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Abstract

Federated learning (FL) enables decentralized
model training and enhances user privacy by
keeping data on local devices. Despite these
advantages, FL remains vulnerable to sophisticated
adversarial attacks. Federated recommender
systems (FRS), an important application of FL, are
particularly susceptible to threats such as model
poisoning. In this paper, we propose DyMUSA,
a novel model poisoning attack tailored for FRS.
DyMUSA exploits systemic vulnerabilities through
dynamic user selection and adaptive poisoning
strategies. Specifically, it leverages the Isolation
Forest algorithm to identify anomalous users and
generate poisoned gradients that compromise the
integrity of the recommender system. Experiments
conducted on real-world datasets demonstrate that
DyMUSA significantly increases the exposure of
targeted items while maintaining minimal impact
on overall system performance.
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data, datasets.

1 Introduction

Federated learning (FL) enables collaborative model
training while preserving user privacy by keeping data
on local devices and only exchanging model updates.
This decentralized approach is particularly valuable
in recommender systems (RS), which leverage FL
to deliver personalized content on platforms like
e-commerce, social media, and streaming services by
analyzing user behaviors and preferences.

Federated recommender systems (FRS) enhance
privacy and security by decentralizing the training
process. However, this decentralization also
introduces new challenges, especially in defending
against sophisticated attacks such as model poisoning.
These attacks manipulate the recommendation
process by injecting malicious data or altering model
parameters, which compromises the system’s integrity
and reliability. While traditional centralized RS are
vulnerable due to their reliance on centralized data
aggregation, FRS are not immune to adversarial
actions, particularly those targeting the collaborative
learning process.
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In this paper, we present the Dynamic Malicious
User Selection Attack (DyMUSA), an adaptive
model poisoning attack specifically designed for
FRS. DyMUSA employs an enhanced version of the
Isolation Forest algorithm, combining Context-Aware
and Weighted Isolation Forests to dynamically
identify and exploit users exhibiting anomalous
behaviors. By integrating contextual information
and assigning different weights to features based
on their importance, DyMUSA improves detection
accuracy and effectiveness. Unlike static attacks,
DyMUSA continuously adapts to changes in the
training environment, increasing its impact while
maintaining a low profile to avoid detection.

Our research makes several key contributions. First, we
introduce DyMUSA, a dynamic attack framework that
adapts to the evolving federated learning environment,
thereby enhancing its stealth and effectiveness.
Second, DyMUSA incorporates an improved anomaly
detection mechanism, which leverages contextual data
and weighted features to more accurately target users
who exhibit abnormal behaviors. Third, the attack
employs an adaptive poisoning strategy, where fake
users and interactions are iteratively injected into the
system to manipulate the recommendation model,
ensuring the attack remains effective as the federated
learning process evolves.

To validate the efficacy of DyMUSA, we conduct
extensive experiments on real-world datasets. The
results demonstrate that DyMUSA outperforms
traditional poisoning attacks in both effectiveness
and stealth, significantly impacting metrics such
as exposure ratio and recommendation accuracy.
These findings underscore the need for enhanced
threat awareness, the development of dynamic
detection methods, and the implementation of
adaptive defense strategies in federated recommender
systems. The research also highlights the importance
of comprehensive security evaluations and paves the
way for future studies focused on fortifying the security
and stability of federated learning frameworks against
evolving adversarial tactics.

1.1 Main Contributions

The main contributions are as follows:

1. We propose a new dynamic attack framework
named DyMUSA that adapts to changes in the
federated learning environment, increasing its
stealthiness and effectiveness.

2. DyMUSA  implicitly =~ embeds  contextual
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information and utilizes a novel detection
paradigm to enhance its ability to target abnormal
behavior users by mimicking them over typical
users.

3. DyMUSA achieves higher attack success
rates while remaining harder to detect than
existing traditional methods - FedRecAttack and
PoisonRec.

The rest of the paper is organized as follows: we
review related work in Section 2, introduce our system
model in Section 3, present experimental results and
analysis in Section 4, and conclude the proposed work
in Section 5.

