(∇(ϕnH + ϕn−1

H ),∇υH)

=
∆t

2
(f(wnH) + f(wn−1

H ), υH)

− ∆t1−α

Γ(1− α)

n∑
k=1

an−k(w
k
H − wk−1

H , υH),

∀υH ∈WH , 1 6 n 6 N ;

(∇wnH ,∇ϑH) + (wnH , ϑH) = (ϕnH , ϑH),

∀ϑH ∈WH , 0 6 n 6 N,

w0
H = PHw0(x), ϕ0

H = PHϕ
0,x∈Ω.

(52)

Step 2. On the fine grid =h, seek (wnh , ϕ
n
h) ∈ Wh ×Wh

(1 6 n 6 N) from the linear system:

(wnh − wn−1
h , υh) +

∆t

2
(∇(ϕnh + ϕn−1

h ),∇υh) =

∆t

2
(f(wnH) + f ′(wnH)(wnh − wnH) + f(wn−1

h ), υh)

− ∆t1−α

Γ(1− α)

n∑
k=1

an−k(w
k
h − wk−1

h , υh),

∀υh ∈Wh, 1 6 n 6 N ;

(∇wnh ,∇ϑh) + (∇wnh ,∇ϑh) = (ϕnh, ϑh),

∀ϑh ∈Wh, 0 6 n 6 N,

w0
h = Phw0(x), ϕ0

h = Phϕ
0,x∈Ω.

(53)

For Problem 4, we have the following result.

Theorem 2 On the coarse grid =H and the fine grid =h,
from Problem 4 we can separately seek two sole sets of
solutions {(wnH , ϕnH)}Nn=1 ⊂WH×WH {(wnh , ϕnh)}Nn=1 ⊂
Wh ×Wh to meet the below unconditional boundedness
(unconditional stability):

‖wnH‖1 + ‖wnh‖1 + ‖ϕnH‖1 + ‖ϕnh‖1
6 c‖w0‖2, 1 6 n 6 N, (54)

and the following error estimations

‖w(tn)− wnH‖0 + ‖ϕ(tn)− ϕnH‖0
+H‖∇(w(tn)− wnH)‖0 +H‖∇(ϕ(tn)− ϕnH)‖0
6 c(∆t2−α +H l+1), 1 6 n 6 N, (55)
‖w(tn)− wnh‖0 + ‖ϕ(tn)− ϕnh‖0
+h‖∇(w(tn)− wnh)‖0 + h‖∇(ϕ(tn)− ϕnh)‖0
6 c(∆t2−α + hl+1 +H l+3), 1 6 n 6 N. (56)

where c used subsequently is also a generical positive
constant independent of H , h, and ∆t, and ∆t = O(h) =
O(H2).

Proof. The demonstration for Theorem 2 is divided into
the next two parts.

(1) Analyze the existence and unconditional stability for the
TGCNMFE solutions of Problem 4.

(i) The existence and unconditional stability for the
TGCNMFE solutions on the coarse mesh =H .

Noting that (52) holds the same construction as
(8)–(10), by using the same technique as proving
the existence and stability of the TSDMCN solutions
in Theorem 2, it can be proved that the system
of equations (52) has a unique series of solutions
{(wnH , ϕnH)}Nn=1 ⊂WH ×WH meeting

‖∇wnH‖0 + ‖∇ϕnH‖0 6 c‖w0‖1, 1 6 n 6 N. (57)

(ii) The existence and unconditional stability for the
TGCNMFE solutions on the fine mesh =h.

Let

A((w,ϕ), (w,ϕ)) = (∇w,∇w) + (w,w)− (ϕ,w)

+ (w,ϕ) +
∆t

2
(∇ϕ,∇ϕ)− ∆t

2
(f ′(wnH)w,ϕ)

+
∆t1−α

Γ(1− α)
(w, υ),

F (υ, ϑ) =
(
wn−1
h , υ

)
− ∆t

2
(∇ϕn−1

h ,∇υ)

− ∆t1−α

Γ(1− α)

n−1∑
k=1

an−k(w
k
h, υh)

+
∆t

2
(f(wnH)− f ′(wnH)wnH + f(wn−1

h ), υ).

Thus, the linear system (53) may be rewritten into the
following form.

Seek (wnh , ϕ
n
h) ∈Wh×Wh (1 6 n 6 N) from the below

linear system:
A((wnh , ϕ

n
h), (ϑh, υh)) = F (ϑh, υh),

∀(ϑh, υh) ∈Wh ×Wh, 0 6 n 6 N,

w0
h = Phw0(x), ϕ0

h = Phϕ
0(x), x∈Ω.

