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Abstract
The rapid proliferation of smart home IoT devices
has introduced unprecedented cybersecurity
vulnerabilities, necessitating scalable and
privacy-preserving intrusion detection systems
(IDS). Federated Learning (FL) offers a promising
decentralized approach by training models
locally without sharing raw data, but it remains
susceptible to poisoning attacks and relies on a
vulnerable central aggregator. This paper presents
a novel blockchain-enhanced FL framework
tailored for smart home IDS, integrating multiple
consensus mechanisms—Proof-of-Stake (PoS),
Practical Byzantine Fault Tolerance (PBFT), and
Proof-of-Authority (PoA)—for the first time in
this context. Our approach uniquely combines
differential privacy (DP) and secure aggregation
(SA) within a blockchain-managed workflow
to mitigate gradient inversion and membership
inference attacks while ensuring tamper-resistant,
decentralized trust. Experimental evaluation using
the N-BaIoT dataset demonstrates that the proposed
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system achieves up to 88.3% detection accuracy with
manageable latency ( 200 ms/round) and formal
privacy guarantees (ε=1.0 DP). The framework
introduces 52.8% system overhead compared
to vanilla FL—a reasonable trade-off for enhanced
security and privacy. Thiswork establishes a robust,
transparent, and scalable security infrastructure for
smart homes, effectively addressing the limitations
of both centralized and conventional FL-based IDS.
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1 Introduction
The proliferation of Internet of Things (IoT) devices
within smart homes has revolutionized modern living,
offering unparalleled convenience, automation, and
interconnectivity. However, this rapid adoption
has dramatically expanded the attack surface for
cybercriminals. The global IoT ecosystem now
exceeds 15 billion connected devices, with projections
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nearing 75 billion by 2025 [1, 2]. Each smart
device—from security cameras and voice assistants to
smart locks and thermostats—collects and processes
highly sensitive personal data, making residential
networks prime targets for exploitation. High-profile
incidents, such as the Mirai botnet attacks that
harnessed vulnerable IoT devices for large-scale DDoS
assaults, and recurring breaches of baby monitors
and home security cameras, underscore the severe
and immediate risks to both personal safety and
privacy [4, 5]. Furthermore, regulatory frameworks
such as the GDPR and CCPA impose strict data
protection obligations, increasing the urgency of
privacy-preserving security solutions that operate
within the constrained resources of smart home
environments.

Traditional, centralized intrusion detection systems
(IDS) are ill-suited to address these challenges.
They create single points of failure, necessitate the
continuous transmission of sensitive data to remote
servers—raising critical privacy concerns—and
impose unsustainable bandwidth and computational
burdens on resource-constrained IoT devices.
Federated Learning (FL) has emerged as a promising
alternative, enabling collaborative model training
across distributed devices without exchanging
raw data [6]. While FL mitigates data privacy
risks at the source, its standard architecture
remains vulnerable [7, 8]. It relies on a centralized
aggregator—a trust bottleneck and a single point
of failure—and is susceptible to model poisoning,
gradient inversion, and membership inference
attacks [9–11]. Recent research [12] has explored
blockchain as a means to decentralize trust in FL, but
existing approaches often lack a holistic integration
tailored for smart home constraints.

Prior works on blockchain-assisted FL for IoT security
have three primary shortcomings: (1) they typically
evaluate only a single consensus mechanism (e.g.,
PoW or PoS) without a comparative analysis of their
suitability for heterogeneous smart home networks;
(2) they insufficiently address the compound privacy
threats in FL (e.g., combining differential privacy
with secure aggregation under a blockchain-enforced
workflow); and (3) they lack practical, adaptive
frameworks that consider real-world deployment
factors such as device heterogeneity, dynamic
membership, and varying network conditions.
To bridge these gaps, this paper introduces a
comprehensive blockchain-enhanced FL framework
designed explicitly for intrusion detection in smart

home IoT. The core contributions of this work are
summarized as follows:

• A Novel Adaptive Framework: We propose
the first FL-IDS framework that dynamically
integrates three distinct blockchain consensus
mechanisms—Proof-of-Stake (PoS), Practical
Byzantine Fault Tolerance (PBFT), and
Proof-of-Authority (PoA)—with selection
strategies optimized for different smart home
deployment scenarios (public, private, and
consortium).

• Enhanced Privacy-Preserving FL Protocol: Our
design uniquely combines Differential Privacy
(DP) and Secure Aggregation (SA) within
a blockchain-managed workflow, providing
mathematically bounded privacy guarantees
(ε-DP) and cryptographic protection against
gradient-based inference attacks, all enforced and
verified via smart contracts.

• Comprehensive System Design: We introduce
a modular architecture featuring hierarchical
RBAC via smart contracts, Computational Volume
Weighting (CVW) for fair contribution, and a
multi-stage validation pipeline to ensure model
quality and resist poisoning attacks.

• Extensive Empirical Validation: We conduct
rigorous experiments on the N-BaIoT dataset,
demonstrating that our framework achieves
competitive detection accuracy (up to 88.3%)
with acceptable latency ( 200 ms/round) while
introducing manageable system overhead
(+52.8% vs. vanilla FL). A detailed analysis of
the privacy-utility trade-off and scalability up to
200 devices is provided.

The remainder of this paper is structured as follows:
Section 2 reviews related works. Section 3 details
the proposed framework. Section 4 presents the
experimental evaluation. Section 5 discusses findings
and future directions, and Section 6 concludes.

2 Related Work
This section surveys existing research across three key
domains: smart home architecture and IDS, Federated
Learning for security, and blockchain-enhanced FL
frameworks. We critically analyze the limitations of
current approaches to contextualize our contributions.
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Table 1. Comparative analysis of blockchain-enhanced FL-IDS frameworks.
Study Consensus Mechanism Privacy Method Key Contribution Limitations
BFL-IDS [2] PoW (Ethereum) Basic DP Integrates FL with blockchain

for IoMT networks
High energy consumption
(PoW), no formal SA, limited
to healthcare IoT

FL-Block [19] PBFT None Uses blockchain for secure
model aggregation in IoMT

No privacy guarantees,
vulnerable to inference
attacks, assumes
homogeneous devices

HBFL [6] PoS (custom) ε=2.0 DP Knowledge distillation for
model compression

High communication
overhead, no SA, limited
scalability analysis

Kumar et al. [5] PoA Homomorphic
Encryption

Cloud-edge collaboration for
consumer IoT

Computationally expensive
HE, unsuitable for low-power
devices

Govindaram & A [4] RAFT Secure
Multi-Party
Computation
(SMPC)

Lightweight IDS for generic
IoT

SMPC introduces significant
latency and lacks dynamic
device support

Our Framework Adaptive (PoS/PBFT/PoA) DP + Secure
Aggregation +
HE-ready

Holistic, scenario-aware
framework with multi-layered
privacy

Managed overhead trade-off
(52.8%)

2.1 Smart Home Architecture and IoT Constraints
Smart home ecosystems are typically structured into
three layers: the device layer (heterogeneous sensors
and actuators), the gateway layer (local aggregation),
and the cloud layer (centralized processing) [8].
The primary challenges include severe device
heterogeneity (varying compute, memory, and
energy capacity), intermittent connectivity, and
diverse communication protocols such as WiFi [14],
ZigBee [15], Bluetooth [16], and Z-Wave [17].
These vulnerabilities have been dramatically
demonstrated by high-profile incidents, such as
the Mirai botnet attacks that exploited weakly secured
IoT devices—including cameras, routers, and smart
home appliances—to launch massive distributed
denial-of-service (DDoS) assaults, highlighting the
severe risks posed by resource-constrained and
heterogeneous IoT deployments [3].

2.2 Intrusion Detection Systems (IDS) for Smart
Homes

IDS approaches for smart homes are broadly
categorized as signature-based (effective against
known threats) and anomaly-based (capable of
detecting novel attacks) [9]. Machine learning
models—including SVM, Random Forest, CNN [18],
and LSTM—have shown strong performance in
detecting malicious patterns in IoT network traffic.
However, most existing ML-based IDS [19] rely on
centralized data collection, which violates user privacy,
increases latency, and creates a single point of failure.

2.3 Federated Learning for Smart Home Security
Federated Learning (FL) mitigates privacy concerns
by training models locally and sharing only parameter
updates (e.g., gradients) with a central server,
using algorithms such as Federated Averaging
(FedAvg) [10]. While FL preserves data locality, it
introduces new vulnerabilities:

• Model Poisoning: Malicious clients can submit
manipulated gradients to corrupt the global
model.

• Privacy Leakage: Gradients can be exploited
through gradient inversion or membership
inference attacks to reconstruct sensitive training
data [11].

Centralized Trust Bottleneck: The aggregator remains
a single point of compromise. Current FL-IDS [21]
solutions often incorporate Differential Privacy
(DP) [22] or Secure Aggregation (SA) [23] in
isolation, but lack an integrated, verifiable framework
to enforce these protections in decentralized,
adversarial environments.

