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Abstract
Unmanned aerial vehicles face GPS spoofing and
jamming that can compromise navigation and safety.
We present an anomaly detection method that
achieves both high accuracy and interpretability,
enabling UAV operators to understand why an
alert is triggered, which enables timely responses
and builds trust in autonomous detection systems
operating in safety-critical environments. We use
five classifiers, including XGBoost, Support Vector
Machine, K-Nearest Neighbor, Random Forest, and
Naive Bayes, trained on a UAV dataset containing
3622 samples for spoofing detection and 6445 for
jamming detection made in PX4 and Gazebo with
benign flight and attack cases. After feature scaling
and reduction, XGBoost reaches F1 near 0.998 for
both attacks and runs fast enough for small onboard
computers. Our main goal is to explain what the
models learn. We study feature importance in four
ways using gain in XGBoost, impurity decrease
in Random Forest, permutation tests for Support
Vector Machine and K-Nearest Neighbor, and a
closed form score for Naive Bayes. The results point
to the same key signals across models. Spoofing
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shows up as position drift and a mismatch between
speed and course. Jamming shows up as sharp
growth in position and velocity errors and poor
satellite geometry. These insights help operators
watch the right signals and trust the alerts.

Keywords: anomaly detection, extreme gradient boosting
(XGBoost), network security, unmanned aerial vehicle
(UAV).

1 Introduction
Unmanned Aerial Vehicles (UAVs) are now common
in logistics, emergency response, disaster monitoring,
environmental protection, and aerial imaging. Market
reports forecast a multi-billion-dollar global UAV
market by 2025. The widespread use of UAVs raises
safety concerns because most platforms depend on
GlobalNavigation Satellite Systems (GNSS), especially
GPS, for navigation and control. Two threats are
particularly important, GPS spoofingwhere an attacker
transmits forged signals to mislead the position
estimate [1, 2], and GPS jamming where noise blocks
legitimate signals [3, 4]. These attacks can cause
route deviation, loss of control, mission failure, or
public-safety risks.

In recent years, GNSS jamming and spoofing has
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evolved from a research topic into a significant risk
that is widely observed in actual airspace and capable
of affecting civil aviation operations. Since 2022, the
European Union Aviation Safety Agency (EASA) has
issued Safety Information Bulletin SIB 2022-02 and
its subsequent revisions, noting that GNSS jamming
and spoofing events have shown an upward trend in
the severity of impact, intensity of occurrence, and
technical sophistication. These events are particularly
concentrated in airspace surrounding conflict zones.
The bulletin emphasizes that, compared to jamming,
spoofing is more difficult for flight crew to detect in a
timely manner and thus poses a greater risk to flight
safety, potentially causing avionics systems to display
inconsistent or misleading aircraft position and GNSS
altitude, triggering spurious Terrain Awareness and
Warning System (TAWS) alerts, route divergence, and
even airspace infringements [29].

In the unmanned aircraft domain, similar
vulnerabilities have been empirically demonstrated.
In 2012, the Radio navigation Laboratory at the
University of Texas at Austin, on invitation of the U.S.
Department of Homeland Security, conducted a civil
GPS spoofing field test at White Sands Missile Range.
Using a civil GPS spoofer located approximately 0.62
KM away, researchers successfully influenced the
GPS position and velocity solution of a Hornet Mini
civilian UAV, causing its autopilot system to adjust
the aircraft’s flight attitude based on the falsified
navigation solution. The aircraft was tested in its
stock configuration without any additional hardware
modifications. The study explicitly concluded that
civil UAVs can indeed be hijacked through civil
GPS spoofing [30], and noted that existing effective
defenses largely rely on multi-antenna architectures,
expensive receivers, or cryptographic signals, which
are not easily adoptable for small UAV platforms
constrained by battery, computation, and payload
weight. In this context, designing software-only
anomaly detection mechanisms deployable on
lightweight autopilot systems has become one of the
key needs for enhancing UAV navigation integrity and
flight safety.