(58)

Noting that there is a constant θ0 > 0 such that
‖ϑ‖0 6 ‖ϑ‖1 6 θ0‖∇ϑ‖0 (∀ϑ ∈ W = H1

0 (Ω)), we can
assert that when ∆t is small enough, there is a positive
constant

α0 = max

{
1, ∆t

2 −
θ20∆t2 max

ν∈WH
|f ′(ν)|

4 − θ20∆t2−2α

Γ2(1−α)

}
,

14
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meeting

A((w,ϕ), (w,ϕ)) = (∇w,∇w) + (w,w)− (ϕ,w)

+ (w,ϕ) +
∆t

2
(∇ϕ,∇ϕ)− ∆t

2
(f ′(wnH)w,ϕ)

+
∆t1−α

Γ(1− α)
(w,ϕ)

> α0‖(w,ϕ)‖21, ∀(w,ϕ) ∈Wh ×Wh, (59)

where ‖(w,ϕ)‖1 = (‖∇w‖21 + ‖∇ϕ‖21)1/2 is the norm
in W × W. This means that the bilinear functional
A((w,ϕ), (ϑ, υ)) is positive definite in Wh ×Wh. It is
obvious that the bilinear functional A((w,ϕ), (ϑ, υ)) is
bounded inWh×Wh and the linear functional F (υ, ϑ)
is bounded inWh ×Wh for given wnH , wn−1

h , and ϕn−1
h .

Hence, according to the Lax-Milgram Theorem in [33,
Theorem 1.15], we assert that Step 2 in Problem 4 exists
a sole solution set {(wnh , ϕnh)}Nn=1 ⊂Wh ×Wh to meet

‖∇wnh‖0 + ‖∇ϕnh‖0 6 c‖w0‖1, 1 6 n 6 N. (60)

This signifies that, on the fine grid =h, the series of
solutions {(wnh , ϕnh)}Nn=1 ⊂ Wh × Wh for Problem
4 is unconditionally bounded, in other words, it is
unconditionally stable.

(2) Reckon the errors for the TGCNMFE solutions.

(a) Estimate the errors for the TGCNMFE solutions on the
coarse mesh =H .

By subtracting (52) from (8)–(10) taking υ = υH and
ϑ = ϑH , and setting ρnH = wn−PHwn, EnH = wn−wnH ,
%nH = PHw

n − wnH , ẼnH = ϕn − ϕnH , ρ̃nH = ϕn − PHϕn,
and %̃nH = PHϕ

n − ϕnH , and by the LDMT, we obtain

1

∆t

(
EnH − En−1

H , υH
)

+
1

2

(
∇(ẼnH + Ẽn−1

H ),∇υH
)

=
1

2

(
f(χn)EnH + f ′(χn−1)En−1

H , υH
)

− ∆t−α

Γ(1− α)

n∑
k=1

an−k(E
k
H − Ek−1

H , υH),

∀υH ∈WH , 1 6 n 6 N, (61)
(∇EnH ,∇ϑH) + (EnH , ϑH) = (ẼnH , ϑH),

∀ϑH ∈WH , 1 6 n 6 N, (62)
E0
H = w0 − PHw0, Ẽ

0
H = ϕ0 − PHϕ0, in Ω. (63)

where χi (i = n, n− 1) lies between wi and wiH .

By (61), (50), (62), the second equation of (53),
Taylor’s formula, and the Hölder and Cauchy
inequalities, as ∆t = O(H1+1/l), from (51) we get

1

∆t
‖∇(EnH − En−1

H )‖20 +
1

∆t
‖EnH − En−1

H ‖20

+
1

2

(
‖∇ẼnH‖20 − ‖∇Ẽn−1

H ‖20
)

=
1

∆t

(
∇(EnH − En−1

H ),∇(ρnH − ρn−1
H )

)
+

1

∆t

(
∇(EnH − En−1

H ),∇(%nH − %n−1
H )

)
+

1

∆t

(
EnH − En−1

H , ρnH − ρn−1
H

)
+

1

∆t

(
EnH − En−1

H ), %nH − %n−1
H

)
+

1

2

(
∇(ẼnH + Ẽn−1

H ),∇(ρ̃nH − ρ̃n−1
H )

)
+

1

2

(
∇(ẼnH + Ẽn−1

H ),∇(%̃nH − %̃n−1
H )

)
=

1

∆t

(
∇(ρnH − ρn−1

H ),∇(ρnH − ρn−1
H )

)
+

1

∆t

(
EnH − En−1

H , ρnH − ρn−1
H

)
+

1

∆t

(
ẼnH − Ẽn−1

H , %nH − %n−1
H

)
+

1

2

(
∇(ρ̃nH + ρ̃n−1

H ),∇(ρ̃nH − ρ̃n−1
H )

