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Abstract
With the rapid advancement of deep learning,
Spiking Neural Networks (SNNs) have
attracted growing interest due to their low
power consumption, sensitivity to temporal
information, and biological plausibility. However,
deploying SNNs in resource-constrained, real-time
embedded environments presents significant
challenges—chiefly their complex training processes,
limited hardware acceleration support, and the
difficulty of performing scheduling analysis.
This paper presents an integrated modeling
and scheduling analysis framework for SNNs
based on the MARTE (Modeling and Analysis
of Real-Time and Embedded Systems) standard
defined by the OMG. Key SNN components—such
as neurons, synapses, and spike events—are mapped
to schedulable tasks and communication resources
within the MARTE profile. Leveraging the Papyrus
MARTE tool, we conduct simulation and verification
on a heterogeneous embedded platform comprising
multi-core ARM and DSP processors. Experimental
results show that the proposed framework effectively
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satisfies end-to-end latency and power constraints,
while significantly reducing system integration
risks and enhancing design efficiency. Finally, we
discuss future research directions, including support
for more complex SNN architectures, advanced
scheduling strategies, deployment on heterogeneous
and distributed platforms, and formal verification
for safety-critical applications.

Keywords: spiking neural network (SNN), MARTE,
embedded system, real-time scheduling, model-driven
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1 Introduction
With the rise of deep learning, neural networks have
achieved remarkable breakthroughs in fields such as
image recognition, natural language processing, and
autonomous driving. However, traditional artificial
neural networks (ANNs) are computationally
intensive and typically depend on GPUs or specialized
accelerators to perform large-scale processing
efficiently. In contrast, spiking neural networks
(SNNs)—inspired by the behavior of biological
neurons—employ event-driven processing to
minimize redundant computations [1]. This leads
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to lower power consumption, greater sensitivity
to temporal dynamics, and enhanced biological
plausibility, making SNNs an increasingly promising
choice for energy-efficient intelligent systems.

The increasing adoption of embedded systems in
real-time applications—such as industrial automation,
UAVs, and robotics—calls for the reliable deployment
of neural networks under stringent timing and
resource constraints. The MARTE (Modeling and
Analysis of Real-Time and Embedded Systems)
standard, developed by the OMG, provides a unified
framework for modeling, analyzing, and verifying
such systems. By incorporating SNN architectures,
execution timing, and hardware mappings into the
MARTE framework, designers can achieve more
systematic support for system design along with
enhanced verification capabilities.

This paper reviews the foundational concepts of
Spiking Neural Networks (SNNs) and the MARTE
standard, identifies key challenges in deploying
SNNs within real-time embedded environments, and
introduces a MARTE-based modeling and analysis
framework. Preliminary experimental results are
presented, followed by a discussion of future research
directions.

2 Preliminaries and Related Work
2.1 Spiking Neural Network (SNN)
SNNs are a class of neural models that transmit
and process information via discrete-time
spikes. Representative models include the Leaky
Integrate-and-Fire (LIF) and Izhikevich models [2].
Unlike traditional deep neural networks (DNNs),
SNN neurons fire only when their membrane potential
exceeds a threshold, introducing intrinsic temporal
dynamics. This event-driven mechanism enables low
power consumption, real-time responsiveness, and
greater biological plausibility.

Despite these advantages, SNNs face several
limitations in terms of hardware and algorithmic
maturity:

1. Traditional backpropagation is not directly
applicable due to the non-differentiable nature
of spike generation, necessitating the use of
surrogate gradients or alternative training
methods.

2. SNNs often require specialized neuromorphic
hardware to support spike-based

computation, which is difficult to optimize
for resource-constrained embedded platforms.

3. Ensuring that SNN inference meets stringent
timing requirements remains a key challenge in
time-critical applications.

2.2 MARTE
MARTE (Modeling and Analysis of Real-Time and
Embedded Systems), developed by the Object
Management Group (OMG), is a UML-based standard
that enhances modeling capabilities for real-time
system properties such as timing, scheduling, and
resource management. Its key features include:
1. Specification and annotation of timing constraints,

such as Worst-Case Execution Time (WCET) [3],
and support for periodic scheduling.

