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Abstract
The Industrial Internet of Things (IIoT) is a
foundational pillar of Industry 4.0, enabling
real-time data exchange and automation through
the integration of smart sensors, actuators, and
networked machinery. While this interconnectivity
enhances operational efficiency and decision-making
on the industrial floor, it also introduces complex
cybersecurity challenges. This work reviews
literature related to the IIoT with a focus on
threat modeling techniques, including mitigation
strategies. It comprises the theoretical frameworks
and the implemented solutions within the domains
of critical infrastructure and manufacturing. The
coexistence of legacy control software systems,
stringent real-time performance requirements, and
heterogeneous modern devices, particularly within
SCADA networks and cyber-physical systems,
complicates the design and implementation of robust
security mechanisms. This review synthesizes
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recent advancements in IIoT security with a specific
focus on threat modeling methodologies and
mitigation strategies. Key attack vectors such as
denial-of-service (DoS) floods, data injection, and
Advanced Persistent Threats (APTs) are examined.
The paper further analyzes contemporary defense
approaches, including AI-driven intrusion detection
systems, blockchain-based trust frameworks, and
software-defined networking solutions. This work
aims to support both researchers and practitioners
in developing scalable, resilient, and secure IIoT
infrastructures suitable for modern industrial
environments.

Keywords: industrial internet of things, cyber security,
denial-of-service, blockchain.

1 Introduction
The Industrial Internet of Things (IIoT) has become
the underlying aspect of Industry 4.0, extending the
definition of intelligent, interconnected devices to the
industries of manufacturing, energy, and logistics.
The IIoT brings predictive maintenance, real-time
monitoring, and enhanced decision-making to the
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industrial world through the integration of sensors,
actuators, machinery, and control systems within
internet-enabled infrastructures [1]. It plays a crucial
role in reducing the downtime of systems, making
production workflows smoother, and achieving
maximum supply chain efficiency in the automated
manufacturing process [2, 3]. As IIoT systems become
increasingly integrated with critical infrastructure,
they present inherently dynamic cybersecurity
vulnerabilities that differ from the standard IT
security paradigm. Ubiquitous employment of
legacy controllers, low-power embedded systems,
and proprietary communication interfaces creates
an extremely fragmented and insecure ecosystem.
High-profile cyber incidents such as the Stuxnet worm,
the BlackEnergy attacks, and the hack of the Oldsmar
water facility herald the potential of targeting the IIoT,
showcasing the threat that extends beyond process
interruption and threatens serious harm to the public
[4].

Characteristic of standard IIoT structures is their
multi-layered design, which is typically made of the
device layer, network layer, and application (cloud)
layer. It is the device layer that accommodates the
field-level elements like sensors, actuators, and
embedded controllers with the function of data
acquisition [5]. The network layer allows both
internal and external communication via industrial
communication protocols like MQTT, Zigbee, Modbus,
and OPC-UA [6, 7]. The application layer, which is
quite often based on the cloud, accommodates data
storage, processing, and analysis via the application
of Artificial Intelligence (AI) and machine learning
(ML) methodologies to the data retrieved from
edge devices [8]. Components of the Industrial
Control Systems (ICS), such as Supervisory Control
And Data Acquisition (SCADA) systems and
Programmable Logic Controllers (PLCs), show
significant heterogeneity in their security features [9].
Whereas newer protocols such as the OPC-UA provide
improved security features, older ones like Modbus
don’t provide any encryption and authentication
features, which make them especially susceptible
to cyber exploitation [10, 11]. The three-tiered
architectural structure of the IIoT, showing the
interaction between device, network, and application
layers and the corresponding security weaknesses, is
represented in Figure 1.

IIoT systems are vulnerable, by design, to security
attacks at multiple architectural layers. These
weaknesses are due, in large measure, to the

Figure 1. Three-tier architecture of IIoT.

presence of weaknesses in the firmware, the use
of communication interfaces that are not encrypted,
the lack of adequate authentication processes, and
the incorporation of components from third-party
suppliers that are inherently insecure. Obsolete
firmware, in particular, is an important threat, since
it has the potential to be used by an opponent
to introduce persistent malware or to enslave
devices in a botnet infrastructure. Furthermore, the
employment of unsecured communication protocols,
like Modbus/TCP, makes the IIoT systems vulnerable
to an array of network attacks, including capture
attacks, command injection, and replay attacks [12,
13]. The post-deployment weaknesses add further
layers of challenge to the threat picture. They involve
the injection of malicious hardware or the spread
of compromised software patches with clandestine
backdoors or security weaknesses. The identification
of such threats is particularly difficult given the
obscure and complicated nature of supply chain
attacks that may infect systems at multiple phases
of manufacturing and supply [14]. These risks
call for holistic, multi-layered security solutions that
address both cyber and physical dimensions of IIoT
environments.