2.4 Blockchain-Enhanced FL for IoT Security
Blockchain technology has been proposed to
decentralize trust in FL by providing tamper-resistant
logging, smart contract-based automation, and
consensus-driven validation. Table 1 summarizes key
prior works in blockchain-FL-IDS, their consensus
mechanisms, privacy methods, and identified
limitations.
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2.5 Critical Analysis and Research Gap
Existing solutions integrating blockchain with
federated learning for intrusion detection systems
(FL-IDS) exhibit several systemic limitations that
hinder their practical deployment in smart home
environments.
A primary limitation is rigid consensus selection.
Most current frameworks adopt a singular
consensus mechanism—such as Proof-of-Work
(PoW) or Practical Byzantine Fault Tolerance
(PBFT)—without adapting to the specific deployment
context. For instance, PoW is energy-prohibitive for
resource-constrained IoT devices, PBFT suffers from
poor scalability beyond approximately 100 nodes,
and Proof-of-Authority (PoA) introduces undesirable
centralization risks, as noted in prior studies [24].
Furthermore, existing approaches often feature
incomplete privacy integration. Prior work
typically implements only one privacy-preserving
technique, such as Differential Privacy (DP) or Secure
Aggregation (SA), and lacks mechanisms for smart
contract-enforced privacy compliance. This oversight
leaves residual vulnerabilities to sophisticated
gradient-based inference attacks and fails to provide
cryptographically verifiable privacy guarantees [25].
Another critical gap is the neglect of IoT realities.
Many proposed systems assume homogeneous
device capabilities and static network membership,
thereby ignoring the fundamentally dynamic and
heterogeneous nature of real-world smart homes.
In reality, these environments comprise a wide
spectrum of devices, ranging from low-power
microcontroller-based sensors to more capable edge
servers [26].
Finally, the evaluation scope of prior work is often
limited. Many proposals are validated only in
simulated environments with small device counts,
lacking rigorous analysis of scalability, energy impact,
and performance under realistic network conditions
such as packet loss and bandwidth variability [27].
Our proposed framework is designed to directly
address these identified gaps through a series of
integrated innovations.
First, we introduce an adaptive consensus selection
mechanism. Our context-aware consensus layer
dynamically selects between PoS, PBFT, and PoA based
on real-time network parameters like size, device
capability, and security requirements. This enables
optimized performance and resource efficiency across

diverse smart home deployment scenarios.
Second, we implement a multi-layered
privacy-by-design architecture. We integrate
Differential Privacy (DP) [28], Secure Aggregation
(SA) [29], and gradient perturbation techniques [30]
into a unified protocol that is verified and enforced
by the blockchain via smart contracts. This
ensures end-to-end privacy protection that is
both mathematically bounded and cryptographically
auditable.
Third, our design embodies an IoT-aware architecture.
It incorporates Computational Volume Weighting
(CVW) [30] to ensure fair contribution recognition
across heterogeneous devices, hierarchical Role-Based
Access Control (RBAC) [31] for fine-grained data and
model access, and asynchronous aggregation protocols
to gracefully accommodate device churn and varying
participation patterns.
Fourth, we subject our framework to comprehensive
empirical validation. Our evaluation is conducted
under realistic conditions, scaling up to 200
devices with non-independent and identically
distributed (non-IID) data and simulated network
impairments. This allows for a thorough analysis of
the privacy-utility trade-off, scalability limits, and
energy consumption, providing actionable insights for
real-world system deployment.
In summary, while existing research provides a
necessary foundation, it lacks the holistic, adaptive,
and privacy-rigorous approach required for a secure,
scalable, and practical FL-IDS in smart homes. Our
framework is specifically designed to bridge this gap,
offering a deployable solution that effectively balances
the critical triad of security, privacy, and operational
performance.

3 Proposed Framework: Blockchain-Enhanced
Federated Learning for Smart Home IDS

3.1 System Architecture Overview
The proposed framework establishes a decentralized
and privacy-preserving intrusion detection system
(IDS) for smart-home Internet of Things (IoT)
environments through the synergistic integration
of blockchain technology and Federated Learning
(FL). This architecture is specifically optimized
to address the unique constraints and security
requirements of smart homes, providing a robust
alternative to centralized learning paradigms. By
adopting a modular design, the system facilitates
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Figure 1. Architecture of the blockchain-enabled federated learning framework for intrusion detection in smart home IoT.

customization according to diverse deployment
scenarios while rigorously preserving core security
and privacy guarantees throughout the FL lifecycle.
The architecture fundamentally addresses a critical
vulnerability in conventional FL—the centralized
aggregator—by distributing trust across a blockchain
network, all while ensuring data privacy through
localized, on-device model training.
As visually synthesized in Figure 1, the architecture
is organized into three functionally distinct yet
interconnected layers, each playing a pivotal role in
the system’s operation:
IoT Device Layer: This foundational layer comprises
the heterogeneous ecosystem of smart home devices,
including sensors, cameras, and smart hubs. These
devices perform the crucial task of local model training
exclusively on their privately collected data, ensuring
that raw data never leaves its source.
Blockchain Network Layer: Serving as the trust
backbone, this layer provides a distributed ledger
infrastructure. It is responsible for managing

decentralized consensus, maintaining an immutable
record of all FL transactions (such as model
submissions and aggregations), and enforcing the
overall security policy of the network.

Federation Management Layer: This orchestration
layer is implemented via smart contracts and
specialized protocols. It automates and governs
the entire FL workflow, including critical functions
such as secure model aggregation, validation of
participant contributions, and the enforcement of
privacy-preserving mechanisms like differential
privacy.

Together, these layers form a cohesive system
that secures the federated learning process against
tampering and single points of failure, empowers
data owners with privacy, and delivers a scalable IDS
solution adaptable to the evolving landscape of smart
home IoT.
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3.2 Blockchain Configuration Strategies
The architecture implements a tiered blockchain
strategy where the selection of blockchain type
and configuration is dynamically matched to the
specific deployment scenario within the smart home
ecosystem, ensuring optimal performance, security,
and governance.

For Phase 01, a public blockchain based on Ethereum
is employed, targeting multi-vendor smart home
ecosystems that demand maximal decentralization.
This implementation leverages Ethereum 2.0 with its
Proof-of-Stake consensus mechanism. The primary
advantage lies in achieving full transparency and
eliminating single points of failure, while also
benefiting from a mature and robust smart contract
ecosystem for automating federated learning protocols.
Acknowledging the inherent limitations of public
chains—notably higher transaction costs and potential
latency—the architecture incorporates Layer-2 scaling
solutions, such as Optimistic Rollups. These are
used to batch process model updates off-chain before
submitting aggregated proofs to the main chain,
thereby optimizing throughput and cost.

Phase 02 adopts a private blockchain framework,
specifically Hyperledger Fabric, which is suited
for single-vendor smart home systems with a
known and vetted set of participants. The system
operates as a permissioned network utilizing Practical
Byzantine Fault Tolerance (PBFT) consensus, offering
advantages in lower transaction latency, built-in
regulatory compliance, and privacy-by-design through
confidential channels. A key configuration strategy
involves establishing separate, dedicated channels for
distinct device categories—such as security, comfort,
and energy management—to further isolate data
streams and enhance privacy and efficiency.

Finally, Phase 03 proposes a consortium blockchain
as a hybrid model, designed for smart home
communities involving multiple stakeholders,
including device manufacturers, service providers,
and homeowners’ associations. This implementation
features a federation of nodes operated by these
stakeholders. Consensus is achieved through a
Delegated Proof-of-Stake (DPoS) mechanism with
rotating validator sets, where trusted entities are
elected to validate transactions. This model strikes
a balance between decentralization and controlled
governance, providing a trusted yet distributed
framework suitable for collaborative multi-party
environments.

3.3 Consensus Mechanism Integration
The framework implements an adaptive consensus
selection strategy, where the choice of consensus
protocol is dynamically aligned with specific network
conditions and security requirements across different
deployment phases.

3.3.1 Phase 01: Proof-of-Stake (PoS) Variant for IoT
Environments

In Phase 01, a specialized Proof-of-Stake (PoS)
consensus mechanism is introduced, specifically
tailored for resource-constrained Internet of Things
(IoT) environments. The core innovation of this
variant lies in its energy-aware stake allocation
system. Unlike traditional PoS systems that rely
solely on cryptocurrency holdings, this mechanism
dynamically weights a device’s stake according to
its available computational resources and historical
contribution to the network. Importantly, device
reputation metrics are integrated directly into the
stake calculation, establishing a trust-based economic
layer in which reliability directly governs a device’s
consensus participation rights.
The protocol is designed with operational parameters
optimized for IoT scalability. A minimum stake
threshold is defined, corresponding to a device’s
demonstrated computational contribution to the
federated learning process. Validator selection follows
a randomized algorithm in which the probability of
being chosen is weighted by both the size of the stake
and the device’s historical reliability record. This
dual-weighting approach ensures both the security
inherent in stake-based systems and the fairness
introduced by reputation-based assessment. The
optimized mechanism achieves transaction finality
within a range of 2 to 15 seconds. The specific latency
within this range adaptively scales in response to
real-time network size and congestion levels, thereby
providing a suitable balance between speed and
security for the dynamic and heterogeneous topologies
characteristic of IoT networks.