)
+

1

2

(
∇(ẼnH + Ẽn−1

H ),∇(%̃nH − %̃n−1
H )

)
=

1

∆t

(
∇(ρnH − ρn−1

H ),∇(ρnH − ρn−1
H )

)
+

1

∆t

(
EnH − En−1

H , ρnH − ρn−1
H

)
+

1

2

(
∇(ρ̃nH + ρ̃n−1

H ),∇(ρ̃nH − ρ̃n−1
H )

)
+

1

∆t

(
ρ̃nH − ρ̃n−1

H , EnH − En−1
H

)
− 1

∆t

(
ẼnH − Ẽn−1

H , ρnH − ρn−1
H

)
+

1

∆t

(
%̃nH − %̃n−1

H , EnH − En−1
H

)
+

1

2

(
∇(ẼnH + Ẽn−1

H ),∇(%̃nH − %̃n−1
H )

)
=

1

∆t

(
∇(ρnH − ρn−1

H ),∇(ρnH − ρn−1
H )

)
+

1

∆t

(
EnH − En−1

H , ρnH − ρn−1
H

)
+

1

2

(
∇(ρ̃nH + ρ̃n−1

H ),∇(ρ̃nH − ρ̃n−1
H )

)
+

1

∆t

(
ρ̃nH − ρ̃n−1

H , EnH − En−1
H

)
− 1

∆t

(
ẼnH − Ẽn−1

H , ρnH − ρn−1
H

)
+

1

2

(
f(χn)En + f ′(χn−1)En−1, %̃nH − %̃n−1

H

)
− ∆t−α

Γ(1− α)

n∑
k=1

an−k(E
k
H − Ek−1

H , %̃nH − %̃n−1
H )

6 c∆tH2l +
1

2∆t
‖EnH − En−1

H ‖20

15
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+
1

2∆t
‖∇(EnH − En−1

H )‖20

+
∆t−α

Γ(1− α)

n−1∑
k=1

an−k(‖∇(EnH − En−1
H )‖20

+‖EnH − En−1
H ‖20), 1 6 n 6 N. (64)

It follows that

‖∇(EnH − En−1
H )‖20 + ‖EnH − En−1

H ‖20
+∆t

(
‖∇ẼnH‖20 − ‖∇Ẽn−1

H ‖20
)
6 c∆t2H2l

+
∆t1−α

Γ(1− α)

n−1∑
k=1

an−k(‖∇(EkH − Ek−1
H )‖20

+‖EkH − Ek−1
H ‖20), 1 6 n 6 N. (65)

Summating (65) from 1 until n (n 6 N) yields
n∑
i=1

(‖∇(EiH − Ei−1
H )‖20 + ‖EiH − Ei−1

H ‖
2
0)

+∆t‖∇ẼnH‖20 6 cn∆t2H2l + c∆tH2l

+
∆t2−α

Γ(1− α)

n∑
i=1

i−1∑
k=1

an−k(‖∇(EkH − Ek−1
H )‖20

+‖EkH − Ek−1
H ‖20), 1 6 n 6 N. (66)

Applying Lemma 1 to (66) yields
n∑
i=1

(‖∇(EiH − Ei−1
H )‖20 + ‖EiH − Ei−1

H ‖
2
0)

+∆t‖∇ẼnH‖20

6 c∆tH2l exp

(
∆t2−α

Γ(1− α)

n∑
i=1

i−1∑
k=1

an−k

)
6 c∆tH2l, 1 6 n 6 N. (67)

Thereupon

‖∇ẼnH‖0 6 cH l, 1 6 n 6 N. (68)

By (62), (50), (51), and (78), we procure

‖∇EnH‖20 + ‖EnH‖20 = ‖ρnH‖20 + (∇EnH ,∇%nH)

+(EnH , ρ
n
H) + (EnH , %

n
H)

= ‖ρnH‖20 + (EnH , ρ
n
H) + (ẼnH , %

n
H)

6 cH2l +
1

2
‖EnH‖20 + c‖ẼnH‖20

6 cH2l +
1

2
‖EnH‖20, 1 6 n 6 N. (69)

It follows that

‖∇EnH‖0 6 cH l, 1 6 n 6 N. (70)

With the Nitsche technique in [33, Theorem 1.38], (68),
and (70), we can get the blow error estimations

‖wn − wnH‖0 +H‖∇(wn − wnH)‖0
6 cH l+1, 1 6 n 6 N. (71)

Combining (71) with Theorem 1 yields (55).

(b) Reckon the errors for the TGCNMFE solutions on the
fine mesh =h.