While IIoT has greatly facilitated advancements in
technology with the emergence of Industry 4.0,
the expansion of connectivity, device heterogeneity,
legacy systems, and the sophistication of devices has
greatly compounded the challenges of security in
the intelligent industrial networks. The increasing
sophistication of cyberattacks, such as DoS and APTs,
highlights the need for advanced security frameworks.
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This review ismotivated by the need to advanceAI and
Blockchain technology toward industrial cybersecurity,
as well as unifying AI frameworks, to automate gaps
in threat modeling and build reliable and secure
industrial infrastructures.

This study provides a comprehensive review of
the security of IIoTS systems focused on literature
published between 2015 and 2025. This review is
structured to answer the following key questions:
(1) What are the dominant IIoT security threats?
(2) What modeling approaches are used to identify
and assess them? (3) Which mitigation strategies
are most promising for deployment in scalable IIoT
infrastructures?

The rest of the paper is organized as follows: Section 2
presents security threat modeling approaches in IIoT.
Section 3 is focused on challenges and adaptability
in IIoT environments. Section 4 illustrates the
classification of security threats and cybersecurity
attacks in IIoT. Section 5 presents the attack mitigation
techniques in IIoT. Section 6 describes the emerging
technologies and future trends in IIoT security. Section
7 highlights the challenges in IIoT security and
provides future directions. Lastly, section 8 concludes
the review while providing final insights on IIoT
security. Key Contributions of the Study are presented
below:

1. It provides a detailed analysis of IIoT security
literature from 2015 to 2025, covering security
challenges

2. It addresses the core security concerns, i.e., threats,
modeling techniques, and scalable mitigation
strategies

3. It discusses future technologies and trends in IIoT
security to guide next-generation solutions.

4. It highlights unresolved challenges and proposes
future research directions to strengthen IIoT
security frameworks

2 Security Threat Modeling Approaches in IIoT
The integration of diverse and large-scale IT
(Information Technology) and OT (Operational
Technology) components within IIoT environments
introduces complex security challenges. Threat
modeling plays a critical role in systematically
identifying, assessing, and mitigating potential
security risks within such infrastructures [15]. This
section reviews both conventional and modern threat

modeling approaches, with particular attention to
their adaptability and limitations in IIoT ecosystems.

2.1 Traditional Threat Modeling Approaches
STRIDE, developed by Microsoft, organizes common
cyber threats into six distinct categories: Spoofing,
Tampering, Repudiation, Information Disclosure,
Denial of Service, and Elevation of Privilege. While
STRIDE is widely adopted in traditional software
systems, its direct applicability in IIoT settings is
constrained by the complexity of cyber-physical
interactions. The STRIDE security model and its threat
categories are presented in Figure 2.

Figure 2. STRIDE security model.

DREAD is a risk assessment model that evaluates
threats based on five factors: Damage potential,
Reproducibility, Exploitability, Affected users, and
Discoverability. Although DREAD provides a
structured scoring mechanism, its reliance on static
judgments makes it less effective in dynamic IIoT
environments where both devices and threat profiles
evolve rapidly. Furthermore, it overlooks the
immediate safety hazards that have been emphasized
in industrial systems [16]. DREAD risk assessment
model and its threats are illustrated in Figure 3.

Attack trees provide a hierarchical methodology for
modeling potential security threats by decomposing
high-level attack objectives into granular, actionable
sub-goals and steps. Following this idea, attack graphs
model complicated, interconnected infrastructures
to enable the study of sophisticated, multi-stage
attacks. These visual methods have been successful
in the analysis of malware like ransomware and
Man-in-The-Middle (MiTM) attacks in the setting of
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Figure 3. DREAD risk assessment model factors and use in
IIoT security threats.