3.3.2 Phase 02: Optimized Practical Byzantine Fault
Tolerance (PBFT) for Smart Homes

Phase 02 addresses the distinct requirements of
smart home federated learning environments by
proposing an optimized variant of the Practical
Byzantine Fault Tolerance (PBFT) consensus protocol.
This adaptation employs a streamlined, three-phase
consensus mechanism explicitly designed to reduce
communication overhead while preserving robust
security guarantees. A key innovation is the
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implementation of committee-based validation, which
enables scalable and efficient operation in networks
comprising over one hundred interconnected smart
devices. The protocol maintains strong fault tolerance,
theoretically supporting up to f = b(n − 1)/3c
malicious or Byzantine nodes within the network.

The consensus process unfolds through three
sequential phases, ensuring both agreement and
validation of model updates. First, in the Pre-prepare
phase, a designated primary node proposes a
validated federated learning model update for
network consideration. Subsequently, in the Prepare
phase, a selected committee of member nodes
performs rigorous verification checks. These checks
include validating compliance with differential
privacy protocols and assessing the quality of the
submitted gradients. Finally, the Commit phase serves
as the ultimate validation step, wherein the update
receives final approval from the committee before
being immutably recorded on the blockchain ledger,
thereby completing one full consensus cycle.

3.3.3 Phase 03: Lightweight Proof-of-Authority (PoA)
Configuration

For deployments requiring high throughput and
deterministic finality, a lightweight Proof-of-Authority
(PoA) configuration is employed. In this phase, trusted
device manufacturers serve as the primary validators,
leveraging their established reputation to secure the
network. To mitigate centralization risks, a time-based
authority rotation policy is implemented, periodically
reassigning validation rights among a pre-approved
set of entities. This configuration achieves sub-second
transaction finality, making it particularly suitable for
processing time-sensitive model updates and real-time
intrusion alerts.

3.4 Privacy-Preserving Federated Learning Protocol
The proposed framework implements a multi-phase
privacy-preserving federated learning protocol
designed to protect sensitive gradient information
while maintaining model utility.

3.4.1 Phase 01: Differential Privacy Integration
Each participating device applies calibrated Gaussian
noise to locally computed gradients before submission
to the aggregator. The protocol for device i proceeds
as follows:

∆θi = LocalTraining(θglobal,Di) (1)
σi = ComputeNoiseScale(ε, δ,Sf ) (2)

∆θ′i = ∆θi +N (0, σ2i I) (3)

where ∆θi represents the local gradient update, ε ∈
[0.1, 1.0] denotes the privacy budget, δ = 10−5 is the
failure probability, and Sf is the gradient sensitivity
bound. The noise scale σi is calibrated according to
the Gaussian mechanism to ensure (ε, δ)-differential
privacy guarantees.

3.4.2 Phase 02: Secure Aggregation Protocol
A three-phase secure aggregation scheme is
implemented to prevent the server from accessing
individual gradient updates:

Step 1: Key Establishment: Devices within a
cohort S establish shared symmetric keys
via an authenticated Diffie-Hellman key
exchange protocol. Key commitments
are cryptographically hashed and stored
on the blockchain for verifiability.

Step 2: Masked Update Submission: Each
device i ∈ S encrypts its differentially
private update as Enc(∆θ′i,Ki), where
Ki is the symmetric key. Additional
pairwise secret masks {mij} are applied
such that ∑j∈S mij = 0 for all i.

Step 3: Aggregate Reconstruction: Designated
validators compute the sum of all
masked encrypted updates. Due to the
construction of the pairwise masks, all
individual masks cancel out, revealing
only the aggregated gradient ∑i∈S ∆θ′i
without exposing any individual
contribution.

3.4.3 Phase 03: Gradient Compression and Perturbation
To further enhance privacy and reduce communication
overhead, additional compression and perturbation
techniques are applied:
• Gradient Sparsification: Only the top-k% of

gradient magnitudes are transmitted, where k
typically ranges from 1% to 10%. This reduces the
dimensionality of potentially sensitive information
exposed during transmission.

• Quantization: Gradient values are quantized to
8-bit representations using stochastic rounding.
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Error feedback mechanisms maintain convergence
guarantees by accumulating quantization errors and
adding them to subsequent updates.

• Dithering: Additional low-magnitude random
perturbations are applied to the quantized gradients,
providing an extra layer of privacy protection
against reconstruction attacks while minimally
affecting model accuracy.

The combination of these three phases establishes
a comprehensive privacy-preserving framework
that provides mathematically provable privacy
guarantees, efficient secure aggregation, and
practical communication optimization suitable for
resource-constrained IoT environments.

3.5 Authentication and Access Control
3.5.1 Phase 01: Hierarchical Role-Based Access Control

(RBAC)
A hierarchical Role-Based Access Control (RBAC)
mechanism is implemented through a smart contract
named DeviceRegistry. This contract defines and
enforces the following distinct roles with graduated
privileges:
• Owner: Possesses full administrative control,

including model validation, participant
management, and system configuration.

• Security Device: Assigned to critical sensors (e.g.,
intrusion detectors, cameras). Granted high priority
for processing and real-time update permissions.

• Comfort Device: Assigned to non-critical
appliances (e.g., thermostats, lights). Granted
standard priority for model updates and data
submission.

• Guest Device: Granted temporary, limited
participation rights, typically with restricted data
access and no contribution to the consensus process.

• External Service: Provided restricted API access
for auxiliary functions (e.g., logging, maintenance)
without direct involvement in federated learning.

The system supports dynamic role adjustment based
on contextual factors. This includes behavior-based
privilege escalation or demotion triggered by
anomalous activity, time-bound access for guest
devices, and temporary privilege expansion during
emergency operational modes.

3.5.2 Phase 02: Cryptographic Identity Management
A robust cryptographic identity framework underpins
device authentication. During the provisioning
phase, each device generates a unique Elliptic

Curve Cryptography (ECC) key pair using the
secp256k1 curve. The corresponding public key, along
with verified device metadata (type, capabilities),
is immutably registered on the blockchain. For
secure federated learning communications, ephemeral
session keys are derived from these long-term
identities. Furthermore, the frequency of certificate
rotation is dynamically tied to a device’s reputation
score, with more reliable devices undergoing less
frequent rotations to reduce overhead.

3.5.3 Phase 03: Computational Volume Weight (CVW)
Calculation

To ensure fair and resource-aware participation in the
federated learning process, a Computational Volume
Weight (CVW) metric is calculated for each device i.
This metric quantifies a device’s overall capability and
reliability as a weighted sum of normalized resource
and reputation factors:

CVWi = α·CPUi+β·Memoryi+γ·Energyi+δ·Reputationi

(4)
where:
– CPUi: Normalized computational capacity score.
– Memoryi: Normalized available RAM/Storage

score.
– Energyi: Power availability and sustainability score.
– Reputationi: Historical contribution quality and

reliability score.
The weighting coefficients α, β, γ, and δ satisfy α+β+
γ + δ = 1 and are adjustable per deployment to reflect
the specific priorities of the smart home environment
(e.g., prioritizing energy efficiency or computational
power). The resulting CVWi value directly influences
a device’s stake in consensus, selection probability as
a validator, and contribution weighting during model
aggregation.

3.6 Model Validation and Quality Assurance
3.6.1 Phase 01: Multi-Stage Validation Pipeline
To ensure the integrity and quality of federated
model updates while preventing malicious
contributions, a rigorous three-stage validation
pipeline is implemented. Each stage serves as a
progressive filter, with updates required to pass all
stages before acceptance.
Stage 1: Cryptographic and FormatValidation This
initial stage verifies the structural and cryptographic
integrity of submitted model updates. Checks

8
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include validating the digital signature against the
registered device identity to ensure authenticity
and non-repudiation. Additionally, the update’s
format is inspected for compliance with the expected
data structure. Crucially, this stage verifies the
presence and correct application of differential privacy
(DP) mechanisms by checking the declared privacy
parameters ε and δ against the system’s policy.
Stage 2: Statistical Validation The second stage
applies statistical tests to detect anomalous or
potentially malicious gradient updates. It enforces
a bound on the gradient norm, rejecting updates
where ‖∆θ‖ > τnorm for a predefined threshold
τnorm, as unusually large updates may indicate data
poisoning. The distribution of the current update is
compared to historical updates from the same device
and the cohort using statistical distance metrics (e.g.,
Wasserstein distance) to identify significant deviations.
Furthermore, robust outlier detection techniques,
such as the Median Absolute Deviation (MAD), are
employed to flag updates that are statistical outliers
within the current aggregation round.
Stage 3: Semantic and Behavioral Validation The
final stage evaluates the semantic utility and security
of the update. A lightweight performance test
is conducted by applying the proposed update
to a held-out validation subset and ensuring the
model’s accuracy does not degrade beyond a specified
tolerance. The consistency of the device’s learning
trajectory is assessed by comparing the direction
and magnitude of the current update with its
historical pattern. To defend against sophisticated
attacks like model backdoors, activation clustering
techniques are applied to the updated model’s
internal representations on a clean trigger-free dataset,
identifying anomalous neuron activations that may
signify embedded malicious functionality.