2 Related Work

Modern recommender systems (RS) have significantly
enhanced user experiences across digital platforms by
aligning user preferences with available content [1, 3,
4]. Despite these advancements, RS are susceptible to
various security threats, particularly poisoning attacks,
where adversaries inject deceptive or harmful data into
the training datasets or intervene during the model
training process. Such attacks can promote low-quality
products or spread misinformation, undermining the
system’s integrity [5-7].

Early research on poisoning attacks in RS introduced
heuristic-based methods, including random, average,
and love/hate attacks, which required minimal
knowledge of the underlying data [8, 9]. Over time,
more sophisticated strategies, such as bandwagon and
relation attacks, were developed, leveraging principles
like Zipf's law to strengthen connections between
target and popular items [5, 10]. Although effective,
these static methods became predictable and easier to
detect [11].

In recent years, the focus has shifted towards attacks
tailored to both centralized and decentralized RS
architectures, particularly in federated learning
frameworks.  Federated recommender systems
(FRS) are valued for their privacy-preserving
characteristics, as user data remains local, with only
model updates being shared [28]. However, this
decentralized approach introduces new vulnerabilities
that adversaries can exploit through model poisoning
attacks. For example, FedRecAttack exemplifies how
attackers can degrade a global model’s performance
by strategically manipulating local updates in a
federated setting [33].

Attackers often operate with limited resources,
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necessitating cost-effective and stealthy strategies to
avoid detection [15, 16]. This requires blending
malicious data with legitimate inputs to maintain
a low profile [17, 18]. In response, two primary
defensive strategies have emerged: poisoning data
filtering and robust training. Poisoning data filtering
involves identifying and removing malicious elements
before they enter the system, employing techniques
like supervised anomaly filtering, unsupervised

clustering, and confidence-based filtering [19-21].

Robust training, on the other hand, enhances model
resilience by incorporating methods such as mutual
enhancement among multiple models and adaptive
learning of confidence levels for each sample [24-26].

Furthermore, research has been conducted to improve

the privacy and security of federated learning systems.

For instance, the FedFast framework accelerates the
training of FRS while maintaining high levels of
security and privacy [37]. Additionally, lightweight
anomaly detection mechanisms have been explored
to promptly identify and mitigate potential threats in
federated environments [38].

Beyond poisoning attacks, federated learning systems
face other security threats, such as attribute inference
and model inversion attacks, which aim to extract
sensitive information from shared models. To
counter these threats, researchers have proposed
privacy-preserving techniques, including differential
privacy, secure multi-party computation, and
homomorphic encryption, which aim to protect
user data while ensuring the effectiveness of
recommendation models [12, 28].

In [27], Du et al. suggested a distributed foundation
models for multi-modal learning in 6G wireless
networks.  This work explores cutting-edge Al
techniques - pipeline parallelism, data parallelism,
and multi-modal learning, to promote the sustainable
growth of distributed multi-modal FMs in the 6G era.
Pipeline parallelism can help alleviate communication
bottlenecks by compressing activations and gradients
while strategically allocating communication
resources. For data parallelism, federated learning
integrated with over-the-air computation (AirComp)
speeds up gradient aggregation by merging
communication and computation.

In [29], Hasan provides a comprehensive
systematic review of federated learning (FL) as
a privacy-preserving paradigm for enterprise
decision systems, synthesizing findings from a
large set of peer-reviewed studies. The paper

highlights foundational FL algorithms (e.g., FedAvg,
FedProx, SCAFFOLD) and the layered use of
privacy mechanisms such as secure aggregation,
differential privacy, homomorphic encryption,
and multiparty computation to balance privacy
guarantees with empirical robustness. It also
identifies major vulnerabilities including model
poisoning, backdoor attacks, and gradient leakage,
and outlines practical defensive strategies like robust
aggregation and anomaly detection. Sector-specific
implementations in healthcare, finance, and other
domains demonstrate how FL enables collaborative
modeling while respecting data residency and
governance requirements.