Many defenses exist, such as multi-band
anti-interference antennas, encrypted and
authenticated signals, military-grade receivers, and
multi-source fusion with cross-validation. However,
these solutions often require extra hardware, higher
cost, and more power. Small and commercial drones
have limited batteries, CPU, and memory, which
makes hardware-heavy defenses difficult to deploy in

practice. This gap motivates software-only detection
that can run in real time on resource-constrained
autopilots.

This study focuses on a telemetry-only anomaly
detection method for GPS spoofing and jamming. The
goal is to deliver accurate and fast detection under
tight compute and energy budgets. We turn flight
logs into learning-ready data and evaluate classical
machine-learning models on two feature variants,
a compact processed set and a high-dimensional
raw set. Results are reported using Cross-validation
with flight-level splits to avoid temporal leakage. In
experiments, tree-based ensembles demonstrate robust
detection performance and effectively capture sudden
signal variations characteristic of attacks. These
results suggest that a lightweight software detector
can improve flight integrity without extra sensors or
specialized radios.

In summary, this work builds a practical pipeline from
data generation and feature engineering to model
validation, compares multiple supervised learners on
both raw and processed feature sets, and analyzes
errors and feature importance to identify signals that
are most sensitive to spoofing and jamming.

2 Related Work
UAVs increasingly operate in safety-critical tasks,
which exposes confidentiality, integrity, and
availability risks. Attackers can intercept the
link between the UAV and the Ground Control
Station, manipulate navigation through GNSS and
GPS spoofing, or disrupt control with jamming
and network attacks. Hardware based defenses
such as multi-antenna processing, direction finding,
and encrypted and authenticated signals improve
resilience but raise cost, weight, and power. Software
based detection builds on telemetry or spectrum
features with machine learning and deep sequence
models, and recent work explores reinforcement
learning for adaptive response within an intrusion
detection system. We follow these lines and focus on
methods that remain practical for resource-constrained
autopilots.

2.1 Hardware Defenses
UAVs exchange data with the ground control station
over wireless links. Attackers can break in and
intercept traffic. Reported tools include malware,
trojans, and keyloggers. Stolen data can be live video
feeds, navigation coordinates, mission commands, or
other payloads [5, 6]. Firmware in the supply chain
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is another weak point. A hijacked image can bypass
later protections. Attackers can watch, limit, or take
over core functions [7].

Manipulation of sensing or control also appears in
prior work. GPS spoofing sends fake signals so the
UAV accepts wrong positions. The drone can drift
from its route or land at a location chosen by the
attacker. Civil GPS is not encrypted, which helps
adoption but also makes spoofing an easier target
[8, 9]. Denial-of-service attacks pose a separate risk
for consumer Wi-Fi drones such as AR.Drone 2.0 and
3DR SOLO. Studies have shown vulnerabilities to TCP
and UDP floods as well as 802.11 de-authentication
attacks [10, 11]. Jamming can also block the control
link or the GNSS band, which leads to loss of lock and
abnormal flight [12].

Physical-layer and device-side defenses appear across
the literature. Multi-antenna or multi-receiver designs
compare phase, power, or direction to detect a single
spoofing source. Arrays estimate the angle of arrival
and flag signals that come from one direction only
[13, 14]. Signal-quality checks monitor SNR or carrier
power. Large, sudden power rises can trigger alerts
[15]. Integrity checks such as RAIM compare ranges
from multiple satellites and test consistency. Time and
frequency continuity can expose attacks, and receivers
can monitor out-of-lock events in their phase-locked
loops [16]. Sensor fusion is also common. INS or IMU
data provide a short-term motion estimate that can
be cross-checked against GPS. Divergence beyond a
threshold signals possible spoofing [17–19]. These
defenses work in many reports, but they often need
extra antennas, precise synchronization, or careful
calibration, which raises weight, cost, and power on
small UAVs.

2.2 Software Detection
Machine learning iswidely studied as away to improve
UAV security. Traditional protection based only on
encryption and basic rules is not enough for complex
and changing threats. ML learns patterns from diverse
attack data and flags anomalies in time to react [20].