3.6.2 Phase 02: Smart Contract-Enforced Validation Logic
The validation logic is codified and autonomously
executed via a dedicated smart contract named
ModelValidator. This ensures that the validation
rules are transparent, tamper-proof, and consistently
applied to all participants. The core validation function
within the contract is structured as follows:
contract ModelValidator {
function validateUpdate(Update memory u) public
returns (bool) {

require(checkSignature(u),
"Invalid signature");

require(checkDPCompliance(u),

"Privacy violation");
require(checkGradientNorm(u),
"Potential poisoning");
require(checkLearningConsistency(u),
"Anomalous update");
return true;
}
}

The validateUpdate function enforces the
multi-stage pipeline in sequence. It first checks
the cryptographic signature (checkSignature),
then verifies differential privacy compliance
(checkDPCompliance). Subsequently, it assesses
the gradient norm against poisoning thresholds
(checkGradientNorm) and finally evaluates the update’s
learning consistency (checkLearningConsistency). A
model update is only deemed valid and eligible for
aggregation if it passes all these requirements, thereby
providing a robust, automated, and decentralized
mechanism for model quality assurance.

3.7 Tamper-Resistant Audit System
3.7.1 Phase 01: Immutable Event Logging
A core component of the framework’s accountability
mechanism is an immutable event logging system
built upon the blockchain’s inherent properties. Every
significant operation within the federated learning
lifecycle is recorded as a transaction or smart contract
event, creating a verifiable and tamper-proof audit
trail. The system logs a comprehensive set of events,
including but not limited to:

• Device registration and authentication attempts,
including public key associations and role
assignments.
• Submission of model updates, accompanied by

cryptographic hashes (e.g., SHA-256) of the gradient
data for integrity verification.
• Results of themulti-stage validation process for each
update, explicitly logging acceptance or rejection
along with the specific reason for any rejection (e.g.,
“invalid signature”, “gradient norm exceeded”).
• Records of global model aggregation events,

including the contributing device identifiers and the
resulting aggregated model hash.
• Consumption tracking of each device’s differential
privacy budget (ε), ensuring cumulative privacy
expenditure remains within predefined limits.

This granular logging ensures complete transparency
and non-repudiation for all actions within the system.
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3.7.2 Phase 02: Forensic Analysis and Compliance Support
The audit system is designed not only for recording
but also for facilitating efficient post-hoc analysis
and regulatory compliance. All logged events
are timestamped and cryptographically linked via
block hashes, forming an immutable chain that
is trivial to verify but computationally infeasible
to alter retroactively. For efficient data retrieval,
events are indexed using a Merkle Patricia Trie
(MPT) structure, enabling fast and verifiable queries
for specific transactions or device histories. To
balance transparency with confidentiality, the system
implements selective privacy preservation: while
operational metadata (e.g., timestamps, event types,
hashes) is public, sensitive information (e.g., specific
gradient values, failed model performance scores) is
stored in an encrypted form, with decryption keys
managed under a strict policy. Finally, the structured
and machine-readable nature of the audit log allows
for the automation of compliance reports, which can
be generated on-demand to demonstrate adherence
to data governance regulations (e.g., GDPR, CCPA)
concerning data processing activities and algorithmic
accountability.

3.8 Algorithmic Implementation
Algorithm Overview Algorithm 1 details the
workflow for blockchain-enhanced federated learning
in smart home IDS. The process comprises three
phases:
Phase 1: System initialization establishes the
blockchain infrastructure, deploys smart contracts,
and selects the consensus mechanism.
Phase 2: Device registration involves cryptographic
key generation, role assignment based on device type,
and computation of computational weights for fair
participation.
Phase 3: The iterative training loop includes
device-side local training with privacy protection,
blockchain-based validation through consensus
mechanisms, and secure aggregation of validated
updates.
The algorithm returns the final global model and a
complete audit log, ensuring transparency and security
throughout the federated learning process.

3.9 Performance Optimization Techniques
3.9.1 Phase 1: Asynchronous Aggregation
To accommodate device heterogeneity and
varying availability, the framework implements

Algorithm 1 Blockchain-Enhanced Federated
Learning for Smart Home IDS

Input: D = {d1, d2, . . . , dn}
BCType ∈ {Public,Private,Consortium}
T, ε, δ, S
Output: MT , L

// Phase 1: System Initialization
BC ← InitBlockchain(BCType)
SC ← DeployContracts(BC)
M0 ← InitModel()
CM ← SelectConsensus(BCType)

// Phase 2: Device Registration
foreach di ∈ D do

(PKi, SKi)← GenKeyPair()
rolei ← AssignRole(di.type)
CWi ← CompWeight(di.capabilities)
SC.register(PKi, rolei, CWi)

end
// Phase 3: Federated Training Loop

for t← 1 to T do
BC.startRound(t)
U ← ∅

// Device-side Processing
foreach di ∈ D do

∆θi ← di.train(Mt−1)
∆θ′i ← ApplyDP(∆θi, ε, δ)
enci ← SecureAgg.prepare(∆θ′i, S)
σi ← Sign(SKi,hash(enci))
U .add({PKi : enci, σ : σi, CW : CWi})

end
// Blockchain Validation & Aggregation

V ← CM.consensus(U , SC)
if |V| ≥ τ then

A← SecureAgg.combine(V)
Mt ←WeightAvg(Mt−1, A, {CWi})
SC.storeHash(hash(Mt))
BC.log("ModelAggregated", t)

else
BC.log("RoundFailed", t)

end
end

// Termination
returnMT , BC.getLog()

an asynchronous aggregation protocol. Instead of
requiring all devices to synchronize at fixed intervals,
devices are permitted to submit their model updates as
they become available, based on local computational
readiness and energy constraints. Aggregation
occurs within configurable time windows, collecting
updates from all devices that have submitted within
that period. To mitigate the potential negative
impact of stale updates from delayed devices, a
staleness-aware weighting mechanism is employed.
The contribution weight of an update is inversely
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scaled based on its delay relative to the aggregation
window, ensuring that more recent contributions
have greater influence on the global model while still
incorporating information from slower devices.

3.9.2 Phase 2: Edge-Assisted Computation
Recognizing the severe resource limitations of many
IoT devices, the architecture incorporates edge
computing support. Resource-constrained devices can
securely offload computationally intensive operations,
such as gradient encryption for secure aggregation
or complex validation checks, to designated edge
nodes within the smart home network (e.g., a home
gateway or a local server). These edge nodes operate
as blockchain light clients, maintaining only the
necessary cryptographic state to verify transactions
and model updates without storing the full ledger.
To ensure the integrity of offloaded computations,
the system employs verifiable computing techniques.
Edge nodes generate succinct cryptographic proofs
attesting to the correct execution of the delegated
tasks, which can be efficiently verified by the
resource-constrained devices or the blockchain
validators.

3.9.3 Phase 3: Adaptive Communication Scheduling
Network efficiency is optimized through intelligent,
adaptive communication scheduling. Update
transmissions are prioritized based on a combination
of factors, including device role (security devices have
higher priority), computational weight (higher CVW
devices prioritized), and update quality (gradients
with higher expected utility). The scheduler is
channel-aware, dynamically monitoring network
congestion and avoiding simultaneous transmissions
from multiple devices on the same channel to
reduce collisions and packet loss. Furthermore, the
system implements predictive pre-fetching of global
model parameters. By analyzing historical training
patterns and device schedules, the system proactively
disseminates model parameters to devices likely
to begin training soon, reducing the latency of the
initial model download phase and improving overall
training throughput.

4 Experimental Evaluations
This section presents the experimental setup,
performance metrics, and results analysis for the
proposed blockchain-enhanced federated learning
(FL) framework. We assess the framework’s
effectiveness in detection accuracy, privacy
preservation, system overhead, scalability, and

real-world feasibility.