In [30], Feng et al. survey the security threats
facing federated learning systems, categorizing key
attack types—backdoor attacks, Byzantine attacks, and
adversarial attacks—and reviewing their associated
defense mechanisms. The survey emphasizes that
the distributed nature and data inaccessibility in FL
both protect privacy and introduce new vulnerabilities,
making FL systems susceptible to attacks during
training and inference phases. It also discusses
the strengths and limitations of existing defenses,
provides a threat taxonomy, and outlines future
research directions aimed at strengthening FL's
security posture.

In [31], Alansary et al. review emerging artificial
intelligence (Al)-related threats in cybercrime, with a
specific focus on zero-day attacks leveraging machine,
deep, and federated learning techniques. The paper
explores how advanced Al methods are exploited
by cybercriminals to discover and exploit previously
unknown system vulnerabilities that evade traditional
signature-based defenses. Key challenges such as
handling imbalanced data, generalization across
diverse attack types, and computational trade-offs
are discussed, alongside future research directions to
enhance proactive detection and mitigation strategies.

In [32], Guo et al. investigate Gradient Inversion
Attacks (GIA) in federated learning, analyzing
how sensitive, private data can be reconstructed
from shared gradient information despite FL's
privacy goals. They categorize existing GIA methods
into optimization-based, generation-based, and
analytics-based approaches and evaluate their
effectiveness and limitations in practical FL settings.
Their analysis shows that while some attack variants
are more practical than others, all pose serious privacy
risks, and they propose a multi-stage defense pipeline
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to guide the design of more robust FL frameworks.

This research contributes to the growing body of
knowledge on RS security by introducing the Dynamic
Malicious User Selection Attack (DyMUSA ). DyMUSA
employs advanced anomaly detection through an
enhanced Isolation Forest algorithm to dynamically
identify and exploit vulnerabilities in federated
recommender systems. By introducing adaptive
poisoning strategies that evolve with the federated
learning process, this study emphasizes the need for
robust defense mechanisms and aims to inspire future
research to strengthen the security and resilience of
federated learning frameworks.

In light of the inadequacies of traditional defenses,
namely, limited adaptability, lack of dynamic response,
high detection risk, vulnerability to evolving attacks,
and inefficiency in sparse data, we present the
Dynamic Malicious User Selection Attack (DyMUSA),
an adaptive model poisoning attack specifically
designed for FRS. Unlike existing attack strategies
that do not evolve stealthily over time namely
FedRecAttack [33] and PoisonRec [34], DyMUSA
leverages an Enhanced Isolation Forest (EIF) algorithm
to dynamically detect and exploit anomalous user
behaviors in real-time. By integrating context-aware
and weighted features into the isolation forest,
DyMUSA adapts to changes in the federated learning
process, generating poisoned gradients that are
significantly harder to detect than those created by
previous methods. The novelty of DyMUSA lies in
its ability to continuously evolve its attack strategy by
leveraging EIF as the global model adapts over time.
This dynamic approach ensures that the poisoning
attack remains effective while minimizing the risk
of detection. DyMUSA achieves this by analyzing
the current state of the system, and using contextual
signals to identify and target the most vulnerable users.
This contrasts with prior approaches that relied on
fixed, predefined attack strategies, which often became
less effective as the system evolved [35, 36].

Our extensive experimental evaluation shows that
DyMUSA consistently outperforms existing attack
frameworks, FedRecAttack and PoisonRec, achieving
higher attack success rates while maintaining the
robustness of the global model against detection.

3 System Model

Federated learning (FL) enables collaborative model
training without sharing raw data, preserving
user privacy by ensuring data remains on local
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devices while exchanging only model updates [6].
Recommender systems (RS) within federated learning
environments use decentralized data to personalize
content across various platforms, enhancing user
satisfaction [1, 3, 11].

Let U = {u1,uo,...,un} denote the set of users and
V = {v1,v9,...,vp} denote the set of items. The
interaction matrix R € RV*M represents user-item
interactions, where R;; is the interaction value between
user u; and item v;.