2. Modeling of hardware components (e.g.,
CPUs, memory), facilitating hardware-software
co-analysis.

3. Application of real-time scheduling theory
for evaluating task feasibility and timing
conformance.

4. Early-stage architectural and scheduling
evaluation through high-level system models.

MARTE incorporates profiles such asGeneric Resource
Modeling (GRM), Software Resource Modeling
(SRM), and Hardware Resource Modeling (HRM),
enabling a unified, system-level description of
applications, platform resources, and scheduling
strategies. These features support early trade-off
analysis for both functional and non-functional system
requirements [4].

2.3 Research Progress
Recent advances in integrating machine learning and
neural networks into real-time systems have primarily
focused on two directions:
1. Lightweight deployment: Implementing neural

networks on resource-constrained hardware such
as microcontrollers or FPGAs to enable efficient
processing of image, audio, or sensor data [5].

2. Model-driven optimization: Utilizing MARTE or
other UML-based approaches to model timing
and resource constraints, enabling scheduling
analysis and early validation of system design [6].

UML models help capture key architectural decisions,
their interdependencies, and influencing factors,
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thereby promoting structured system design
[7]. Extensions through domain-specific profiles
allow quality attributes—such as performance and
reliability—to be integrated early in the design process
[8]. Combined with platforms like Apache Hadoop,
these models support simulation, bottleneck detection,
and resource optimization before deployment [9].
Moreover, UML-based decision models aid in
navigating architectural trade-offs based on empirical
evidence and system objectives [10].
While significant progress has been made with
deep neural networks, the integration of SNNs with
MARTE for timing and resource-aware modeling in
embedded contexts remains underexplored. This
paper introduces a preliminary framework to address
this gap and foster further research in this promising
domain.

3 Methodology
This section presents a MARTE-based framework for
the real-time and resource-aware analysis of SNNs,
comprising three core components:
1. Mapping SNN modeling elements to MARTE

constructs;
2. Real-time scheduling and execution simulation of

SNNs;
3. Model-driven verification to ensure system

correctness and performance compliance.

Figure 1. Methodology overview.

3.1 Mapping of SNNModeling Elements to MARTE
To represent the structural and behavioral aspects
of SNNs within the MARTE framework (see
Figure 1), common SNN components—such as
neurons, synapses, and spike events—are mapped
to corresponding elements in MARTE’s meta-model.

This enables the modeling of these components as
time-sensitive tasks and interacting entities. Examples
are outlined below (also illustrated in Figure 2):

Figure 2. MARTE modeling framework.

1. Neuron: A neuron can be modeled as a real-time
object using MARTE’s ≪RtUnit≫ stereotype.
Its attributes represent processing characteristics
such as activation and integration times, as well
as internal states like membrane potential.

• IntegrationTime defines the temporal
constraint for membrane potential
accumulation.

• Fire() represents the event of spike emission.
2. Synapse: A synapse is mapped to a

≪CommResource≫, representing a
communication resource in MARTE. This
includes attributes like transmission delay and
synaptic weight updates.

• Delay captures the spike transmission
latency.

• Weight represents the synaptic strength
between neurons.

3. Network Layer: The abstract structure of an SNN
layer can be modeled using the ≪SubSystem≫
stereotype in MARTE, enabling hierarchical
organization and execution semantics.

• NeuronGroup and SynapseGroup
encapsulate groups of neurons and
synapses, respectively.

• ExecuteCycle() defines the periodic
computation cycle of the SNN.

4. Hardware/platform: The deployment platform
for SNNs is modeled using MARTE’s Hardware
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Resource Modeling (HRM), which includes
processor cores, accelerators, caches, and on-chip
interconnects. Extensions can be included
for analyzing power consumption and thermal
characteristics.

• ≪HwProcessor≫ represents a processor or
computational unit.

• Attributes may include computing capability,
frequency, and power usage.

5. Spike Event: A spike event can be represented as
a Message or Trigger in MARTE, capturing timing
constraints between sender and receiver tasks.

• Fire(): Neuron A emits a spike.

• Transmit(): The spike travels through a
synapse, potentially incurring delay.

• ReceiveSpike(): Neuron B receives the spike
and updates its membrane potential.