4.1 Experimental Setup
4.1.1 Hardware and Software Environment
The experimental testbed is designed to simulate
a realistic and heterogeneous smart home network.
The hardware configuration includes 20 Raspberry Pi
4B units with 4GB RAM and quad-core Cortex-A72
processors, representing capable edge devices [32].
Additionally, 20 resource-constrained endpoints are
emulated using ESP32-based sensors with 520 KB
RAM and 240 MHz clock speeds [33]. For local edge
aggregation, 10 GPU-accelerated NVIDIA Jetson Nano
devices are employed [34].
The blockchain infrastructure is configured across
three distinct types: a public Ethereum 2.0 network
using Proof-of-Stake (PoS) with the Geth client
version 1.13.0 [35], a private Hyperledger Fabric
version 2.5 network with four peer nodes [36], and
a custom hybrid consortium blockchain with eight
validator nodes [37].
The software stack integrates PySyft version 0.6.0
for federated learning operations [38], OpenDP
version 0.8.0 for differential privacy mechanisms
[39], and TenSEAL version 0.3.12 for homomorphic
encryption [40]. Network conditions are simulated
over a WiFi (802.11ac) environment [31], with
latencies ranging from 5 to 20 ms [26], per-device
bandwidth varying between 10 and 100 Mbps, and
packet loss rates from 0.1% to 2% [18].
Multiple datasets are utilized for evaluation. The
Bot-IoT Dataset contains network traffic from nine
commercial IoT devices infected with Mirai and
BASHLITE botnets, comprising 7,062,606 instances and
115 features [27]. This data is partitioned in a non-IID
manner across 50 devices to reflect realistic household
usage patterns. The Edge-IIoTSet is employed to
provide supplementary data on DDoS and injection
attack patterns [18]. Furthermore, a custom six-month
anonymized smart home traffic log collected from ten
real households is used to validate the generalizability
and scalability of the proposed approach, with tests
extending to simulations involving up to 500 devices
[36].

4.1.2 Baseline Models and Justification
To systematically isolate and measure the
contributions of blockchain, privacy mechanisms,
and decentralization, our framework is compared
against four established baseline models.
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The first baseline is the STM IDS, a centralized
approach where all training data is aggregated on
a single server. This model establishes an upper
bound for achievable accuracy in a non-private setting,
representing the optimal performance when privacy
constraints are relaxed [32].

The second baseline is Vanilla Federated Learning
(FedAvg), which implements standard decentralized
federated learning without blockchain integration
or advanced privacy protections. This baseline is
crucial for highlighting the foundational performance
and inherent privacy risks associated with basic
decentralized aggregation [33].

The third baseline, FL+DP, augments the vanilla
federated learning model with Differential Privacy,
employing a privacy budget of ε = 1.0. This
configuration isolates the specific effect of privacy
enforcement on the final model’s utility [34].

The fourth baseline is theCommercial Snort IDS v3.0,
an industry-standard, rule-based detection system
utilizing IoT-specific rulesets. Its inclusion serves
to contextualize the performance of our machine
learning-based approaches against traditional,
widely-deployed methods [35].

Finally, our Proposed Framework is evaluated
in two distinct operational modes to assess its
adaptability: a Proof-of-Stake (PoS) consensus mode,
optimized for scalability, and a Practical Byzantine
Fault Tolerance (PBFT) consensus mode, optimized
for low-latency operations within smaller, private
consortium networks [36].

4.1.3 Implementation Details
The proposed framework was implemented with a
focus on edge compatibility. A lightweight neural
network architecture, consisting of a two-layer encoder
followed by a classifier, was designed for this purpose.
The network accepts an input dimension of 115,
corresponding to the feature set of the datasets. To
rigorously evaluate the privacy-utility trade-off, a
privacy budget sweep was conducted with ε values
ranging over [0.1, 0.5, 1.0, 2.0, 5.0], while δ was fixed
at 10−5 [33]. The noise scale σ for the differential
privacy mechanism was calculated using the standard
formula σ =

√
2 ln(1.25/δ)/ε. Furthermore, a gradient

clipping norm with a value of C = 1.0 was applied to
bound the sensitivity of the model updates [34].

4.2 Performance Metrics
The framework’s performance is evaluated through a
comprehensive andmulti-dimensional suite of metrics,
designed to rigorously assess its security robustness,
operational efficiency, and privacy guarantees.

4.2.1 Security Metrics
Security performance is quantified to measure the
detection efficacy and resilience of the system.
Detection Accuracy is captured using the standard trio
of F1-score, Precision, and Recall, providing a holistic
view of the model’s classification capability. The
system’s specificity is evaluated by the False Positive
Rate (FPR), defined as the percentage of benign
network traffic incorrectly classified as malicious.
The timeliness of threat response is measured via
Attack Detection Latency, which records the duration
from the initiation of an attack to its successful
identification by the system. To assess robustness
against adversarial manipulation, Model Poisoning
Resistance is evaluated by simulating backdoor attacks
and reporting their success rate. Finally, to quantify
potential information exposure, Privacy Leakage is
estimated by calculating the mutual information
between the aggregated model updates and the
participants’ original private training data.Results and
Analysis

4.2.2 System Metrics
System efficiency is analyzed across communication,
computation, and resource-utilization dimensions
to ensure practical viability in resource-constrained
edge environments. Communication Overhead is
measured as the total volume of data in bytes
transmitted per participating device during each
federated learning round. Computational demand is
captured by Computation Time, encompassing both
the local model training and validation phases on
heterogeneous hardware. The latency introduced by
the underlying blockchain consensus mechanism is
quantified as Consensus Latency, defined as the time
required for the network to reach agreement on and
commit a newblock containingmodel updates. Energy
Consumption, a critical metric for battery-operated
IoT devices, is measured in joules consumed per
device per complete training round. The long-term
storage burden is assessed by monitoring the Storage
Requirements, specifically the daily growth rate of the
immutable blockchain ledger, reported in megabytes
per day (MB/day).
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Figure 2. Detection accuracy comparison.

4.2.3 Privacy Metrics
Privacy guarantees are verified through a combination
of formal analysis and empirical adversarial
simulations. The formal ε-Differential Privacy
guarantee is mathematically established and
rigorously tracked using a privacy accountant
throughout the iterative training process. Practical
resilience is tested against state-of-the-art inference
attacks. The Membership Inference Attack (MIA)
Success Rate measures an adversary’s probability of
correctly determining whether a specific data sample
was a member of the training dataset. Furthermore,
the risk of data reconstruction is evaluated via
Gradient Inversion Attack metrics, which comprise
the Mean Squared Error (MSE) between the original
and the reconstructed data samples, along with the
accuracy of inferring sensitive attributes directly from

the observed model gradients.

4.3 Results and Analysis
The detailed comparative performance analysis of
multiple intrusion detection system (IDS) models
across several key metrics: Accuracy, Precision, Recall,
and F1-Score [32]. Centralized IDS consistently
achieves the highest performance, with values
around 94.2% accuracy, 0.947 precision, 0.915 recall,
and 0.940 F1-score, serving as a strong baseline.
Vanilla Federated Learning (FL) follows, showing
solid but slightly reduced metrics, such as 90.7%
accuracy and 0.892 precision. FL with Differential
Privacy (FL+DP) at ε=1.0 demonstrates a trade-off
between privacy and performance, with accuracy
dropping to around 87.4% and precision to 0.882.
The proposed methods—using Proof of Stake (PoS)
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and Practical Byzantine Fault Tolerance (PBFT)
consensus mechanisms—perform comparably to or
slightly better than FL+DP, with accuracies around
88.1% for PoS and 88.3% for PBFT, and balanced
precision and recall values near 0.869–0.890. Short
IDs, representing a simpler or reduced model, show
the lowest performance across the board, with
accuracy at 76.8% and recall as low as 0.702. The
table also references a “Comprehensive Performance
Radar Chart,” suggesting a visual summary of
these trade-offs. Overall, the data illustrate the
inherent trade-off among model accuracy, privacy
preservation (via DP or decentralized consensus),
and computational efficiency, with centralized
approaches performing better but decentralized
and privacy-enhanced methods offering distinct
advantages in distributed, secure environments, as
shown in Figure 2.

4.4 Detection Performance
The performance of various Intrusion Detection
Systems (IDSs) in Table 2, using classification metrics,
where the centralized IDS achieves the highest
accuracy (94.2%) and F1-score (0.938) with the lowest
false positive rate (2.1%), establishing a performance
benchmark [33]. The vanilla Federated Learning
(FL) model shows a decline in these metrics (90.7%
accuracy), which is further reduced when Differential
Privacy (DP) is added for enhanced security (87.4%
accuracy), illustrating a trade-off between privacy
and efficacy. The two proposed FL models using
Proof-of-Stake (PoS) and Practical Byzantine Fault
Tolerance (PBFT) consensus mechanisms slightly
improve upon the DP model (88.1% and 88.3%
accuracy, respectively), striking a better balance
between performance and robustness. In comparison,
the traditional Snort IDS performs the weakest across
all metrics (76.8% accuracy, 8.5% FPR).

Table 2. Detection Accuracy Comparison (N-BaIoT
Dataset).

Model Accuracy
(%) F1-Score Precision Recall FPR

(%)
Centralized IDS 94.2 0.938 0.947 0.930 2.1

Vanilla FL 90.7 0.903 0.915 0.892 3.8
FL+DP (ε=1.0) 87.4 0.870 0.882 0.859 5.2
Proposed (PoS) 88.1 0.876 0.887 0.866 4.9
Proposed (PBFT) 88.3 0.879 0.890 0.868 4.7

Snort IDS 76.8 0.761 0.829 0.702 8.5

4.5 Privacy-Utility Trade-off Analysis
The fundamental privacy-utility trade-off in applying
Differential Privacy (DP) to machine learning models

is presented in Table 3, where the privacy parameter
ε controls the strength of the noise added [34]. As ε
increases, indicating weaker privacy protection, the
model’s accuracy improves (from 83.2% at ε=0.1 to
90.1% at ε=5.0), but the system becomes significantly
more vulnerable to privacy attacks, evidenced by the
rising success rate of Membership Inference Attacks
(MIA) and the lower error (MSE) in gradient inversion
attacks that reconstruct training data; the baseline
model with no DP achieves the highest accuracy
(90.7%) but also the highest vulnerability, confirming
that stronger privacy guarantees (lower ε) necessarily
reduce both model performance and the risk of data
leakage, as diagrammatically presented in Figure 3.