By subtracting (53) from (8)–(10), taking υ = υh and
ϑ = ϑh, and setting ρnh = wn − Phwn, Enh = wn − wnh ,
%nh = Phw

n −wnh , Ẽnh = ϕn −ϕnh, ρ̃nh = ϕn −Phϕn, and
%̃nh = Phϕ

n − ϕnh, and by the LDMT, we obtain

1

∆t

(
Enh − En−1

h , υh
)

+
1

2

(
∇(Ẽnh + Ẽn−1

h ),∇υh
)

=
1

2
(f ′(χn)EnH + f ′(ζn−1)En−1

h , υh)

−1

2
(f ′(wnH)(wnh − wnH), υh)

− ∆t−α

Γ(1− α)

n−1∑
k=1

an−k(E
k
h − Ek−1

h , υh),

∀υh ∈Wh, 1 6 n 6 N, (72)
(∇Enh ,∇ϑh) + (Enh , ϑh)

= (Ẽnh , ϑh), ∀ϑH ∈Wh, 1 6 n 6 N, (73)
E0
h = w0 − Phw0, Ẽ

0
h = ϕ0 − Phϕ0, in Ω, (74)

where ζn−1 lies between wn−1 with wn−1
h .

By (72), (73), (50), the Hölder and Cauchy
inequalities, Taylor’s formula, and (55) or (71),
when ∆t = O(h) = O(H1+1/l), we get

1

∆t
[‖∇(Enh − En−1

h )‖20 + ‖∇(Enh − En−1
h )‖20]

+
1

2

(
‖∇Ẽnh‖20 − ‖∇Ẽn−1

h ‖20
)

=
1

∆t

(
∇(ρnh − ρn−1

h ),∇(ρnh − ρn−1
h )

)
+

1

∆t

(
Enh − En−1

h , ρnh − ρn−1
h

)
+

1

2

(
∇(ρ̃nh + ρ̃n−1

h ),∇(ρ̃nh − ρ̃n−1
h )

)
+

1

∆t

(
ρ̃nh − ρ̃n−1

h , Enh − En−1
h

)
− 1

∆t

(
Ẽnh − Ẽn−1

h , ρnh − ρn−1
h

)
+

1

2

(
f ′(χn)EnH + f ′(ζn−1)En−1

h , Ẽnh − Ẽn−1
h

)
−1

2

(
f ′(wnH)(EnH − Enh ), Ẽnh − Ẽn−1

h

)
−1

2

(
f ′(χn)EnH + f ′(ζn−1)En−1

h , ρ̃nh − ρ̃n−1
h

)
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+
1

2

(
f ′(wnH)(EnH − Enh ), ρ̃nh − ρ̃n−1

h

)
− ∆t−α

Γ(1− α)

n∑
k=1

an−k(E
k
h − Ek−1

h , Ẽnh − Ẽn−1
h )

− ∆t−α

Γ(1− α)

n−1∑
k=1

an−k(E
k
h − Ek−1

h , %̃nh − %̃n−1
h )

6
1

2∆t
[‖∇(Enh − En−1

h )‖20 + ‖Enh − En−1
h ‖20]

+c∆th2l +
∆t1−α

Γ(1− α)

n∑
k=1

an−k[‖∇(Ekh − Ek−1
h )‖20

+‖Ekh − Ek−1
h ‖20, 1 6 n 6 N. (75)

Thus, from (75) we obtain

‖∇(Enh − En−1
h )‖20 + ‖∇(Enh − En−1

h )‖20
+∆t

(
‖∇Ẽnh‖20 − ‖∇Ẽn−1

h ‖20
)

6 c∆t2h2l +
∆t2−α

Γ(1− α)

n∑
k=1

an−k[‖∇(Ekh − Ek−1
h )‖20

+‖Ekh − Ek−1
h ‖20, 1 6 n 6 N. (76)

Summating (76) from 1 until n (n 6 N) yields

n∑
i=1

(‖∇(Eih − Ei−1
h )‖20 + ‖Eih − Ei−1

h ‖
2
0)

+∆t‖∇Ẽnh‖20 6 cn∆t2h2l + c∆th2l

+
∆t2−α

Γ(1− α)

n∑
i=1

i−1∑
k=1

an−k(‖∇(Ekh − Ek−1
h )‖20

+‖Ekh − Ek−1
h ‖20), 1 6 n 6 N. (77)

Applying Lemma 1 to (77) yields

n∑
i=1

(‖∇(Eih − Ei−1
h )‖20 + ‖Eih − Ei−1

h ‖
2
0)

+∆t‖∇Ẽnh‖20

6 c∆th2l exp

(
∆t2−α

Γ(1− α)

n∑
i=1

i−1∑
k=1

an−k

)
6 c∆th2l, 1 6 n 6 N. (78)