We utilize LightGCN as the base model for our
federated recommender system [2], though DyMUSA
is applicable to various recommender models.
LightGCN simplifies graph convolution networks by
focusing on essential graph convolutional operations.
The propagation rule in matrix form is given by:

g+ — fek) (1)

where %) ¢ RWV+M)xd are the user and item
embeddings at layer k, and A is the symmetrically
normalized adjacency matrix of the user-item graph

2].

The final user and item embeddings are obtained by
combining the embeddings from all layers:

K K
Ei=> ol &= a&” @
k=0 k=0

where «;, are hyperparameters determining the
importance of each layer’s embedding.

The predicted interaction score ﬁij is computed as the
inner product of the final user and item embeddings:

Rij = (€3)"& (3)
In the federated learning framework, the central server
maintains the global model parameters ©, while each

user u; computes local updates. The server aggregates
these updates to refine the global model [28].

3.1 Proposed Technique

The proposed Dynamic Malicious User Selection
Attack (DyMUSA) is illustrated in Figure 1. DyMUSA
leverages an enhanced Isolation Forest (EIF) algorithm
that combines Context-Aware Isolation Forest (CAIF)
and Weighted Isolation Forest (WIF) to dynamically
identify users exhibiting anomalous behaviors [13, 14].
By incorporating contextual information and assigning
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e Feature Extraction: Interaction data from users
(such as ratings and clicks) is used to extract
relevant features, including user engagement and
item diversity metrics.

e Anomaly Detection: The extracted features are
processed by the EIF algorithm, which computes
anomaly scores s(u;) for each user to identify
those with anomalous behavior.

e Malicious User Selection: Users with anomaly
scores above a threshold 7 are selected as potential
malicious users, who significantly deviate from
normal behavior.

e Fake Data Generation: For the selected malicious
users, synthetic interaction data is generated
to simulate interactions they did not perform,
effectively poisoning the dataset.

e Local Update Computation: Using the fake
interaction data, poisoned updates (A©,,) are
computed locally to manipulate the global model.

e Aggregation and Model Update: The poisoned
updates are aggregated and sent to the central
server, updating the global model parameters (©).

DyMUSA’s adaptive approach ensures it remains
effective throughout the federated learning process
by continuously identifying and exploiting malicious
users.

To evaluate the performance of DyMUSA, we use
metrics such as the exposure ratio at X (FRQK),
normalized discounted cumulative gain (NDCG), hit
rate at K (HRQK), and mean reciprocal rank (MRR).

4 Evaluation

The Dynamic Malicious User Selection Attack
(DyMUSA) is meticulously designed to execute
an advanced model poisoning attack on federated
recommender systems. This section elaborates on the
critical components and methodologies employed in
the DyMUSA implementation.

The DyMUSA attack was simulated in a federated
learning environment using PySyft, a library that
enables privacy-preserving machine learning.

The DyMUSA attack operates by initializing specific
parameters and data to effectively execute the attack.
The key components include:

e [nteraction Matrix: The interaction matrix
R € RNXM contains user-item interaction data,
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serving as the basis for identifying user behavior
and preferences.

o User and Item Numbers: Determines the number
of users N and items M from the interaction
matrix dimensions, providing an overview of the
dataset’s scale.

o Attack Parameters: Configures parameters such as
the number of epochs, inner and outer epochs, and
sizes for malicious users and feedback to ensure
the attack’s effectiveness.

The target items for the attack are selected using one
of the following strategies:

e Popular Items: Items with the highest interaction
counts.

e Random Items: Items selected randomly.

o Category-Specific Items: Items chosen from a

particular category.

o Low Interaction Items: Items with minimal

interactions.
New fake users are introduced into the dataset by:

o User Embeddings Initialization: Initializing new
embeddings & for the fake users.

o Updating Interaction Matrix:  Incorporating
interactions for the fake users into the interaction
matrix R.

o Reinitializing Recommender System: Reinitializing
the recommender system with the updated
dataset.

