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Abstract
Binary functions have a wide range of applications
in the fields of machine learning, statistical
learning, and so on. In this paper, we investigate
the exponential inequalities for the independent
V -statistics of binary affine functions and obtain
a universal inequality for V -statistics. Due to
the typical characteristics of this kind of binary
function, including symmetry and affinity, this
work has great practical significance. Finally, we
derive the corresponding inequalities in the context
of specific similarity learning.
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1 Introduction
V -statistic of degreemwith the function f is defined
as

Vm,n(f) =
n∑

i1=1

· · ·
n∑

im=1

f (Xi1 , Xi2 , · · · , Xim) (1)

where X1, X2, · · · , Xn are random variables taking
values in a measurable space (E,X ) (with E Polish)
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and with distribution function ρi. According to (1),
if we sum over different combinations of indices
(i1, . . . , im), the result is the U -statistics. In many
applications, the analysis methods for U -statistics
and V -statistics are the same (In addition to having
a permutation order). Moreover, the study of
non-asymptotic tail bounds and limit theorems
for V -statistics and U -statistics under independent
and identically distributed conditions is also very
extensive [1–3]. When the observed data are no
longer independent, the analysis of V -statistics and
U -statistics has attracted more and more attention
in the fields of statistics and probability, with most
studies focusing on deriving limit theorems and
the consistency of the bootstrap method, such as
[4–7]. However, there are relatively few research
results on the non-asymptotic concentration bounds
of V -statistics and U -statistics. Exceptions include
[8, 9]; in [9], exponential inequalities for m-point
V -statistics were studied based on the Fourier features.
In [8], concentration inequalities for U -statistics were
investigated based on the Markov property.

In this paper, an exponential inequality for the
V -statistics of binary affine functions [10] is derived
under mixing conditions. Subsequently, this
conclusion is applied to the pairwise learning scenario
in machine learning, and the corresponding results
are obtained.
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2 Definitions and notations
Here, we need to introduce some relevant concepts
that will be used in the subsequent conclusions.

Definition 1. Amultivariate function is affine with respect
to each variable Xi, which means that for any variable Xi,
it satisfies the following equation:

f(X1, · · · , (1− λ)X∗i + λX∗∗i , · · · , Xn)

=(1− λ)f(X1, · · · , X∗i , · · · , xn)
+ λf(X1, · · · , X∗∗i , · · · , Xn).

The research in this paper is based on a bivariate
affine function. From the properties of affine functions,
we know that the function f(X1, X2) satisfies the
following inequality:

f(X1, X2) =f((1−X1) · 0 +X1 · 1, x2)
=(1−X1)f(0, X2) +X1f(1, X2).

By repeating the above decomposition for X2, we can
obtain the following decomposition formula

f(X1, X2) =

1∑
i,j=0

fi,jei(X1)ej(X2), (2)

where fi,j = f(i, j), the basis functions ei(·) satisfy the
following conditions:

e0(X) = X, e1(X) = 1−X.

Definition 2. A sequence {Xi}i∈N is called strong mixing
(also called α-mixing) if

α(j) := sup
i∈N?

sup
Mi,Mi+j

|P(Mi ∩Mi+j)− P(Mi)P(Mi+j)|

→ 0 as j →∞,

whereMi ∈Mi
0,Mi+j ∈M∞i+j , andMb

a is the σ-algebra
generated from random variables Xa, · · · , Xb.

Denote θ := θ(f) := E
[
f
(
X̃1, X̃2

)]
where X̃i are

identically distributed and independent of Xi (, i =
1, 2). f is called centered if θ(f) = 0, and degenerated
if

E
[
f
(
x1, X̃2

)]
= θ,

for any x1, x2 ∈ X . Using the Hoeffding
decomposition, for any x1, x2 ∈ X , we have the
following equation for the bivariate affine function
f(x1, x2),

f(x1, x2) =

2∑
i=1

f1(xi) + f2(x1, x2), (3)

where f1, f2 are recursively defined as

f1(xi) = E
[
f(x1, X̃2)

]
− θ,

f2 (x1, x2) := f(x1, x2)− θ −
2∑
i=1

f1 (xi) .

Hence, we can know that

f − θ = f1(x1) + f1(x2) + f2(x1, x2).

We denote the V -statistic generated by f2 and sample
set {xi}ni=1 by

V2,k(f2) =

k∑
i1,i2=1

f2(xi1 , xi2).

3 Main result and proof

Theorem 1. Assume that X1, · · · , Xn are n normalized
samples that satisfy the following strong mixing coefficient

α(j) ≤ γ1 exp(−γ2j), j ≥ 1,

where γ1, γ2 are two positive absolute constants. Suppose
that ‖f‖ ≤ F is a symmetric bivariate function. Then, we
have the following inequality for δ > 0,

P
(
n−2 max

1≤k≤n
|V2,k (f2)| ≥ δ

)
≤ 3(An+Mn)e

−nδ, (4)

with

An = exp

4
√
2FδC1

(
64nγ

1/3
1

1− exp {−γ2/3}
+ 1

)1/2
 ,

Mn = exp
{
12FδC2(log n)

2
}
.