Figure 3. UML class diagram of (a)Neuron; (b)Synapse;
(c)Network Layer; (d) Hardware/platform; and (e) Spike

Event.

3.2 Real-Time Scheduling and Execution Analysis
During SNN execution, neurons perform operations
such as membrane potential updates and threshold
detection in response to incoming spikes. In
real-time applications—such as robotics and
sensor systems—meeting strict end-to-end latency
requirements necessitates systematic analysis of
execution time, task scheduling, and resource
allocation. This is facilitated through MARTE-based
modeling, using tools like GQAM (Generic
Quantitative Analysis Model) and schedulability
analysis, following a structured and model-driven
workflow.

3.2.1 Task Division and Priority Allocation
• Task Division: Schedulable Resources are used

to define different functional levels of the SNN:
– SR_PerceptionLayer (perception layer task)
– SR_HiddenLayer (middle layer task)
– SR_OutputLayer (output layer task)

Neuron clusters are modeled as schedulable
tasks (e.g., Task_MembraneUpdate),
while online learning operations are
represented as schedulable services (e.g.,
Service_WeightUpdate).

• Priority Assignment: Using either partitioned or
global scheduling, task dependencies are derived
from a Dependency Graph to ensure correct
execution order—for example, giving precedence
to SR_PerceptionLayer. Priority policies are
defined using MARTE’s SchedParameters, which
support both fixed priority (FP) and dynamic
priority (DP) schemes.

3.2.2 Worst Case Execution Time (WCET) Estimation
The WCET of each SNN layer or neuron cluster
is estimated using MARTE’s performance
modeling constructs. For example, the WCET
of Task_MembraneUpdate on a given hardware
resource can be expressed as:
<<ResourceUsage>> {

executionTime = { min = 5us, max = 20us },
accessCost = { memory = 3us, NoC = 5us }

}

This information is incorporated into the
GQAM::GaAnalysisContext, which models key
parameters such as executionTime, accessCost,
and switchCost. Additional delays, such as NoC
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communication latency and cache miss penalties, are
also included in the analysis.

3.2.3 Feasibility Verification of Scheduling
Schedulability analysis is performed using established
algorithms such as Rate Monotonic (RM) or Earliest
Deadline First (EDF):
1. Define scheduling parameters, including task

cycle time t and deadline d.
2. Compute CPU utilization u = WCET/t for each

task.
3. Assess total utilization to determine the feasibility

of the scheduling plan.
This analysis ensures that real-time constraints are met
across all layers of the SNN.

3.2.4 Resource Allocation and Optimization
• Resource Allocation: Schedulable resources

are mapped to hardware platforms
(CPU, GPU, or NPU) using MARTE’s
≪HwComputingResource≫. For example:
<<HwComputingResource>> {
type = "NPU",
processingUnits = 128,
frequency = 1GHz

}

Power management attributes are modeled to
evaluate trade-offs between energy consumption
and computational performance.

• Dynamic Reconfiguration: The model supports
mode switching to accommodate different system
loads. For instance, reconfiguration between
high-load and low-load modes can be defined to
optimize resource utilization dynamically.

3.3 Model-Driven Verification and Iteration
Following the initial modeling phase, the behavior
of the SNN in a real-time embedded environment is
simulated using Model-Driven Engineering (MDE)
tools such as Papyrus MARTE or MagicDraw.
Key performance metrics—including execution time
and power consumption—are validated against the
constraints defined in the MARTE model.
If violations or inefficiencies are detected, iterative
refinements can be made at the model level. This
supports rapid re-analysis and optimization, enabling
efficient tuning of SNN deployment strategies for
embedded real-time systems.

4 Experiments
To validate the proposed framework, we conducted an
experimental study using a lightweight SNN based on
the Leaky Integrate-and-Fire (LIF) model, consisting
of input, hidden, and output layers. The network was
designed for classifying spike-coded sensor data and
deployed on an embedded platform equipped with a
multi-core ARM processor and a low-power DSP. The
overall simulation workflow is illustrated in Figure 4.

Figure 4. A schematic diagram illustrating how Papyrus
MARTE’s UML-based modeling and simulation workflow.