Table 3. Privacy vs. Accuracy (100 Rounds).

ε
Accuracy

(%)
MIA Success

Rate
Gradient

Inversion MSE
0.1 83.2 52.1% 0.89
0.5 86.7 63.8% 0.76
1.0 88.1 71.2% 0.61
2.0 89.4 78.9% 0.48
5.0 90.1 84.3% 0.32

(No DP) 90.7 91.5% 0.15

Figure 3 presents a multi-dimensional analysis of the
trade-off between model performance, privacy, and
security in federated or distributed learning settings.
It evaluates explicitly models based on three key
metrics: Accuracy (model performance), Membership
Inference Attack (MIA) Success Rate (a measure
of privacy vulnerability), and Privacy Protection
(quantified as 1-MSE, likely representing the inverse
of reconstruction error from attacks). The data is
visualized through both a Privacy Utility Trade-off
Heatmap and a Multi-dimensional Privacy-Accuracy
Trade-off chart [36]. The first section shows
scenarios with generally high accuracy (84–86%) and
correspondingly low MIA Success Rates (88–90%),
indicating models that balance utility with a degree
of inherent privacy robustness, labeled as “Low MIA
Risk.” However, the second section starkly contrasts
this by introducing the “No DP” (No Differential
Privacy) scenario. Here, accuracy remains relatively
high (82.5–84.5%), but the MIA Success Rate drops to
a much lower and more favorable range (84.5–85.5%).
This counterintuitive result—where the absence of
formal privacy mechanisms like DP correlates with
a lower attack success rate—likely highlights a critical
nuance: the baseline model (without DP) may have
different inherent properties, or the evaluation context
may differ (e.g., different datasets or attack models). It
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Table 4. Communication and computation overhead.

Component Per Round Cost Total (100 Rounds) % Overhead
vs. Vanilla FL

Model Updates 310 KB/device 31 MB/device Baseline
Blockchain Tx (PoS) 42 KB/update 4.2 MB/device +13.5%
Consensus Messages (PBFT) 28 KB/device 2.8 MB/device +9.0%
DP Noise Addition 15 ms/device 1.5 s/device +8.2%
Secure Aggregation 210 ms/cohort 21 s/system +22.1%
Total Overhead 585 ms/round 58.5 s +52.8%

suggests that raw accuracy and attack vulnerability
do not always have a simple, linear relationship,
and that factors such as model architecture and data
distribution significantly shape the privacy-utility
landscape. Overall, Figure 3 emphasizes the complex,
multi-dimensional nature of designing ML systems,
where improving one metric (such as accuracy) can
have non-obvious, and sometimes inverse, effects
on another (such as vulnerability to membership
inference), necessitating holistic evaluation beyond
single-dimensional trade-offs.

4.6 System Overhead Analysis
The provided table quantifies the additional
communication and computational costs of
enhancing a baseline Federated Learning (FL)
system with privacy and security mechanisms such
as blockchain [37], Differential Privacy (DP), and
secure aggregation, as shown in Table 4. While the
core model update process costs 31 MB per device
over 100 rounds, the additional components introduce
significant overhead: blockchain transactions and
consensus messaging add extra data transfer, DP

Figure 3. Privacy vs. Accuracy.
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Figure 4. Communication and computation overhead.

Table 5. Energy profile per device category.

Device Type Training
Energy (J/round)

Blockchain
Energy (J/round)

Total
Daily (kJ) Battery Life Impact

Raspberry Pi 4B 12.3 ± 2.1 3.8 ± 0.9 38.9 5.1 days (from 5 days)
ESP32 Sensor 1.2 ± 0.3 0.8 ± 0.2 4.8 62 days (from 90 days)
Jetson Nano 18.7 ± 3.2 4.2 ± 1.1 55.0 1.8 days (from 2 days)

noise increases processing time by 1.5 seconds, and
secure aggregation requires substantial system-level
computation time (21 seconds). Cumulatively, these
enhancements result in a total system overhead of 58.5
seconds per 100 rounds, representing a 52.8% increase
over the simpler Vanilla FL system, highlighting the
resource trade-off required for improved robustness
and privacy, as diagrammed in Figure 4.

4.7 Energy Consumption Analysis
To analyze the energy consumption and operational
impact of running a federated learning (FL) system

with integrated blockchain on three different types of
devices, showing that adding blockchain operations
introduces a significant additional energy cost beyond
the base training requirement, as shown in Table 5.
While a resource-constrained sensor like the ESP32
consumes relatively little total energy (4.8 kJ/day) and
sees amoderate reduction in projected battery life from
90 to 62 days, more powerful devices like the Raspberry
Pi 4B and Jetson Nano [38] incur a much heavier
daily toll (38.9 kJ and 55.0 kJ, respectively), drastically
cutting their standalone operational lifespans to just
a few days, thereby illustrating that the energy
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Figure 5. Energy profile per device category.

Table 6. Framework comparison.

Framework Accuracy Privacy Decentralization Overhead
Attack

Resistance

Ours (PoS) 88.1% ε=1.0 DP High Medium 91.3%
Ours (PBFT) 88.3% ε=1.0 DP Medium Low 93.1%
FL-Block [19] 86.2% No formal DP Medium High 82.4%
BFL-IDS [2] 85.7% Basic DP Low Medium 76.8%
HBFL [6] 87.9% ε=2.0 DP High High 88.2%

overhead of the secure system is most pronounced and
limiting for higher-performance, battery-dependent
edge devices, as depicted diagrammatically in Figure 5.
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Figure 6. Framework comparison.

4.8 Comparative Analysis with Related Work
To evaluatemultiple federated learning frameworks for
intrusion detection systems across five key attributes,
positioning the proposed frameworks (PoS and PBFT)
as balanced solutions that offer strong accuracy
(88.1-88.3%) and formal privacy guarantees (DP with
ε=1.0) while managing overhead and achieving high
attack resistance (91.3-93.1%) [39]. In contrast, other
frameworks, such as FL-Block and BFL-IDS, exhibit
lower accuracy and weaker formal privacy or attack
resistance. While HBFL offers slightly higher accuracy
(87.9%), it requires a weaker privacy setting (ε=2.0).
It suffers from high overhead, demonstrating that the
proposed models effectively trade off decentralization,
resource cost, and robust security, as shown in Table 6
and diagrammatically in Figure 6.

5 Discussion
5.1 Strengths and Weaknesses of Various

Consensus Mechanisms
Proof-of-stake inherently provides significant
advantages for any smart home FL-IDS
implementation, including energy efficiency and lower
computational overhead. Advanced PoS protocols
achieve transaction finality within seconds while
using less energy than PoW systems. However, this
is vulnerable to certain risks: stake centralization,
in which highly wealthy participants may gain
an advantage over others, and “nothing at stake”
problems in specific attack scenarios. In a smart
home context, these risks could be mitigated by
appropriate token economics and validator selection
mechanisms [11–13].
Practical Byzantine Fault Tolerance has excellent
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performance characteristics, including low latency and
deterministic finality, which are ideal for time-sensitive
intrusion detection applications. Additionally, the
ability to tolerate Byzantine failures ensures continued
operation despite compromised smart home devices.
However, when scalability is concerned, larger
smart home networks with over 100 devices exhibit
scalability limitations; in addition, communication
complexity grows quadratically with the number
of participants, which may overwhelm network
infrastructure [14].

PoA offers superior performance due to fast block
generation and low resource consumption; thus,
it is highly suitable for resource-constrained IoT
environments. Because of its lightweight nature,
it can be easily deployed on edge devices with
limited computational capabilities. However,
the centralization issue persists by relying on
designated authorities, and it might recreate some
trust bottlenecks that blockchain eliminates. Thus,
care should be taken in selecting authorities and
their rotation mechanisms to maintain security
properties [15].