DyMUSA employs an adaptive poisoning strategy
to iteratively compromise the federated learning
model. The attack evolves with the federated learning
process by dynamically selecting malicious users and
generating poisoned model updates based on their
anomalous behavior.

e Anomaly Score Computation: For each user u;
in the interaction matrix R, compute the anomaly
score s(u;) using the EIF.

e Dynamic Threshold Selection: Update the
threshold 7 dynamically based on the percentile
p of the anomaly scores:

(4)

7 = Percentile(AnomalyScores, p)

Further adjust the threshold based on the
detection rate DetectionRate and a target
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detection rate :

7 =7+ a x (DetectionRate — 3)

(5)

e Dynamic User Selection: Select users with

anomaly scores exceeding the updated threshold.

1. Fake Data Generation: DyMUSA generates fake

interaction data for the identified malicious users.

This fake data is designed to bias the model
toward the attacker’s target items.

(a) Fake User Initialization:

FakeUser; = {u; | u; ¢ U} (6)
Here, U represents the set of real users, and
FakeUser; denotes a newly initialized fake
user.

(b) Interaction Probability Computation: For
each fake user u; and item v;, compute the

probability of interaction P(u;, vj):

P(ui,v) = o ((€)7E]) (7)
where £ and £ are the embeddings for user
u; and item v;, and o denotes the sigmoid
function.

(c)

Bias Calculation: Compute the bias for each
item v; to target specific items:

A, if’l)jGT

. (8)
0, otherwise

Bias(ui,vj) = {

where 7 is the set of target items, and Ais a
positive bias factor.

(d) Fake Rating Generation: Generate fake
ratings for each item v; interacted with by

fake user u;:

FakeRating(u;, vj) = TargetValue+Bias(u;, v;)rate 7, and anomaly score threshold 7.

9)

Here, TargetValue is a predefined rating
value intended to favor the target items.

(e) Fake Interaction Matrix Update: Update
the interaction matrix R’ with the fake

interactions:

FakeRating(u;, v;), if (u;,v5)
Ri; = { € FakeUserlInteractions
Rij, otherwise
(10)

2. Model Update Computation: Compute the
model update AW, for each malicious user using
the fake data and the global model from the
previous round W;_1:

AW, = F(W;_1,FakeData,, ) (11)

3. Accumulation of Poisoned Updates:
Accumulate the model updates from all malicious
users:

AW, = > AW, (12)

wu; EUm,

4. Global Model Update: Update the global model
W; using the accumulated poisoned updates with
a learning rate #:

Wt = Wt—l + nAWt (13)

The adaptive poisoning strategy in DyMUSA leverages
a dynamic approach to model poisoning within
tfederated learning environments.

4.1 Parameters Initialization

e Learning Rate 7: This parameter controls how
much the model weights are adjusted during
training in response to the estimated error. A
higher learning rate can lead to faster convergence
but may also risk overshooting the optimal
solution, while a lower learning rate provides
more stable convergence but can be slower.

e Anomaly Threshold 7: This is a threshold value
used to determine what constitutes an anomalous
behavior in the model updates during the training
process. If an update’s magnitude exceeds this
threshold, it may indicate a potential attack

The strategy begins with parameter initialization,
setting up the initial global model W, learning
The
system then computes anomaly scores for each user
by analyzing the interaction matrix R, contextual
information ¢;, and feature weights w;. This involves
calculating the average path length E(h(u;, w;, ¢;)) in
the isolation trees. DyMUSA’s adaptive poisoning
strategy iteratively updates user and item embeddings
to maximize the exposure of target items. The anomaly
score s(u;) for each user u; is calculated based on the
EIF model. The set of malicious users U,,, is defined.
The objective function £ to be minimized during the
adaptive poisoning strategy is defined and the update
rules for the embeddings are defined.
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Users with scores s(u;) exceeding the threshold 7 are
identified as malicious. For these users, synthetic data
is generated to simulate interactions, which are then
used to compute poisoned model updates AW,,. These
updates are calculated by applying a gradient function
F(W;_1,FakeData,), ensuring that the malicious
influence on the model is strategically incorporated.
The global model W is iteratively updated with the
aggregated poisoned updates AW, = >, AW,
allowing the attack to adapt over multiple iterations
T. This adaptability enables DyMUSA to continuously
refine its strategy, ensuring the persistent influence
of malicious data on the global model while evading
detection and maintaining efficacy throughout the
federated learning process.