4.1 Experimental Setup
• Hardware: ARM Cortex-A9 quad-core processor

integrated with a low-power DSP module
• Software: Papyrus MARTE for modeling both

the SNN and the hardware platform; Object
Constraint Language (OCL) for specifying
real-time and resource constraints

• Dataset: Spike-based input signals generated
frommultiple acceleration sensors, with temporal
resolution aligned to the processing period of the
SNN

• Evaluation Metrics: End-to-end latency (E2E),
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Table 1. Comparison of end-to-end execution time under different hardware configurations

Hardware allocation scheme Average E2E
delay (ms)

Deadline compliance
rate (5ms)

Resource utilization
(ARM+DSP)

Full ARM core processing 6.2 62% 95% + 0%
ARM+DSP single-core auxiliary 4.8 88% 78% + 65%
ARM+Dual DSP Parallel (Experimental
Scheme) 3.9 100% 65% + 85% × 2

Table 2. Performance Comparison of Scheduling Strategies

Scheduling strategy Task set
schedulability

Average waiting
time

Worst response
time Applicable scenario

Fixed priority (RM) 100% 1.2ms 4.1ms
High load
deterministic
scenario

Dynamic priority (EDF) 100% 0.7ms 3.8ms Variable load elastic
scenario

Preemption without
priority 72% 2.5ms 6.3ms Non-real time

reference baseline

Table 3. Comparison of Energy Consumption Optimization (Same Delay Constraint)

Calculation allocation scheme Total power
consumption

Power consumption
reduction ratio Key bottleneck module

Full ARM processing 420ms – ARM core (peak) 90◦C
ARM++single DSP assisted 375ms 10.7% Bus bandwidth
ARM++dual DSP parallel 357ms 15.0% DSP unit load balancing

Table 4. Fault Prevention Effect of MARTE Model Constraint Analysis

Evaluation stage
Time-out times
(reasoning every
time)

Time-consuming
troubleshooting
(man-hours)

Constraint
conflict early
detection rate

Model-free analysis (post-integration) 23 12+ < 30%
MARTE model-driven verification 2 2 92%

schedulability, and energy consumption

The input, hidden, and output layers were modeled
as three periodic tasks, with Spike Events governing
their execution timing and inter-task sequencing. The
processing capabilities of the ARM and DSP, as well
as system parameters such as bus bandwidth and
memory access latency, were modeled using MARTE’s
Software Resource Modeling (SRM) and Hardware
Resource Modeling (HRM) profiles.

A strict end-to-end latency constraint of 5 ms was
imposed to validate the system’s real-time feasibility
during scheduling analysis. Synaptic updates were
modeled using shared memory, incorporating mutual

exclusion and priority inheritance mechanisms to
ensure data consistency and prevent race conditions
within the MARTE framework.

4.2 Experimental Results
Model simulation using Papyrus MARTE yielded the
following preliminary results:
Table 1 shows that parallelizing the hidden layer across
dual DSPs significantly reduces end-to-end delay and
meets hard real-time constraints.
Table 2 shows that EDF minimizes average waiting
time, while RM offers greater stability under high load.
Table 3 shows that offloading to DSPs reduces ARM
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core temperature and overall power consumption,
though bus contention and parallel overhead must
be managed.
Table 4 shows that model-driven constraint verification
cuts late integration risks and triples conflict detection
efficiency.

Figure 5. Numerical ratio comparison of (a)end-to-end
execution time under different hardware configurations;

(b) scheduling strategies; (c)energy consumption
optimization (same delay constraint); and (d) fault
prevention effect of marte model constraint analysis.

Figure 5 illustrate the comparative results from
Tables 1–4. Without early model-level timing
analysis, deadline misses and costly troubleshooting
are likely. MARTE-based pre-analysis significantly
reduces integration and testing risks.

5 Conclusion
Deploying Spiking Neural Networks (SNNs) in
real-time embedded environments leverages their
inherent advantages in low power consumption
and temporal sensitivity. However, key challenges
persist, including training complexity, limited
support for hardware acceleration, and the difficulty
of real-time scheduling. This paper presents a
MARTE-based framework that integrates system
modeling, scheduling analysis, and resource
allocation tailored for SNNs. Preliminary experiments
demonstrate the framework’s feasibility in meeting
stringent end-to-end latency and energy consumption
requirements.
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