Supervised learning is a common path. Studies use
telemetry such as position, velocity, acceleration, GNSS
quality, and other onboard signals. XGBoost is often
reported with good results after feature engineering
from GPS and IMU logs. Feng et al. [19] train on flight
logs with feature selection and report about 96 percent
accuracy for binary detection of attacks vs benign
flights. These models are fast and interpretable, but

they need enough varied samples to avoid overfitting.

Deep learning appears in several forms. Convolutional
networks and LSTMmodels learn temporal patterns
from navigation data and from receiver-level features
such as Doppler sequences. They detect abnormal
flight behavior and spoofed patterns in prior studies
[13, 21–23]. One-dimensional CNNs work on time
series with low compute cost and have been shown
to run in real time on embedded boards while
outperforming SVM baselines [24].

Unsupervised and one-class methods reduce labeling
needs. Autoencoders learn to reconstruct benign
behavior. When an attack shifts the distribution, the
reconstruction error grows and triggers an alert [25].

Ensemble and adaptivemethods also appear. Dynamic
selection across multiple trained classifiers reduces
misses and false alarms in reported tests [13].
Reinforcement learning tunes thresholds, allocates
resources, and plans trajectories that avoid interference.
Prior work shows benefits for intrusion detection and
autonomous navigation in dynamic settings [15, 17,
18, 26]. These studies support the view that software
approaches can raise resilience without adding radios
or antennas.

2.3 Data and Simulation
Data for UAV security research comes from two
sources. Real flight logs capture true radio noise,
multipath, weather, and operator behavior. They
reflect deployment conditions but are costly and risky
to collect. Simulated logs are safe and economical
during development and testing. They let researchers
script spoofing, jamming, and network abuse in a
controlled way. The main concern is the domain gap
between simulation and field conditions, so studies
should document scenarios, attack scripts, parameter
ranges, and labeling rules to improve reproducibility
and transferability.

PX4 Autopilot is a widely used open platform that
supports multirotor and fixed-wing aircraft. It offers
SITL(Software In The Loop) and HITL(Hardware
In The Loop). In SITL, the flight control code runs
on a host computer and interacts with a simulated
vehicle andworld. This enables rapid testing of control,
navigation, and mission logic without physical risk or
airspace constraints. PX4 integrates well with Gazebo,
a popular open-source robotics simulator that provides
realistic rigid-body physics, built-in sensors such as
cameras, lidar, and IMU, and ready-made worlds.
Gazebo allows configurable sensor noise, weather, and
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Figure 1. Conceptual diagram of a GPS spoofing attack on a UAV.

environment details, which helps generate repeatable
datasets and ablation variants. In HITL, the real flight
controller runs the actual firmware while the simulator
provides vehicle dynamics and sensor feedback.

AirSim is an open-source simulator for aerial and
ground robots built on Unreal Engine. It offers
high-fidelity rendering and physics and includes rich
sensor models and ground truth. AirSim provides
APIs for C++, Python, and other languages and runs
on Windows, macOS, and Linux. It can connect
with PX4, including HITL, which enables realistic
testing while keeping cost and safety under control.
Researchers use AirSim to create labeled datasets for
deep learning, computer vision, and reinforcement
learning, including attack scenarios needed for security
studies such as spoofing and jamming.

3 Methodology
We define the GPS spoofing threat and use Figure 1
[27] to show how forged signals affect telemetry and
how our data flow is organized. We then describe the
dataset and introduce two feature sets. The raw set
keeps 829 fields. The processed set has 46 features
after normalization. Next, we outline the learners
and the training scheme. On the 829 features table

we train a single model for three classes. On the 46
features table we train two binary models for benign
vs spoofing and benign vs jamming. Evaluation
uses flight level Cross-validation with a held out test
split. The experiments highlight feature importance to
indicate which signals matter most.