The evaluation results indicate that DyMUSA
consistently demonstrates superior performance
across multiple datasets.

e MovieLens-1M Dataset [39]: DyMUSA not only
achieves the highest HR@10 of 0.8058, MRR of
0.7560, and NDCG@10 of 0.7102, but also excels
in maintaining a high exposure ratio of 0.6753.
This underscores its capability to enhance the
visibility of target items efficiently. The close
margin between DyMUSA and other methods
such as PoisonRec highlights its competitive edge,
driven primarily by its ability to remain stealthy
while effectively manipulating recommendation
outcomes.

e Amazon-Electronics Dataset [40]: DyMUSA’s
showcases dominance, reflected in an HR@10
of 0.7735 and MRR of 0.7220. Its robust
NDCG@10 score of 0.6768 and ER of 0.6355 signify
its proficiency in influencing recommendation
outcomes. This superiority not only demonstrates
its effectiveness but also its adaptability in
circumventing detection mechanisms.

o Netflix-Prize Dataset [41]: DyMUSA’s
performance is markedly superior with an
HR@10 of 0.8215 and NDCG@10 of 0.7245. These
high scores illustrate its exceptional ability to
skew recommendation lists in favor of target
items while minimizing detection risks, thus
demonstrating a nuanced balance between
efficacy and subtlety.

e Yelp Dataset [42]: DyMUSA illustrates
effectiveness with an HR@10 of 0.7835 and
MRR of 0.7330, outperforming other attacks. Its
sustained high exposure ratio of 0.6455 suggests
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an adept manipulation of the recommendation
system, enhancing its practical applicability
in real-world scenarios that demand stealthy
operations.

e Steam-200K Dataset [43]: DyMUSA’s HR@10
of 0.8265 and NDCG@10 of 0.7300 emphasize
its consistent efficacy across datasets. This
adaptability across diverse environments
underscores its strategic design, making it a
formidable choice for executing potent attacks
that remain under the radar.

The analytical assessment of DyMUSA reveals its
strategic advantage in balancing effectiveness and
stealth. By systematically analyzing metrics across
various datasets, it is evident that DyMUSA’s
adaptive mechanisms allow it to exploit weaknesses
in recommender systems, achieving substantial
influence while minimizing the risk of detection. Its
consistent outperformance of other methods highlights
its sophisticated design, which is engineered to
sustain long-term influence over recommendation
models. This makes DyMUSA a leading model
poisoning attack method, capable of exerting a
strong, stealthy impact. The ability to adapt to
evolving defenses further cements its role as a critical
tool for adversaries seeking to manipulate federated
recommender systems effectively.

This section evaluates the Dynamic Malicious User
Selection Attack (DyMUSA) against existing defensive
strategies, specifically focusing on poisoning data
filtering and robust training methods.  These
evaluations use metrics such as Attack Success Rate
(ASR), Exposure Ratio (ER), Detection Rate (DR), and
Gradient Similarity Index (GSI) to measure DyMUSA’s
ability to bypass defenses. Additionally, defense
metrics such as False Positive Rate (FPR), True Positive
Rate (TPR), and Defense Success Rate (DSR) assess
the effectiveness of these defensive strategies.

Poisoning data filtering focuses on identifying and
removing malicious elements, such as counterfeit users
and misleading data, before they influence the system
[19-21]. DyMUSA effectively counters this defense
by generating fake users whose behavior closely
mirrors that of legitimate users, thereby evading
detection mechanisms like supervised anomaly filters
and unsupervised clustering methods [22, 23]. The
adaptive nature of DyMUSA ensures that the
generated interactions maintain high confidence
scores, minimizing the likelihood of being flagged as
anomalous.
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Table 1. Comparison of attack performance against defense strategies.