5.2 Trade-Offs: Security vs. Overhead
Empirical analysis shows significant trade-offs
between security enhancements and operational
overhead in blockchain-enabled FL systems. The
major computational costs come from gas fees for
transaction processing, averaging 25,960 gas for
transactions and 3,932 gas for execution in Ethereum
implementations [21]. It should be noted that the
average transaction latency is around 200ms per
communication round, which introduces additional
delays compared to traditional centralized systems
but should remain acceptable for non-real-time
security applications. Communication overhead:
the average model update submission from a client
takes around 310 bytes per transaction, indicating
manageable bandwidth demands for modern smart
home networks [22]. Storage requirements scale
linearly with the length of the blockchain, potentially
straining resource-constrained devices over prolonged
deployments. However, techniques such as state
pruning and IPFS-based off-chain storage can mitigate
storage concerns while preserving security benefits.
These include, among others, tamper-resistant model
updates, decentralized trust, elimination of single
points of failure, and comprehensive audit trails for
forensic analysis. Performance studies have shown
that such security enhancements justify the overheads

involved, especially in critical security applications
where the consequences of compromise outweigh
efficiency considerations [23].
Implementing query control mechanisms introduces
additional, but necessary, overhead. Rate-limiting and
quota enforcement require state storage and validation
per transaction, adding approximately 5,000-10,000
gas per update submission on Ethereum-based
systems [24]. Enforcing contribution diversity
requires more complex aggregation logic, potentially
increasing the execution cost of the aggregation smart
contract by 15-20%. However, this overhead is justified
as it protects against sophisticated, low-and-slow
privacy attacks that could otherwise go undetected
in a simple RBAC system [16].

5.3 Challenges for Deployment in the Real World
First and foremost, device heterogeneity is an
emergent challenge: a smart home environment may
include a mix of microcontroller-based sensors and
a powerful edge computing platform. Consensus
mechanisms must account for this diversity while
preserving the required security properties [15]. This
often means either a hybrid approach or a tiered
participation model, where resource-constrained
devices participate in the process only via proxy
nodes. In addition, limited computational resources
limit the potential for blockchain participation for
most IoT devices due to the need for lightweight
client implementations and off-chain computation
with on-chain verification. Network latency can
vary, especially in WiFi environments characterized
by interference and bandwidth limitations. Such
conditions can affect consensus timing; therefore,
adaptive timeout mechanisms could be necessary [16].
Dynamic device membership introduces complexity,
as devices frequently join and leave networks due
to mobility, power cycling, or network configuration
changes. Consensus mechanisms need to handle such
membership changes as smoothly as possible, without
compromising security or requiring a complete system
initialization. Finally, diverse device protocols
and different proprietary implementations call for
standardized interfaces and compatibility layers,
making integration complex [17].

6 Research Gaps & Future Directions
6.1 Need for Standardized Datasets
Research on FL-based IDS is heavily dependent on
datasets such as N-BaIoT, Edge-IIoTSet, and TON-IoT.
Although these datasets are comprehensive, they
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do not represent the full range of attack vectors
and device behaviors in smart homes. The N-BaIoT
dataset focuses on botnet attacks by Mirai and BASH
Lite. Still, it lacks representation of the latest threats,
such as AI-powered attacks and zero-day exploits, as
well as privacy-invasion techniques in smart home
contexts. A critical research gap exists in standardized,
continuously updated datasets that account for
evolving threat landscapes and diverse smart home
configurations. Data collection from real-world
smart homes faces limitations due to privacy and
ethical constraints, which make datasets unavailable.
Synthetic data generation and privacy-preserving
data sharing mechanisms can help build larger, more
diverse datasets without violating users’ privacy. In
addition, standardization efforts should include attack
vector taxonomies, baselines for device behavior, and
evaluation metrics for federated learning performance
in smart home settings.

6.2 Scaling Limits inMultiple-Device SmartHomes
The current consensus mechanisms, while scalable
in small environments, face significant scalability
challenges in typical advanced smart homes with
more than 100 connected devices. As transaction
history builds up, the growth in blockchain storage
becomes infeasible for resource-constrained devices.
The communication complexity in PBFT-based systems
grows quadratically with the number of participants,
leading to bandwidth bottlenecks in home network
environments. Sharding techniques, layer-2 scaling
solutions, and hierarchical consensus architectures
show promising directions for overcoming scalability
limitations. Hybrid approaches that combine on-chain
consensus, used only for critical security decisions,
with off-chain computation for routine operations, may
provide a balanced solution between security and
performance requirements. Dynamic participation
mechanisms that allow devices to join/leave consensus
processes based on resource availability and security
requirements deserve an in-depth study.

6.3 Privacy Enhancement Technology in FL
While FL provides differential privacy through local
training, it is still possible to extract sensitive
information from model updates through
gradient-based privacy attacks. The integration
of homomorphic encryption, secure multi-party
computation, and differential privacy mechanisms
within blockchain-enabled FL systems remains
underexplored. Homomorphic encryption enables
direct private model aggregation over encrypted

gradients, even though this would be computationally
expensive for IoT devices. Secure multi-party
computation protocols may unfold aggregation
computation across multiple nodes while preserving
the node’s privacy. Differential privacy mechanisms
implemented inside smart contracts would offer
mathematically guaranteed privacy bounds at a minor
cost to model utility for intrusion detection.

6.4 Interoperability among Heterogeneous
IoT Devices: Smart home environments are collections
of devices from various manufacturers that use
diverse communication protocols, operating
systems, and security mechanisms. Most current
implementations of blockchain-FL assume
homogeneous environments. This limits the
solutions’ usability in practical, real-world scenarios.
Cross-blockchain communication protocols enable
different manufacturers to provide interoperability
between implementations. Standardization efforts,
such as those of the IEEE, IETF, and industry
consortia, should focus on standards for blockchain-FL
integration for IoT devices. Thismight include protocol
translation layers and universal device authentication
mechanisms that enable seamless participation across
heterogeneous environments. Integration with edge
computing can supply resource-constrained devices
with computing resources while preserving the
decentralized security properties.

6.5 MitigatingGradient Inversion andMembership
Inference via Advanced Privacy-Preserving
Techniques

Federated Learning (FL) frameworks, despite
incorporating multiple layers of defense, continue to
face sophisticated privacy threats such as gradient
inversion and membership inference attacks.
The proposed framework integrates a suite of
Privacy-Enhancing Technologies (PETs), including
Differential Privacy (DP), Secure Aggregation
(SA), gradient compression, perturbation, and
homomorphic encryption. Nevertheless, residual risks
persist due to the continuous evolution of adversarial
techniques. Future research must, therefore, prioritize
the development of adaptive, context-aware privacy
mechanisms capable of dynamically responding
to emerging threats. This approach is essential
for ensuring robust, long-term protection without
compromising model utility or system scalability. The
following key research directions are recommended
to address these challenges.

20



Journal of Reliable and Secure Computing

6.5.1 Verifiable Privacy Enforcement via Smart Contracts
The capabilities of blockchain smart contracts can be
extended to provide verifiable and automated privacy
enforcement. This involves enhancing contract logic
to:
• Enforce predefined Differential Privacy noise

bounds and cryptographically verify signed
privacy guarantees attached to model updates.

• Detect and automatically reject gradient updates
that lack sufficient perturbation or exhibit patterns
indicative of privacy violations.

• Implement real-time monitoring and strict
enforcement of per-device privacy budget (ε)
consumption throughout the training lifecycle.

6.5.2 Integration of Advanced Cryptographic Protections
Investigating the integration of more sophisticated
cryptographic primitives is crucial. Research
should focus on developing lightweight, practical
implementations of:
• Homomorphic Encryption (HE) to enable

secure model aggregation operations to be
performed directly on encrypted gradients,
preventing exposure even during the aggregation
phase.

• Secure Multi-Party Computation (SMPC)
protocols to distribute trust and computational
load across multiple validating nodes, ensuring
no single entity can reconstruct a participant’s
data.

• Zero-Knowledge Proofs (ZKPs) to allow
participants to prove the correctness of their local
training process or their compliance with protocol
rules without revealing any private input data.

6.5.3 Dynamic and Adaptive Privacy Mechanisms
Future frameworks should be designed with inherent
adaptability. This involves creating privacy-preserving
systems that can autonomously adjust their defensive
parameters, such as:
• Dynamically tuning DP noise levels (σ) and

gradient clipping norms (C) in response to
detected adversarial activity or shifts in data
distributions.

• Adapting secure aggregation thresholds and
participant selection criteria based on real-time
device trust scores and current network latency
or reliability conditions.

6.5.4 Robustness Evaluation Against Emerging Attacks
A systematic and ongoing evaluation regime is
necessary to ensure resilience. This entails rigorously
stress-testing the integrated PETs against:
• State-of-the-art gradient inversion and model

extraction techniques.
• Advanced membership inference attack models

that leverage auxiliary information.
• Novel attack vectors exploiting cross-device

data leakage, particularly in heterogeneous IoT
network topologies.

6.5.5 Decentralized Reputation and Incentive Systems
Leveraging the blockchain’s inherent trust features,
decentralized reputation systems can be implemented.
These systems would link a participant’s reputation
score—and associated incentives or penalties—to
quantifiable metrics, including:
• The quality, uniqueness, and statistical utility of

their contributions to the global model.
• Verifiable adherence to prescribed privacy

protocols and submission of correctly perturbed
updates.

• Historical reliability, potentially enforced through
blockchain-native slashing mechanisms that
penalize provably malicious or unreliable actors.

In summary, advancing these interconnected research
directions will significantly enhance the scientific rigor
and practical deployability of blockchain-enhanced FL
frameworks. This ensures their continued resilience
against an evolving landscape of privacy threats while
maintaining the performance and usability required
for real-world deployment in smart home and IoT
environments.