Thereupon, we obtain

‖∇Ẽnh‖0 6 chl, 1 6 n 6 N. (79)

By (73), (50), (51), and (79), we procure

‖∇Enh‖20 + ‖Enh‖20 = ‖ρnh‖20 + (∇Enh ,∇%nh)

+(Enh , ρ
n
h) + (Enh , %

n
h)

= ‖ρnh‖20 + (Enh , ρ
n
h) + (Ẽnh , %

n
h)

6 ch2l +
1

2
‖Enh‖20 + c‖Ẽnh‖20

6 ch2l +
1

2
‖Enh‖20, 1 6 n 6 N. (80)

It follows that

‖∇Enh‖0 6 chl, 1 6 n 6 N. (81)

Through the Nitsche method in [33, Theorem 1.38 or
Remark 3.1]), (79), and (81), we can obtain the below
error estimations

‖wn − wnh‖0 + ‖ϕn − ϕnh‖0
+h(‖∇(wn − wnh)‖0 + ‖∇(ϕn − ϕnh)‖0)

= ‖Enh‖0‖Ẽnh‖0 + h(‖∇Enh‖0 + ‖∇Ẽnh‖0)

6 chl+1, 1 6 n 6 N. (82)

Thus, (56) is obtained by combining Theorem 1 with
(82). This finishes the demonstration of Theorem 2. �

Remark 3 Theorem 2 explains that the theory errors of
the TGCNMFE solutions achieve optimal order and the
TGCNMFE solutions are unconditionally stable. In the next
section, wewill conduct numerical experiments to verify that
the theory errors of the TGCNMFE solution is consistent
with the computing errors.

4 Some Numerical Experiments
In this section, we give a set of numerical tests to verify
the rightness for the procured theory results and to
reveal the advantage for the TGCNMFE method.

Set that Ω̄ = [0, 1]×[0, 1] and the initial value functions
w0(x) = sin(2πx1) sin(2πx2) in GNTFFORDE (i.e.,
Problem 1).

The fine mesh partition =h consists of all squares with
equal side length 1/1000 and the all sides parallel to
the coordinate axis. When l = 1, in order to satisfy the
condition of optimal error estimates h = O(H1+1/l) =
O(H2), the coarse mesh partition =H was taken as the
squares with equal side length 1/

√
1000 and the all

sides parallel to the coordinate axis. When α = 0.2,
0.4, 0.6, and 0.8, l = 1, and ∆t = h1+α/2, according
to Theorems 2, the L2 morn error estimations for the
TGCNMFE solutions to the GNTFFORDE can achieve
O(10−6), theoretically.

First, when α = 0.2, 0.4, 0.6, 0.8, we calculated four
series of TGCNMFE solutions {(wnαh, ϕnαh)} atn = 1000
(i.e., t = 1000∆t) and n = 2000 (i.e., t = 2000∆t) by
the TGCNMFEmethod (i.e., Problem 4), and recorded
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Table 1. The errors of the MGCNMFE and TGCNMFE solutions and CPU running-time at t = 1000∆t.

α MGCNMFE solutions TGCNMFE solutions MGCNMFE method TGCNMFE method
Errors Errors CPU Running-time CPU Running-time

0.2 2.2316 × 10−6 1.0273 × 10−6 215.332 s 114.028 s
0.4 2.4187 × 10−6 1.1438 × 10−6 216.662 s 113.312 s
0.6 2.8665 × 10−6 1.2662 × 10−6 217.153 s 113.634 s
0.8 2.9782 × 10−6 1.3861 × 10−6 216.709 s 112.451 s

Table 2. The errors of the MGCNMFE and TGCNMMFE solutions and CPU running-time at t = 2000∆t.

α MGCNMFE solutions TGCNMFE solutions MGCNMFE method TGCNMFE method
Errors Errors CPU Running-time CPU Running-time

0.2 3.9781 × 10−6 2.1563 × 10−6 427.562 s 214.731 s
0.4 3.6436 × 10−6 2.2253 × 10−6 426.826 s 213.813 s
0.6 3.8841 × 10−6 2.3265 × 10−6 425.716 s 212.832 s
0.8 3.9862 × 10−6 2.4453 × 10−6 425.261 s 212.764 s

the CPU running-time and errors, which are estimated
by ‖wnαh −w

n−1
αh ‖0 + ‖ϕnαh − ϕ

n−1
αh ‖0, listed in the third

and fifth columns in Tables 1 and 2.