IIoT networks [17]. These approaches, however, are
fraught with significant scalability costs, primarily
in the highly dynamic IIoT networks with a large
and constantly changing number of nodes. Although
the work on the automation frameworks and the
application of machine learning is still ongoing, no
specific solution has yet been deployed that can
counteract such limitations. To transcend limitations
of conventional failure-based analysis techniques,
the STPA-Sec (System-Theoretic Process Analysis
for Security) approach has been developed. This
method builds on the STAMP (Systems-Theoretic
Accident Model and Processes) methodology with
the addition of a security-focused view. Different
from the usual approaches based on component-level
failures, the STPA-Sec is based on the demonstration
of system-level weaknesses that emanate from unsafe
control actions. It accounts for the complex interactions
between human operators, software systems, and
hardware components, rendering it particularly
suitable for analyzing socio-technical systems such as
IIoT infrastructures [18].

Attack trees and graphs are useful in particular attack
sequences and technical flaws. However, they tend
to overlook the complete system picture, especially
the human and organizational elements. On the
other hand, STPA-Sec examines unsafe control actions
and systemic failures, considering the interactions of
humans, software, and hardware, which are beyond
the component level. Thismakes STPA-Secmore useful
for socio-technical systems such as the IIoT, as the
security threats are not limited to technical failures,
but complex interconnections.

Given IIoT’s tightly coupled cyber-physical nature and
its role in critical infrastructure, STPA-Sec provides a
comprehensive modeling framework that emphasizes
system dynamics, interdependencies, and emergent
vulnerabilities. However, its implementation requires
substantial domain expertise and detailed system
modeling, which can be resource-intensive. The

scalability and automation of STPA-Sec for real-time
IIoT applications remain active areas of research [19].

A high-level overview of the STPA-Sec process,
highlighting the security vulnerabilities in
cyber-physical systems, is shown in Figure 4.

Figure 4. STPA-SEC process.

3 Challenges and Adaptability in IIoT
Environments

The integration of diverse devices, communication
protocols, and platforms complicates the
implementation of consistent threat modeling
in IIoT systems [20]. All security mechanisms
must account for timing constraints and safety
requirements, which limit the extent and complexity
of protective measures that can be deployed. Frequent
changes in network configurations and device
states lead to highly dynamic topologies, making
static modeling approaches less effective [5]. The
heterogeneity of IIoT environments also includes
numerous resource-constrained devices, which limits
the feasibility of deploying computationally intensive
security frameworks [15]. Despite their practical
benefits, traditional threat modeling techniques
such as STRIDE, DREAD, and attack trees require
complementary system-theoretic approaches to
provide effective security assurance in IIoT. This
is not due to a lack of perspective in traditional
models, but rather because system-theoretic methods
embrace interdisciplinary convergence and account
for complex system interactions. Future research is
actively focused on developing real-time, automated
security solutions that can dynamically adapt to
evolving threats in IIoT environments [18]. The
Classification of IIoT Security Challenges is given
below:

1. Device Heterogeneity: Multiple vendors,
operating systems, and communication protocols
make uniform security difficult to enforce.

2. Real-Time Constraints: Safety-critical applications
require low-latency responses, limiting the use of
complex security measures.

3. Network Dynamism: Frequent device mobility
and reconfiguration lead to unpredictable,
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non-static networks.

4. Limited Resources: Constrained CPU, memory,
and power prevent the deployment of advanced
security solutions.

5. Modeling Limitations: Traditional security
models fail to account for interactions between
human, software, and hardware components.

6. Adaptive Threat Landscape: Continuously
evolving attack techniques demand a dynamic,
AI-driven defense mechanism

4 Classification of Security Threats and Cyber
Attacks in IIoT Environments

While the integration of advanced devices
into industrial systems boosts automation and
productivity, it also introduces a wide range of
cybersecurity vulnerabilities. Security threats in
IIoT environments can generally be categorized
into four main types: 1) Network-level attacks
(e.g., DDoS, Man-in-the-Middle), which encompass
the communication channels within the network.
On the network layer, threats such as DDoS and
MitM attacks aim to interrupt or capture the flow
of information. These attacks could result in loss
of information accuracy, unwanted surveillance, or
total communication failure. 2) Device-level threats
(e.g., firmware tampering, botnets), focus on the
IIoT devices such as sensors and controllers. The
risks include unauthorized firmware modification,
illegal control, and botnet access. Device-level
threats may compromise and disrupt network-wide
operations, and in turn endanger the behavior of
the devices. 3) Physical-layer attacks (e.g., device
tampering, sensor spoofing) expose the system
to device-related threats such as theft, tampering,
or spoofing, which could alter source data. Digital
protections are often bypassed by physical attacks, and
such attacks tend to be difficult to detect in real-time. 4)
Application/infrastructure-level vulnerabilities (e.g.,
VNF misuse, insecure APIs). These vulnerabilities
cover user interaction components, insecure
application interface and software errors, and
misuse of virtual network functions. Loss of control
over sensitive data, services, or industrial processes
and information may result from an attack of this
nature. Mitigating risks at each layer is essential for
building resilient IIoT systems.