Proof. For p = 2, with {gp}2p=1 defined as g2 := f−θ, so
by the Hoeffding decomposition [9], we can obtain the
following decomposition for binary affine functions

f2(x1, x2) =

1∑
i,j=0

fi,jE(ei)ẽj(x2),

where ẽj := ej − E {ej(X1)} , and

V2,k(f2) =
1∑

i,j=0

fi,jE(ei)

{
k∑
t=1

ẽj(Xt)

}
,
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then, for each j = 0, 1 and k ∈ [n], let

Sk,j :=
k∑
t=1

ẽj(Xt) and Zj := max
1≤k≤n

|Sk,j |.

Since {Xi}ni=1 satisfies the α-mixing condition, ẽj(Xt)
also satisfies the α-mixing. Next, we estimate the
second moment ofmax1≤k≤n |V2,k (fp)|. Let

Tp := n−p max
1≤k≤n

|V2,k (fp)| .

Define

ν = C1

(
nσ2 + 1

)
, c = C2(log n)

2,

and σ2 = supj=1,2 σ
2
j , with

σ2j := Var {ẽj (X1)}+ 2
∑
t>1

|Cov {ẽj (X1) , ẽj (Xi)}| .

Integrating the tail estimate in Corollary 24 of [11] and
using Theorem 2.3 in [12] yield that, for any positive
integer N , we can choosing C2 in c such that

E
(
Z2N
j

)
≤ N !(8ν)N + (2N)!(4c)2N .

Let µa := sup1≤t≤n(E|ei(Xt)|a)1/a ≤ 1, then we have
the following from [8](Eq.(12))

ET 2N
2 = En−2N ( max

1≤k≤n

1∑
i,j=0

|fi,j |E (ei)Sk,j)
2N

≤ 42N−1n−2Nµ2N1

1∑
i,j=0

|fi,j |2N E
(
Z2N
j

)
≤ 42Nn−2Nµ2N1 F 2N

{
N !(8ν)N + (2N)!(4c)2N

}
,

In the first inequality, we apply Jensen’s inequality,
and the second inequality holds with ‖f‖ ≤ F . By
Stirling’s approximation formula

√
2πnn+1/2e−n ≤

n! ≤ enn+1/2e−n, it holds that

{(2N)!}1/2 ≤e1/2(2N)N+1/4e−N

≤e1/22N+1/2NN+1/2e−N ≤ 3NN !.

and we also have (N !)1/2 ≤ N !. Thus we have

E (T2)
2N
2 ≤

(
ET 2N

2

) 1
2

≤ 22Nn−NµN1 F
N
{
(2
√
2)NN !νN/2 + 6NN !cN

}
.

Nowwe control the expectation exponential transform
of T 1/2

2 ,

E
(
eλT

1/2
2

)
=

∞∑
N=0

λN

N !
ETN/22 ≤ 3

∞∑
N=0

λ2N

(2N)!
ET 2N/2

2

≤3
∞∑
N=0

λ2N

(2N)!
n−2NµN1 F

N
{
(8
√
2)NN !νN/2 + 24NN !cN

}
,

In the first inequality, we use only the even moments
with an absolute constant 3. For the first term below,
we have

∞∑
N=0

λ2N
N !

(2N)!
(2
√
2)Nn−2NµN1 F

NνN/2

≤
∞∑
N=0

(λ/n)2N

N !
2−N (8

√
2)NµN1 F

NνN/2

=exp
{√

2(λ/n)2µ1Fν
1/2
}

≤ exp
{
4
√
2(λ/n)2Fν1/2

}
.

Similarly, we can derive that

∞∑
N=0

λ2N
N !

(2N)!
24Nn−2NµN1 F

NcN

≤
∞∑
N=0

(λ/n)2N

N !
2−N24NµN1 F

NcN

=exp
{
12(λ/n)2µ1Fc

}
≤ exp

{
12(λ/n)2Fc

}
,

so

E
(
eλT

1/2
2

)
≤3 exp

{
4
√
2(λ/n)2Fν1/2

}
+3 exp

{
12(λ/n)2Fc

}
Now, taking λ = nδ1/2, from Chebyshev’s inequality,
we can obtain

P (T2 ≥ δ) ≤ exp
(
−λδ1/2

)
E
(
eλT

1/2
2

)
≤ 3(An+Mn)e

−nδ,

where

An = 4
√
2FδC1

(
nσ2 + 1

)1/2
, Mn = 12FδC2(log n)

2.

Moreover, taking δ = 1 in Theorem 3 of [13], we obtain
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σ2 =Var {ẽj (X1)}+ 2
∑
t>1

|Cov {ẽj (X1) , ẽj (Xt)}|

≤2
∑
t≥1
|Cov {ẽj (X1) , ẽj (Xt)}|

≤2

{ ∞∑
n=0

8α1/3(n)

}
‖ẽj (X1)‖3 ‖ẽj (X1)‖3

≤64

{ ∞∑
n=0

α1/3(n)

}
‖ej (X1)‖3 ‖ej (X1)‖3

≤64γ1/31 µ23

{ ∞∑
n=0

exp (−γ2n/3)

}

≤ 64γ
1/3
1

1− exp {−γ2/3}
.