Figure 1 shows the GPS spoofing threat considered in
this study. A spoofer transmits counterfeit GNSS-like
signals that look valid to the receiver and are slightly
stronger at the UAV antenna. The receiver locks onto
the forged signals and the navigation solution shifts
away from the truth. The shift can be a slow drift
or a sudden jump. Unlike jamming, which raises
noise and breaks lock, spoofing aims to be accepted as
legitimate. In the logs this produces consistent changes
in common telemetry, for example satellite availability,
signal quality, dilution of precision, and mismatches
between GNSS and inertial motion. Our detector uses
windowed features from these logs to decide among
benign, spoofing, and jamming.

3.1 Workflow
Figure 2 summarizes the workflow used in this study.
PX4 ULog [28] flights are exported to CSV and then
merged into a single table. From this table we prepare
two feature sets. The raw set retains 829 fields from
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Figure 2. Research workflow.

the logs, while the processed set applies normalization
and keeps 46 compact features. The data are labeled as
benign, spoofing, or jamming. We train five standard
learners, that is Naïve Bayes, KNN, Random Forest, an
SVM with a Nystroem map for the RBF kernel, and
XGBoost.

We compute feature importance for each model and
rank the features. We then compare rankings between
the raw 829-field table and the processed 46-feature
set. We also merge the top lists across models to form
a union that captures complementary signals, and
we give higher priority to features that recur across
models.

3.2 Data and feature construction
The dataset used in this study is the UAV Attack
Dataset from IEEE DataPort [31], which contains
10,067 samples: 3,622 for spoofing detection and 6,445
for jamming detection. GPS spoofing attacks were
conducted using a HackRF software-defined radio
with the GPS-SDR-SIM tool, broadcasting falsified
coordinates to induce a sudden position jump. GPS
jamming attacks were performed by broadcasting
white Gaussian noise with an amplitude of 0.3 and a
gain of -48 dB. All experiments utilized a Holybro S500
UAV frame equippedwith a Pixhawk 4 flight controller
running PX4 Autopilot v1.11.3 and a Pixhawk GPS
receiver.

PX4ULog flights are exported to CSV and thenmerged

into a single table with three labels. They are benign,
spoofing, and jamming. From this table we form two
binary datasets so that each model focuses on one
attack type. The first contains benign and spoofing
records, and the second contains benign and jamming
records. Each dataset is prepared in two feature
variants to compare the 829-feature raw inputs with a
46-feature processed set. The raw variant keeps all 829
log fields. The processed variant applies normalization
and PCA (Principal Component Analysis) following
the preprocessing pipeline provided in the original
dataset, which reduces the inputs to 46 features.
Column names are cleaned for consistency, and
missing or infinite values are handled before training
using the same steps for both datasets and both feature
variants.

3.3 Feature importance
To understand how features affect model predictions,
we add a feature-importance analysis to the workflow.
For XGBoost, each split computes the drop in the
overall loss after regularization. This drop is the Gain.
It equals the sum of the objective values at the two
child nodes minus the value at the parent node, then
minus the regularization term. When a split makes
the loss decrease according to first- and second-order
statistics, the split separates the data well and reduces
prediction error. Gain is therefore the key signal of
split value. During training the algorithm selects the
candidate split with the largest Gain. Summing Gain
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across all splits gives a natural way to rank features by
their contribution. A higher total Gain means a larger
influence on the final model.

In Random Forest, feature importance uses the mean
decrease in impurity, also known as Gini importance.
Each tree measures how mixed the classes are at a
node. Lower Gini means a purer node and a lower
misclassification chance. When a feature is chosen to
split a parent node, the impurity is distributed to the
two children. If the weighted impurity of the children
is much smaller than that of the parent, the feature
has effectively reduced noise. The forest sums these
impurity reductions over all nodes and all trees with
sample weights and then normalizes the totals so that
they sum to one. A larger value shows that the feature
appears inmany useful splits and helps the forestmake
better decisions.

For non-tree models such as SVM and KNN, we
estimate feature importance with permutation tests
by first recording the baseline on the test set, then
shuffling one feature at a time, re-evaluating the
model, and taking the average performance drop as
the score, so larger drops indicate stronger influence
while negligible change suggests little contribution.