Next, in order to exhibit that the TGCNMFEmethod is
superior to the monolayer-grid CNMFE (MGCNMFE)
method (i.e., the Step 1 of Problem 4 when
H =

√
2/1000), we used the MGCNMFE method

to calculate four series of MGCNMFE solutions
{(wnαH , ϕnαH)} at n = 1000 (i.e., t = 1000∆t) and
n = 2000 (i.e., t = 2000∆t) when α = 0.2, 0.4, 0.6,
0.8, and recorded the CPU runtime and errors, which
are estimated by ‖wnαh−w

n−1
αh ‖0 +‖ϕnαh−ϕ

n−1
αh ‖0, listed

in the second and fourth columns in Tables 1 and 2.

The data of Tables 1 and 2 manifest that when n =
1000 (i.e., t = 1000∆t) and n = 2000 (i.e., t =
2000∆t), and α = 0.2, 0.4, 0.6, 0.8, the numerical
computing errors of the MGCNMFE and TGCNMFE
solutions are coincidedwith the theory errorsO(10−6),
but the CPU running-time of TGCNMFE method is
nearly half that of MGCNMFE method. Therefore,
the TGCNMFE method is markedly superior over the
MGCNMFE method and the TGCNMFE method is
feasible and effective to solve GNTFFORDE.

5 Conclusions and Prospect
Above, we have proposed a new TSDMCN method
and a new TGCNMFE method for the GNTFFORDE,
and have strictly analyzed the existence, stability, and
errors for the TSDMCN and TGCNMFE solutions,
theoretically. We have also provided the numerical
experiments to confirm the correctness of theory
results and shown the superiorities for the TGCNMFE
method. The TSDMCN and TGCNMFE methods for
the GNTFFORDE are firstly proposed in this paper.

Hence, they completely differ from the existed time
semi-discrete scheme and the MFE method, including
that in [1]. Of course, the new TGCNMFE method is
also distinct from the existing FE methods with only
first-order time precision and conditional convergence
in [23–26]. Therefore, the TSDMCN and TGCNMFE
methods herein are original and fire-new.

Although the TGCNMFE method here can greatly
simplify computation, save CPU-time, and improve
calculation efficiency, when it is applied to settling
the GNTFFORDE of practical engineering problem,
it usually contains many (often more than tens of
millions) unknowns and needs to take a long time
to calculate the result on a computer. Thus, after the
computer has been running for a long time, due to
the accumulation of calculation errors, the obtained
TGCNMFE solution may deviate from the correct
solution, and even floating-point overflow may occur,
resulting in incorrect calculation results. Therefore,
in future research, we will adopt appropriate
orthogonal decomposition (POD) methods to reduce
the unknowns in the TGCNMFE method, and create
some new POD dimension reduction methods for
the GNTFFORDE and other nonlinear and unsteady
fractional PDEs.

Data Availability Statement

Data will be made available on request.

Funding
This work was supported by the National Natural
Science Foundation of China under Grant 11671106.

18



Journal of Numerical Simulations in Physics and Mathematics

Conflicts of Interest
The authors declare no conflicts of interest.

Ethical Approval and Consent to Participate
Not applicable.

References
[1] Liu, Y., Du, Y., Li, H., Li, J., & He, S. (2015). A

two-grid mixed finite element method for a nonlinear
fourth-order reaction-diffusion problem with
time-fractional derivative. Computers & Mathematics
with Applications, 70, 2474–2492. [CrossRef]

[2] Miller, K. S., & Ross, B. (1993) An Introduction to the
Fractional Calculus and Fractional Differential Equations.
Wiley, Manhattan. [CrossRef]

[3] Gerasimov, A. N. (1948). A generalization of linear
deformation laws and their application to problems
of internal friction. Prikladnaya Matematika i Mekhanika,
PMM, 12, 529–539.

[4] Caputo, M. (1967). Linear model of dissipation whose
Q is almost frequency independent, II. Geophys. J. Roy.
Astron. Soc. 13, 529–539. [CrossRef]

[5] Fedorov, V. E. & Zakharova, T. A. (2023). Nonlocal
solvability of quasilinear degenerate equations with
Gerasimov-Caputo derivatives. Lobachevskii Journal of
Mathematics 44, 594–606. [CrossRef]

[6] Podlubny, I. (1999). Fractional Differential Equations.
Academic Press, New York. [CrossRef]

[7] Bagley, R. L. & Torvik, P. (1983). A theoretical basis for
the application of fractional calculus to viscoelasticity.
Journal of Rheology, 27, 201–210. [CrossRef]

[8] Kilbas, A. A., Srivastava, H. M., & Trujillo, J. J.
(2006) Theory and Applications of Fractional Differential
Equations. Elsevier Science Limited, Amsterdam.