Dataset Attack ASR ER DR GSI FPR TPR DSR
AUSH 65% 0.68 45% 0.65 20% 55% 35%
) FedRecAttack 70% 072 40% 068 18% 60% 42%
MovieLens-1M
PoisonRec 73% 0.75 38% 071 16% 62% 45%
DyMUSA 85% 0.88 25% 090 10% 75% 65%
AUSH 62% 0.64 50% 0.63 21% 50% 30%
. FedRecAttack 68% 0.70 42% 0.66 19% 57% 39%
Amazon-Electronics
PoisonRec 71% 0.73 40% 0.70 17% 60% 42%
DyMUSA 83% 086 28% 0.88 12% 73% 63%
AUSH 60% 0.62 48% 061 22% 52% 33%
) ) FedRecAttack 67% 0.69 43% 065 20% 55% 38%
Netflix-Prize
PoisonRec 70% 0.72 39% 0.68 18% 58% 40%
DyMUSA 82% 0.85 27% 0.87 13% 70% 60%
AUSH 63% 066 49% 0.64 21% 53% 34%
Yel FedRecAttack 69% 0.71 44% 0.67 19% 56% 41%
e
P PoisonRec 72% 074 41% 069 17% 59% 43%
DyMUSA 84% 0.87 26% 0.89 11% 72% 62%
AUSH 61% 0.63 46% 0.62 20% 54% 32%
FedRecAttack 66% 0.68 41% 064 18% 57% 37%
Steam-200K
PoisonRec 69% 071 37% 0.67 16% 60% 39%
DyMUSA 81% 084 29% 0.86 14% 69% 59%

The effectiveness of DyMUSA is evident in its

superior ASR and ER values across all datasets,

as shown in Table 1. Robust training aims to
enhance the resilience of recommendation models
through strategies such as mutual enhancement
among multiple models and adaptive learning of

confidence levels for each data sample [24-26].

DyMUSA strategically exploits these methods by
targeting the inconsistencies between models during
mutual enhancement, gradually introducing poisoned
data to bypass adaptive learning mechanisms designed
to detect anomalies. This approach ensures that
DyMUSA retains its effectiveness and stealth over
extended periods.

Table 1 demonstrates DyMUSA's superior performance
in reducing detection rates (DR) while maintaining
high GSI scores across multiple datasets, confirming
its ability to blend seamlessly into legitimate model
updates.

Figure 2 represents the number of real attacks detected
correctly divided by the total number of real attacks
by AUSH, FedRecAttack, PoisonRec, and, proposed
DyMUSA, using Movielens dataset.

0.8

0.7

Attack level (in percentage) in MovielLens-1M Dataset

o o o o
w ~ O o

rue Positive Ratio

T
o o
S )

mAUSH m FedRecAttack m PoisonRec m DyMUSA

Figure 2. True Positive Ratio vs Attack level (in percentage)
in MovieLens-1M Dataset.

Figures 3 and 4 represent the performance of the
proposed DyMUSA Scheme. Using different sets of
datasets, we evaluated the values of the performance
metrics - Mean Anomaly Score, Temporal Change in
Anomaly Scores, Model Updates, Attack Success Rate,
Defense Success Rate, and, True Positive Rate.
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Figure 3. Performance of DyMUSA with different
benchmark datasets.
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Figure 4. Performance of DyMUSA with different
benchmark datasets.

5 Conclusion

In this paper, we presented DyMUSA, a sophisticated
and adaptive model poisoning attack targeting
federated recommender systems. Extensive
evaluations on multiple real-world datasets
demonstrate that DyMUSA achieves strong
performance across key effectiveness and stealth
metrics, including Hit Rate, Mean Reciprocal
Rank, Normalized Discounted Cumulative Gain,
Exposure Ratio, and stealthiness. = The results
show that DyMUSA can significantly manipulate
recommendation outcomes while maintaining
minimal impact on overall system performance,
making the attack difficult to detect. The adaptability
and stealth of DyMUSA expose critical vulnerabilities
in federated recommender systems and underscore
the urgent need for robust and adaptive defense
mechanisms. These findings highlight the importance
of continuous monitoring and the evolution of security
protocols to safeguard federated systems against
increasingly sophisticated poisoning attacks.
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