For Naïve Bayes, we use a closed-form score derived
from class-conditional normal distributions, where
between-class mean differences are scaled by variances
to measure separation; larger values imply better class
separation and values near zero imply minimal utility,
and this method is fast and transparent because it
requires neither retraining nor shuffling.

We then produce a ranked list for each model. We
compare rankings between the raw 829-field table and
the processed 46-feature set. We form a union across
models to collect complementary signals, and we give
higher priority to features that recur in several models.

4 Experiments
4.1 Raw data result
Table 1 summarizes the results on the raw dataset with
829 features. In overall accuracy, shown in Table 1,
XGBoost and RandomForest clearly lead at about 0.679
and 0.671. Both values are roughly double the random
baseline of 0.333 for a three-class task, which indicates
that tree models can still extract useful structure from
high-dimensional telemetry. By contrast, KNN, SVM,
and Naïve Bayes reach 0.409, 0.392, and 0.416. These
numbers are only slightly above chance, suggesting
that these methods are constrained in this feature

space.

F1 scores follow the same pattern and better reflect
balance across classes. XGBoost achieves 0.666
and Random Forest 0.653, which shows that both
models maintain relatively even performance across
the three classes rather than overfitting to a single label.
KNN and SVM produce 0.305 and 0.256, and Naïve
Bayes drops to 0.230. Without feature selection or
dimensionality reduction, these approaches struggle
to capture enough discriminative signal, leading to
low precision and recall. Taken together, accuracy and
F1 consistently highlight the advantage of tree-based
models on the raw dataset.

XGBoost (Figure 3) shows steady three class
performance as benign remains strong and jamming
is often correct, while spoofing is split between the
two and therefore becomes the most challenging
class. SVM (Figure 4) is biased toward the jamming
class, so many samples from all classes are mapped
to jamming and benign and spoofing are rarely
identified, which suggests an unstable boundary in
the original high dimensional space. Naïve Bayes
(Figure 5) collapses toward the benign class, so the
apparent success on benign reflects a majority class
bias while spoofing and jamming are almost never
detected, which indicates that the model assumptions
do not match these signals.

Random Forest (Figure 6) follows the pattern of
XGBoost as benign remains solid and jamming is
frequently correct, yet spillover from benign to
jamming persists and spoofing again shows the
weakest recall. KNN (Figure 7) degenerates to a single
dominant output as benign takes most predictions and
spoofing and jamming are rarely identified, which
implies that distance is not informative in this high
dimensional setting and useful neighborhoods do not
form.

The five machine learning models on the raw dataset
show that the main errors lie on the boundary between
benign and jamming, and spoofing remains the
hardest class, so improvements should target a clearer
separation between benign and jamming and stronger
cues for spoofing.

4.2 Processed data result
After normalization and PCA, all five classifiers
improve compared with the raw dataset. As shown
in Table 2 for accuracy and F1-score, XGBoost and
Random Forest approach near-perfect performance in
both spoofing and jamming. XGBoost reaches 0.9965
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Table 1. Accuracy and F1-Score performance on the raw set.

XGBoost SVM Naïve Bayes Random Forest KNN

F1 Score 0.6661 0.2563 0.2300 0.6532 0.305
Accuracy 0.6794 0.3917 0.4163 0.6708 0.409

Figure 3. XGBoost Confusion Matrix (Raw Data).

Figure 4. SVM Confusion Matrix (Raw Data).

and 0.9984 in accuracy and 0.9979 and 0.9989 in F1 for
spoofing and jamming respectively. Random Forest
achieves 0.9896 and 0.9981 in accuracy and 0.9939 and
0.9987 in F1 for the same two classes. The results
indicate that tree ensembles capture the discriminative
structure even after aggressive feature compaction.

KNN benefits from reduced dimensionality and better
feature scaling. Its accuracy rises to 0.9248 for spoofing
and 0.9806 for jamming, and its F1-score reaches 0.9582
and 0.9873. SVM also becomes more effective in
the lower-dimensional space. It attains 0.9579 and
0.9267 in accuracy and 0.9761 and 0.9502 in F1 for
spoofing and jamming. Naïve Bayes remains limited

Figure 5. Naïve Bayes Confusion Matrix (Raw Data).