[9] Magin, R. L. (2010) Fractional calculus models of
complex dynamics in biological tissues. Computers
& Mathematics with Applications, 59:5, 1586–1593.
[CrossRef]

[10] Metzler, R. & Klafter, J. (2004). The restaurant at the
end of the random walk: recent developments in
the description of anomalous transport by fractional
dynamics. Journal of Physics A: Mathematical and
General, 37:31, R161. [CrossRef]

[11] Danumjaya, P. & Pani, A. K. (2012). Mixed finite
element methods for a fourth order reaction diffusion
equation. Numer Methods forr Partial Differential
Equations, 28, 1227–1251. [CrossRef]

[12] Li, J. C. (2006). Optimal convergence analysis of
mixed finite element methods for fourth-order elliptic
and parabolic problems. Numer Methods forr Partial
Differential Equations. 22, 884–896. [CrossRef]

[13] Dee, G. T. &Van Saarloos, W. (1998). Bistable systems

with propagating fronts leading to pattern formation.
Physical Review Letters, 60, 2641–2644. [CrossRef]

[14] Coullet, P., Elphick, C., & Repaux, D. (1987). Nature
of spatial chaos. Physical Review Letters, 58, 431–434.
[CrossRef]

[15] Hornreich, R. M., Luban, M., & Shtrikman, S. (1975).
Critical behaviour at the onset of k-space instability
at the λ line. Physical Review Letters, 35, 1678–1681.
[CrossRef]

[16] Aronson, D. G. & Weinberger, H. F. (1978).
Multidimensional nonlinear diffusion arising in
population genetics. Advances in Mathematics, 30,
33–67. [CrossRef]

[17] Zhu, G. (1982). Experiments on director waves in
nematic liquid crystals. Physical Review Letters, 49,
1332–1335. [CrossRef]

[18] Lin, Y. M. & Xu, C. J. (2007). Finite difference/spectral
approximations for the time-fractional diffusion
equation. Journal of Computational Physics, 225,
1533–1552. [CrossRef]

[19] Gao, G., Sun, Z., & Zhang, Y. (2012). A finite difference
scheme for fractional sub-diffusion equations on
an unbounded domain using artificial boundary
conditions. Journal of Computational Physics, 231,
2865–2879. [CrossRef]

[20] Vong, S. & Wang, Z. (2014). A compact difference
scheme for a two dimensional fractional Klein-Gordon
equation with neumann boundary conditions. Journal
of Computational Physics, 274, 268–282. [CrossRef]

[21] Yuste, S. B. & Acedo, L. (2005). An explicit finite
difference method and a new von neumann-type
stability analysis for fractional diffusion equations.
SIAM Journal on Numerical Analysis, 42, 1862–1874.
[CrossRef]

[22] Zeng, F., Zhang, Z., & Karniadakis, G. E. (2016).
Fast difference schemes for solving high-dimensional
time-fractional subdiffusion equations. Journal of
Computational Physics, 307, 15–33. [CrossRef]

[23] Dehghan, M. & Abbaszadeh, M. (2018). An
efficient technique based on finite difference/finite
element method for solution of two-dimensional
space/multi-time fractional bloch-torrey equations.
Applied Numerical Mathematics, 131, 190–206.
[CrossRef]

[24] Dehghan,M., Safarpoor, M., &Abbaszadeh,M. (2015).
Two high-order numerical algorithms for solving the
multi-term time fractional diffusion-wave equations.
Journal of Computational and Applied Mathematics, 290,
174–195. [CrossRef]

[25] Jiang, Y. & Ma, J. (2011). High-order finite element
methods for time-fractional partial differential
equations. Journal of Computational and Applied
Mathematics, 235, 3285–3290. [CrossRef]

[26] Liu, Q., Liu, F., Turner, I., & Anh, V. (2011). Finite
element approximation for a modified anomalous

19

https://doi.org/10.1016/j.camwa.2015.09.012
https://api.semanticscholar.org/CorpusID:117250850
https://doi.org/10.1111/j.1365-246X.1967.tb02303.x
https://doi.org/10.1134/S1995080223020178
https://doi.org/10.1016/S0076-5392(13)60010-7
https://doi.org/10.1122/1.549724
https://doi.org/10.1016/j.camwa.2009.08.039
https://doi.org/0.1088/0305-4470/37/31/R01
https://doi.org/10.1002/num.20679
https://doi.org/10.1002/num.20127
https://doi.org/10.1103/PhysRevLett.60.2641
https://doi.org/10.1103/PhysRevLett.58.431
https://doi.org/10.1103/PhysRevLett.35.1678
https://doi.org/10.1016/0001-8708(78)90130-5
https://doi.org/10.1103/PhysRevLett.49.1332
https://doi.org/10.1016/j.jcp.2007.02.001
https://doi.org/10.1016/j.jcp.2011.12.028
https://doi.org/10.1016/j.jcp.2014.06.022
https://doi.org/10.1137/030602666
https://doi.org/10.1016/j.jcp.2015.11.058
https://doi.org/10.1016/j.apnum.2018.04.009
https://doi.org/10.1016/j.cam.2015.04.037
https://doi.org/10.1016/j.cam.2011.01.011