With the above Theorem 1, we only need to determine
f1. In Lemma 4.3 in [9], let p = 1; therefore, we have
the following Lemma.

Lemma 1. Given the same conditions and notation as in
Theorem 1, we can obtain the following inequality.

P

(
n−1

∣∣∣∣∣
n∑
i=1

(f1(xi))

∣∣∣∣∣ ≥ δ
)
≤ 6 exp

(
− C3nδ

2

A1,n + δM1,n

)
,

(5)
where

A1,n = F 2

(
64γ

1/3
1

1− exp (−γ2/3)
+

(log n)4

n

)
,

M1,n = F (log n)2.

From equations (3), (4), and (5), we can derive our
final result.

Theorem 2. Assume that X1, · · · , Xn are n normalized
samples that satisfy the following strong mixing coefficient

α(j) ≤ γ1 exp(−γ2j), j ≥ 1,

where γ1, γ2 are two positive absolute constants. Suppose
that ‖f‖ ≤ F is a symmetric bivariate function. Then, we
have the following inequality for δ > 0,

P

n−2 max
1≤k≤n

∣∣∣∣∣∣ 1n2
n∑

i,j=1

(f(xi, xj)− θ)

∣∣∣∣∣∣ ≥ 2δ


≤3(An +Mn)e

−nδ + 6 exp

(
− C3nδ

2

A1,n + δM1,n

)
,

(6)

with

An = exp

4
√
2FδC1

(
64nγ

1/3
1

1− exp {−γ2/3}
+ 1

)1/2
 ,

and
Mn = exp

{
12FδC2(log n)

2
}
.

Proof. For simplification, we denote

6 exp

(
− C3nδ

2

A1,n + δM1,n

)
= P1, 3(An +Mn)e

−nδ = P2.

Then we can know that

P

(
n−1

∣∣∣∣∣
n∑
i=1

(f1(xi))

∣∣∣∣∣ ≤ δ
)
≥ 1− P1,

P
(
n−2 max

1≤k≤n
|V2,k (f2)| ≤ δ

)
≥ 1− P2,

and from equation (3)

P

n−2 max
1≤k≤n

∣∣∣∣∣∣ 1n2
n∑

i,j=1

(f(xi, xj)− θ)

∣∣∣∣∣∣ ≤ 2δ


≥(1− P1)(1− P2) ≥ 1− (P1 + P2).

So we have the following

P

n−2 max
1≤k≤n

∣∣∣∣∣∣ 1n2
n∑

i,j=1

(f(xi, xj)− θ)

∣∣∣∣∣∣ ≥ 2δ


≤P1 + P2

=3(An +Mn)e
−nδ + 6 exp

(
− C3nδ

2

A1,n + δM1,n

)
.

4 Examples and extensions
In machine learning theory, pairwise similarity
learning is a crucial research scenario [21]. [14, 15]
has already studied many independent and identically
distributed similarity learning models, which have
been applied to practical problems such as information
retrieval and face recognition [16–18]. However,
under mixing conditions, research is still a blank
slate. For this reason, we apply the theory obtained
in the previous text to similarity learning. Especially,
the similarity function plays a key role in similarity
learning [19, 22] which is defined as

sM (x1,x2) = x>1 Mx2 (7)
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whereM ∈ Rd×d is a positive definite real symmetric
matrix. In this paper, we only discuss the properties of
the similarity function. To ensure that the expression
for similarity learning still satisfies the properties of a
binary affine function, we decide tomake the following
transformations on sM (x1,x2) and the vector xi(i =
1, 2).

xi → Xi = (xi, 0, · · · , 0)
sM (x1,x2)→ f(X1,X2) = X>1 MX2

= diag{sM (x1,x2), 0, · · · , 0}
(8)

We can verify that the f(X1,X2) in equation (8)
satisfies the properties of a binary affine function in
matrix form

f(X1,X2) = X>1 MX2 =
I∑

i,j=O

fi,jei(X1)e
>
j (X2)

where eO(X) = X, eI(X) = I − X, the definition
of fi,j is similar to equation (2). Therefore, we can
say that the function f(X1,X2) after the sM (x1,x2)
transformation satisfies the property of a binary affine
function. As a result, under the mixing conditions, we
can obtain a conclusion similar to Theorem 2.

5 Conclusion
This paper has established the concentration
estimation for symmetric binary affine functions under
α-mixing. We have leveraged the decomposability
of symmetric binary affine functions to factorize the
original function into a product of basis functions.
Building on this, we have applied the Hoeffding
decomposition to transform the estimation of
V -statistics into estimating inequality for maximal
inequality of partial sums in a univariate form. In the
future, it is of considerable interest to further extend
the results to τ -mixing process [20, 23] and more
general functions such as square integrable functions
[24].
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