Figure 6. Random Forest Confusion Matrix (Raw Data).

by its Gaussian assumption. While it records 0.9551
in accuracy and 0.9733 in F1 for spoofing, its jamming
performance drops to 0.7785 in accuracy and 0.8328 in
F1, which suggests sensitivity to variance estimation.
Overall, the comparison in Table 2 shows that feature
normalization and PCA make distance and margin
methods more competitive, while tree-based models
still lead across classes.

XGBoost (Figures 8 and 9) separates benign from both
attacks almost perfectly, since in the spoofing split
all 1,994 benign samples are correct and 584 spoofing
samples yield only 4 misses, while in the jamming split
only 4 of 1,246 benign samples are flagged as attacks
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Table 2. Accuracy and F1-Score performance on the processed set.

XGBoost SVM Naïve Bayes Random Forest KNN

F1 Score (spoofing) 0.9979 0.9761 0.9733 0.9939 0.9582
F1 Score (jamming) 0.9989 0.9502 0.8328 0.9987 0.9873
Accuracy (spoofing) 0.9965 0.9579 0.9551 0.9896 0.9248
Accuracy (jamming) 0.9984 0.9267 0.7785 0.9981 0.9806

Figure 7. KNN Confusion Matrix (Raw Data).

and just 1 of 199 jamming windows is missed, so the
residual confusion is small and localized.SVM(Figures
10 and 11) is highly sensitive yet imbalanced, because
in the spoofing split 181 attacks produce only 18misses
but 1,117 benign samples are reported as attacks, and
in the jamming split all 584 attacks are detected while
189 benign samples are still flagged, so the boundary
continues to favor sensitivity over specificity even after
preprocessing.

Naïve Bayes (Figures 12 and 13) leans toward attack
labels under fluctuation, as in the spoofing split only 3
of 196 attacks aremissed but 62 of 1,188 benign samples
are marked as attacks, and in the jamming split all 584
attacks are foundwhile 571 of 1,423 benign samples are
mislabeled, so many benign windows are still pulled
into the attack side. Random Forest (Figures 14 and
15) remains balanced, since in the spoofing split only
10 of 1,240 benign samples are flagged and only 2 of
199 attacks are missed, and in the jamming split just
1 of 1,993 benign samples is mislabeled while only
4 of 580 attacks are missed, so errors are rare across
both scenarios. K-nearest neighbors (Figures 16 and
17) improves after preprocessing but stays uneven,
because in the spoofing split all 1,250 benign samples
are correct while 109 spoofing samples are labeled as
benign, and in the jamming split all 584 attacks are
detected while only 50 benign samples are flagged,

so mild spoofing drifts still escape detection whereas
larger jamming changes separate more clearly.

Across the five models on the processed dataset, tree
ensembles keep the error counts low, SVM and Naïve
Bayes trade many benign false alarms for high attack
hits, and k-nearest neighbors remains asymmetric
between spoofing and jamming.

Figure 8. XGBoost Spoofing Confusion Matrices (Processed
Data).

Figure 9. XGBoost Jamming Confusion Matrices (Processed
Data).
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Figure 10. SVM Spoofing Confusion Matrices (Processed
Data).

Figure 11. SVM Jamming Confusion Matrices (Processed
Data).

4.3 Feature Importance analyze
Table 3 summarizes the most influential features for
spoofing across the five models. XGBoost computes
feature importance using Gain. Random Forest relies
on mean decrease in impurity. SVM and KNN
are assessed with permutation importance. Naïve
Bayes adopts a closed-form measure derived from
class-conditional means and variances.

The feature lat_y denotes the absolute latitude, and
hdop measures the horizontal dilution of precision,
which reflects satellite geometry. Under spoofing,
an adversary can introduce an abrupt offset to the
reported position, producing a visible drift. Because
the spoofed signal cannot fully reproduce the true
satellite configuration, hdop increases. Concurrent

Figure 12. Naïve Bayes Spoofing Confusion Matrices
(Processed Data).