Journal of Numerical Simulations in Physics and Mathematics

subdiffusion equation. Applied Mathematical Modelling,
35, 4103–4116. [CrossRef]

[27] Baseri, A., Abbasbandy, S., & Babolian, E. (2018). A
collocation method for fractional diffusion equation
in a long time with chebyshev functions. Applied
Mathematics and Computation, 322, 55–65. [CrossRef]

[28] Esen, A., Tasbozan, O., Ucar, Y., &Yagmurlu, N. (2015).
A b-spline collocation method for solving fractional
diffusion and fractional diffusion-wave equations.
Tbilisi Mathematical Journal, 8, 181–193 [CrossRef]

[29] Nagy, A. (2017). Numerical solution of time
fractional nonlinear Klein-Gordon equation
using sinc-Chebyshev collocation method. Applied
Mathematics and Computation, 310, 139–148. [CrossRef]

[30] Xu, Q. & Hesthaven, J. S. (2014). Discontinuous
Galerkin method for fractional convection-diffusion
equations. SIAM Journal on Numerical Analysis, 52,
405–423. [CrossRef]

[31] Baccouch, M. & Temimi, H. (2021). A high-order
space-time ultra-weak discontinuousGalerkinmethod
for the second-order wave equation in one space
dimension. Journal of Computational and Applied
Mathematics, 389, 113331. [CrossRef]

[32] Bhardwaj, A. & Kumar, A. (2020). Numerical solution
of time fractional Tricomi-type equation by an RBF
based meshless method. Engineering Analysis with
Boundary Elements, 118, 96–107. [CrossRef]

[33] Luo, Z. (2024). Finite element and reduced dimension
methods for partial differential equations. Springer Nature
Singapore. [CrossRef]

[34] Teng, F., & Luo, Z. D. (2024). A natural boundary
element reduced-dimension model for uniform
high-voltage transmission line problem in an
unbounded outer domain. Computational and Applied

Mathematics, 43(3), 106. [CrossRef]
[35] Zhang, G. & Lin, Y. (2011). Notes on Functional

Analysis (in Chinese). Peking University Press, Beijing.
[CrossRef]

[36] Li, K. & Tan, Z. (2023). A two-grid fully discrete
Galerkin finite element approximation for fully
nonlinear time-fractional wave equations. Nonlinear
Dynamics, 111, 8497–8521. [CrossRef]

Yuejie Li received the PhD. degree in
pattern recognition and intelligent system
from North China Electric Power University,
BEIJING 102206, CHINA, in 2023. Her
research interests include the finite element
methods for the various PDEs as well as
their reduced-dimension methods based on
the proper orthogonal decomposition, and
computer applications. She served as an
Associate Editor for the Journal of Numerical

Simulations in Physics and Mathematics in the ICCK. (Email:
lyj@oit.edu.cn)

Zhendong Luo received the PhD. degree in
computational mathematics from University
of Science and Technology of China (USTC),
HDFEI 230026, CHINA, in 1997. His
research interests include almost all numerical
calculation methods such as the finite element
method, the finite difference scheme, the finite
volume method, the space-time finite method,
the natural boundary element method, the
spectral method, and the spectral element

method, as well as their reduced-dimension methods based on
the proper orthogonal decomposition, and their applications.
He served as an Editor-in-Chief for the Journal of Numerical
Simulations in Physics and Mathematics in the ICCK. (Email:
zhdluo@ncepu.edu.cn)

20

https://doi.org/10.1016/j.apm.2011.02.036
https://doi.org/10.1016/j.amc.2017.11.048
https://doi.org/10.1515/tmj-2015-0020
https://doi.org/10.1016/j.amc.2017.04.021
https://doi.org/10.1137/130918174
https://doi.org/10.1016/j.cam.2020.113331
https://doi.org/10.1016/j.enganabound.2020.06.002
https://doi.org/10.1007/978-981-97-3434-4
https://doi.org/10.1007/s40314-024-02617-6
https://gitcode.com/Open-source-documentation-tutorial/7d966
https://doi.org/10.1007/s11071-023-08265-5

	Introduction
	A New TSDMCN Scheme
	The TGCNMFE Method
	Some Numerical Experiments
	Conclusions and Prospect
	Yuejie Li
	Zhendong Luo