7 Findings, Implications, and Conclusion
7.1 Summary of Findings
This review has systematically examined the role
of blockchain technology in securing Federated
Learning-based Intrusion Detection Systems
(FL-IDS) for smart homes. In response to the
central research question, the analysis identifies
Proof-of-Stake (PoS), Practical Byzantine Fault
Tolerance (PBFT), and Proof-of-Authority (PoA)
as the most suitable consensus models for IoT
environments, each offering distinct trade-offs in
energy efficiency, latency, and decentralization.
PoS provides an optimal balance of security and
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energy efficiency; PBFT delivers deterministic
finality for time-sensitive detection, and PoA offers
lightweight operation for resource-constrained
settings. The integration of blockchain enhances
FL by introducing tamper-resistant model updates,
decentralized trust, and comprehensive, immutable
audit trails. Implementations on benchmark datasets
(e.g., N-BaIoT) demonstrate the feasibility of this
approach, achieving detection accuracy up to 88%
with manageable latency ( 200 ms per round).
Furthermore, the framework’s incorporation of
Role-Based Access Control (RBAC) via smart
contracts enables granular device authentication. At
the same time, its support for differential privacy and
secure aggregation addresses critical vulnerabilities
such as gradient inversion and membership inference
attacks. These enhancements collectively address
the limitations of both centralized IDS and vanilla
FL, though they introduce measurable overhead in
computation, communication, and storage.

7.2 Implications for Future Research
Future work should focus on lightweight
consensus protocols optimized for heterogeneous
IoT devices, potentially leveraging knowledge
distillation and edge computing. The integration
of advanced privacy-enhancing technologies,
such as homomorphic encryption and secure
multi-party computation, warrants further exploration
to strengthen defenses against gradient-based
attacks. Standardization efforts are urgently
needed to ensure interoperability across diverse
device ecosystems, including the development of
universal authentication and protocol translation
layers. Scalability solutions—such as sharding,
layer-2 protocols, and hierarchical consensus
architectures—must be investigated to support
large-scale smart home networks with hundreds of
devices. Finally, real-world longitudinal studies are
essential to evaluate the performance, security, and
usability of blockchain-enabled FL-IDS in deployed
smart home settings.

7.3 Concluding Remarks
The convergence of blockchain and federated learning
presents a transformative paradigm for securing
smart home IoT ecosystems. By decentralizing
trust, ensuring tamper resistance, and preserving
data privacy, this integrated approach addresses
the core vulnerabilities of conventional security
models. Despite persistent challenges—including

device heterogeneity, scalability limits, and integration
complexity—the fundamental benefits of enhanced
security, transparency, and user privacy justify
continued research and development. As smart home
adoption accelerates, blockchain-enabled FL-IDS will
become increasingly critical in maintaining user trust
and safeguarding connected domestic environments.
Collaborative efforts among academia, industry, and
standards organizations will be essential to translate
these innovative concepts into deployable, resilient
security solutions for smart homes worldwide.
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Appendix
A Implementation Code of the

Blockchain-Enabled FL Framework for
Smart Home IDS

A.1 Python Implementation
import hashlib
import numpy as np
from typing import Dict, List, Tuple

# ======== 1. IDS Model ========
class IDSModel:
def __init__(self, dim: int = 10):
self.weights = np.random.randn(dim)

def train(self, data: np.ndarray) -> np.ndarray:
gradient = np.mean(data, axis=0)
self.weights += 0.01 * gradient
return self.weights

def get_weights(self) -> np.ndarray:
return self.weights

def set_weights(self, w: np.ndarray):
self.weights = w.copy()

# ======== 2. IoT Device ========
class IoTDevice:
def __init__(self, device_id: str, role: str,
cpu: float, memory: float, energy: float):
self.device_id = device_id
self.role = role
self.private_key = f"SK_{device_id}"
self.public_key = f"PK_{device_id}"
self.cvw = cpu + memory + energy # Computational
Volume Weight
self.model = IDSModel()

def sign_update(self, update: np.ndarray) -> str:
msg = str(update).encode()
return hashlib.sha256(msg + self.private_key.
encode()).hexdigest()

def train_local(self, global_weights: np.ndarray)
-> np.ndarray:
self.model.set_weights(global_weights)
local_data = np.random.randn(100, len(global
_weights)) # Simulated data
return self.model.train(local_data)

# ======== 3. RBAC Smart Contract ========
class RBACContract:
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def __init__(self):
self.registry = {}

def register_device(self, device: IoTDevice):
self.registry[device.public_key] = {
"role": device.role,
"cvw": device.cvw
}

def verify_device(self, public_key: str) -> bool:
return public_key in self.registry

def get_cvw(self, public_key: str) -> float:
return self.registry[public_key]["cvw"]

# ======== 4. Immutable Blockchain Log ========
class Blockchain:
def __init__(self):
self.chain = []

def log_event(self, event_type: str, data: any):
record = {
"event": event_type,
"data": data,
"hash": hashlib.sha256(str(data).encode())
.hexdigest()
}
self.chain.append(record)

def show_ledger(self):
for idx, block in enumerate(self.chain):
print(f"[Block {idx}] {block}")

# ====== 5. Consensus Engine (PoS/PBFT/PoA) ======
class ConsensusEngine:
def __init__(self, consensus_type: str):
self.type = consensus_type

def validate(self, updates: Dict[str, np.ndarray])
-> bool:

# Simplified consensus logic
if self.type == "PBFT":
return len(updates) > 2 # At least 3f+1 nodes
(simplified)
elif self.type == "PoS":
return len(updates) >= 1 # At least one validator
elif self.type == "PoA":
return True # Authority always approves (for demo)
return False

# ======== 6. Federated Learning Server ========
class FLServer:

def __init__(self, consensus: ConsensusEngine,
blockchain: Blockchain, rbac: RBACContract):
self.consensus = consensus
self.blockchain = blockchain
self.rbac = rbac
self.global_model = IDSModel()

def gradient_verification(self, update: np.ndarray,
global_weights: np.ndarray) -> bool:
diff = np.linalg.norm(update - global_weights)
return diff < 5.0 # Simple poisoning threshold

def aggregate(self, updates: Dict[str, np.ndarray]):
total_cvw = sum(self.rbac.get_cvw(pk) for pk
in updates)
new_weights = np.zeros_like(self.global_model.
get_weights())

for pk, update in updates.items():
weight = self.rbac.get_cvw(pk) / total_cvw
new_weights += weight * update

self.global_model.set_weights(new_weights)

# ======== 7. Main Pipeline ========
def main():
# Initialize core components
blockchain = Blockchain()
rbac = RBACContract()
consensus = ConsensusEngine(consensus_type="PoS")
fl_server = FLServer(consensus, blockchain, rbac)

# Create IoT devices
devices = [
IoTDevice("D1", "Owner", cpu=3, memory=3,
energy=4),
IoTDevice("D2", "LegalUser", cpu=2, memory=2,
energy=3),
IoTDevice("D3", "Guest", cpu=1, memory=1,
energy=2)
]

# Registration phase
for d in devices:
rbac.register_device(d)
blockchain.log_event("DeviceRegistered",
d.device_id)

# FL Training Rounds
ROUNDS = 5
for r in range(ROUNDS):
print(f"\n--- Round {r+1} ---")
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updates = {}

for d in devices:
if rbac.verify_device(d.public_key):
local_update = d.train_local(
fl_server.global_model.get_weights())

if fl_server.gradient_verification(local_update,
fl_server.global_model.get_weights()):
updates[d.public_key] = local_update
else:
blockchain.log_event("MaliciousUpdateRejected",
d.device_id)

# Consensus validation
if consensus.validate(updates):
fl_server.aggregate(updates)
blockchain.log_event("ModelAggregated",
f"Round {r+1}")
print(f"Round {r+1} aggregated successfully.")
else:
print(f"Round {r+1} failed consensus.")

# Final outputs
print("\n" + "="*50)
print("Final Global Model Weights:")
print(fl_server.global_model.get_weights())
print("\nBlockchain Ledger:")
blockchain.show_ledger()

# ======== 8. Entry Point ========
if __name__ == "__main__":
main()

A.2 Code Description
The above Python code implements a simplified
version of the proposed blockchain-enhanced
federated learning framework for smart home
intrusion detection systems. The key components
include:
• IDSModel: Lightweight neural network model

for intrusion detection.

• IoTDevice: Represents smart home devices
with cryptographic identities and computational
volume weights (CVW).

• RBACContract: Smart contract implementation
for role-based access control.

• Blockchain: Immutable ledger for recording all
FL transactions and security events.

• ConsensusEngine: Implements PoS, PBFT, and
PoA consensus mechanisms (selectable).

• FLServer: Central orchestrator for federated
aggregation with gradient verification.

Note: This implementation is a proof-of-concept
prototype. For production deployment, additional
security measures, performance optimizations, and
real-world dataset integration would be required.
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