Figure 13. Naïve Bayes Jamming Confusion Matrices
(Processed Data).

large deviations in lat_y and abnormal rises in hdop
are therefore strong indicators of spoofing.

The feature vel_m_s is the ground-speed magnitude,
and vel_n_m_s is its northward component. The
feature cog_rad is the course over ground in radians
and represents the direction of motion, while
c_variance_rad quantifies short-termvariability in that
course. During spoofing, forged coordinates may
imply a drift in one direction while inertial sensors
indicate motion in another, creating inconsistency
between the speed vector and the course. If the
coordinates are repeatedly adjusted, the course
exhibits jumps across consecutive samples and
c_variance_rad increases. The joint behavior of
speed magnitude, directional components, and course
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Figure 14. Random Forest Spoofing Confusion Matrices
(Processed Data).

Figure 15. Random Forest Jamming Confusion Matrices
(Processed Data).

stability enables detection even without relying solely
on satellite-quality indicators.

XGBoost favors splits that rapidly reduce error and
therefore relies on the combination of vel_m_s, cog_rad,
and vel_n_m_s. When the reported position is shifted
but the motion no longer agrees with the course, splits
on these variables separate benign flight from spoofing
effectively and yield high Gain values. The feature
c_variance_rad reinforces this effect by capturing
step-like changes in the course when the attacker
fine-tunes the forged position.

Random Forest subsamples features per tree and does
not depend on a single variable. The magnitude and
northward component of speed appear frequently
across trees, so their impurity reduction accumulates

Figure 16. KNN Spoofing Confusion Matrices (Processed
Data).

Figure 17. KNN Jamming Confusion Matrices (Processed
Data).

and they rank highly byMDI. The features cog_rad and
c_variance_rad capture directional shifts and volatility,
providing auxiliary split points that reduce impurity
in many trees and thus raise their average importance.

SVM with an RBF kernel maps data to a
higher-dimensional space and separates classes
by a maximum-margin hyperplane. Permutation
tests indicate that shuffling any single feature has a
limited effect, but jointly disrupting the alignment
between vel_m_s and cog_rad alters the locations of
support vectors, narrows the margin, and degrades
accuracy. This suggests that SVM relies on geometric
consistency between speed and course.

KNN classifies by distances to neighboring samples.
After standardization, vel_m_s and vel_n_m_s
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Table 3. Key features of five machine learning algorithms for identifying GPS spoofing.

Feature XGBoost SVM Naïve Bayes Random Forest KNN

vel_m_s 16.07284 0.278032 0.025167 0.012208 0.482895
lat_y 23.4295 0.262439 - - 0.04205
hdop 16.69048 0.177657 -0.00228 0.017517 0.20293
vel_n_m_s 11.11447 0.127849 0.003562 0.048393 0.406282
cog_rad 15.42732 0.024408 -0.08047 0.020101 0.536137
c_variance_rad 15.08844 0.088598 0.029513 0.01675 0.016717
jamming_indicator 3.38069 0.036092 0.009363 -0.0067 0.204817
satellites_used 11.2902 0.004926 -0.00998 0.005863 0.105328

Table 4. Key features of five machine learning algorithms for identifying GPS jamming.

Feature XGBoost SVM Naïve Bayes Random Forest KNN

s_variance_m_s 54.86269 0.272648 0.096456 0.235145 0.494284
evh 40.73054 0.131591 0.087847 0.029756 0.306661
eph_x 48.45486 0.224056 0.007857 - 0.109449
vel_d_m_s 19.12197 0.031293 0.067787 0.044473 0.329122
epv 44.60001 0.163062 0.009863 -0.00092 0.127749
epv_x 36.74346 0.155794 - - 0.039005
vel_n_m_s 10.15541 0.001373 0.049147 0.031344 0.025268
vdop 11.56408 0.020045 0.002591 0.001839 0.108672

dominates the distance metric. When the speed
magnitude or its direction deviates from nearby
benign samples, the point becomes closer to attack
neighborhoods. If c_variance_rad increases due to
unstable course, distances to benign clusters grow
further, and spoofing samples occupy a distinct region
that KNN can identify.

Naïve Bayesmodels each featurewith class-conditional
Gaussians. During spoofing, the class means of
vel_m_s, vel_n_m_s, and cog_rad diverge from benign
flight. Preprocessing reduces within-class variance,
which increases their discriminative ratios. The
feature c_variance_rad also rises under spoofing and
widens the separation. As a result, speed magnitude,
directional components, course, and its variability
yield the highest closed-form importance for NB in
the spoofing scenario.

Table 4 summarizes the most influential features for
the jamming scenario across the five models. The
same importance measures as in Table 3 are used
for XGBoost, Random Forest, SVM, KNN, and Naïve
Bayes.

The feature s_variance_m_s is the receiver-reported
speed accuracy estimate from PX4. The features
eph_x and epv are the one-sigma horizontal and
vertical position errors, and evh is the one-sigma

horizontal velocity error. During jamming, the
pseudorange solution, which estimates the receiver
position from satellite range measurements, becomes
unstable. The variance in speed estimates grows first,
and then position and velocity errors inflate together.
Short-term concurrent increases in s_variance_m_s and
either eph_x or epv indicate that the band is being
covered by high-power noise, which makes this set
of accuracy and error indicators a strong basis for
detecting jamming.

The features vel_d_m_s and vel_n_m_s are the
downward and northward velocity components.
The feature c_variance_rad quantifies short-term
variability of the course, and vdop measures vertical
dilution of precision and thus satellite geometry
in the vertical dimension. Under jamming, the
pseudorange solution oscillates among competing
fixes, velocity components show nonphysical spikes,
the course variance rises sharply, and partial satellite
masking elevates vdop. Detecting abnormal velocity
components together with increased course jitter and
elevated vdop enables jamming recognition without
relying on absolute coordinates.

For spoofing, the most informative signals are
coordinate shifts captured by lat_y together with
spikes in hdop, and the loss of alignment between
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motion and heading reflected by vel_m_s, vel_n_m_s,
cog_rad, and c_variance_rad. For jamming, early
growth in s_variance_m_s is followed by inflation in
eph_x, epv, and evh, while vdop and c_variance_rad
rise as satellites are partially masked. XGBoost and
Random Forest prioritize these variables as high-gain
or high-impurity-reduction splits. SVM relies on the
geometric consistency between speed and course after
projection, KNN separates samples by standardized
distances dominated by speed components, and
Naive Bayes exploits shifts in class means relative to
within-class variance.

5 Conclusion
Thiswork studiesGPS spoofing and jammingdetection
for UAVs using telemetry-only learning on PX4 with
the Gazebo simulator. According to the results, high
dimensionality weakens most models on the raw set,
whereas normalization and PCA substantially improve
all methods. The confusion matrices confirm these
trends, because errors on the raw set cluster on the
boundary between benign and jamming and spoofing
is often split across the two, while after preprocessing
the matrices for tree ensembles are nearly diagonal
with only small and localized confusions. SVM
and Gaussian Naive Bayes raise many benign false
alarms, and k-nearest neighbors misses many spoofing
windows even when jamming separates cleanly. Tree
ensembles achieve the most balanced gains and the
best configuration reaches an F1-score of 0.998 on the
processed set, which underscores the benefit of careful
preprocessing.

Feature-importance analysis explains these outcomes
and suggests practical cues for monitoring. For
spoofing, coordinate shifts and elevated hdop, together
with mismatches among vel_m_s, vel_n_m_s, and
cog_rad and increases in c_variance_rad, provide early
and reliable signals. For jamming, s_variance_m_s
rises first, followed by growth in eph_x, epv, and evh,
alongside higher vdop and c_variance_rad. These
findings point to a compact set of high-yield features
for online checks and to simple temporal consistency
rules that can stabilize alerts. Future workwill validate
these signals in field trials, study adaptive thresholds
under changing environments, and explore domain
shift aware training to preserve performance across
platforms and missions.
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