Among the most widespread threats in IIoT are
Distributed Denial of Service (DDoS) attacks, which
flood networks with illegitimate traffic, leading to

prolonged congestion and potential service disruption
[15]. Machine learning has been applied to optimize
VNF placement on fog nodes, reducing DDoS impact
and improving latency [16]. For example, over
105 million IoT-focused DDoS attacks were recorded
within six months, originating frommore than 276,000
IP addresses [14].

Jamming attacks are particularly effective against
communication protocols like ZigBee, LoRa, and
IEEE 802.15.4, where signal interference can disrupt
communication between devices. These attacks are
difficult to detect and prevent due to their stealthy
nature [21]. MiTM attacks, on the other hand,
enable attackers to intercept or manipulate data
exchanged between IIoT components. For instance,
researchers once found a flaw in Amazon Alexa
that allowed attackers to steal tokens and gain
unauthorized access [22]. These examples highlight
the critical need for securing communications using
multi-factor authentication and ongoing monitoring
of data integrity.

IIoT devices are frequent targets of cyberattacks
because of their inherent limitations, such as low
processing power, outdated firmware, and the
use of weak, default authentication credentials.
Firmware tampering is a major concern, involving
the malicious alteration or injection of code during
updates, especially in devices lacking secure boot
mechanisms or cryptographic verification of their
code [15]. Another common attack vector is the
creation of botnets, as seen with the Mirai malware. It
exploits open network ports and factory-default login
credentials to take control of IIoT devices and use
them to launch massive Distributed Denial-of-Service
(DDoS) attacks [14].

Resource exhaustion attacks also present a serious
challenge to IIoT systems. These attacks take
advantage of the limited computing resources, such as
memory and processing power of embedded devices,
effectively preventing the implementation of standard
security tools like intrusion detection systems (IDS),
antivirus software, or endpoint protection platforms
[26].

In addition, physical security flaws pose significant
threats, especially to IIoT nodes deployed in remote
or unattended locations. Physical tampering with
devices can disable safety features and insert malicious
changes that go unnoticed during normal operation.
Even at the manufacturing stage, attackers can
embed hardware Trojans, malicious alterations to
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circuit designs that stay dormant until triggered,
posing long-term risks to the system’s reliability and
trustworthiness [23].

Sensor spoofing attacks involve manipulating
environmental inputs such as temperature or
electromagnetic noise to mislead control decisions.
These tactics are particularly damaging in critical
infrastructure [24]. Side-channel attacks, including
power analysis and voltage glitching, can extract
sensitive data by exploiting hardware-level behaviors
[25].

Cloud and edge platforms are central to IIoT
operations, yet present new attack surfaces. Insecure
APIs, weak encryption, and poor access controls
can lead to unauthorized access and data breaches
[27]. Improperly managed VNFs (Virtual Network
Functions), especially in fog nodes, may delay security
operations or allow adversaries to inject malicious
traffic. Delays in VNF execution can lead to missed
opportunities for real-time threat mitigation [14].
Misconfigured cloud environments and inadequate
identity management often lead to shared-space
breaches and data leakage across tenants. A brief
summary of security threats and cyberattacks is
presented in Table 1.

5 Attack Mitigation Techniques in IIoT
The increasing complexity and vulnerabilities of
IIoT systems demand multi-layered and advanced
defense mechanisms for intelligent protection. This
section outlines key mitigation strategies, categorized
according to the enabling technologies, and evaluates
their respective performance metrics. Ensuring
data confidentiality, integrity, and availability in IIoT
environments is imperative due to the heightened
risks of unauthorized access, data tampering, and
information leakage. Given the resource-constrained
nature of many IIoT devices, particularly with respect
to processing power and energy capacity, lightweight
cryptographic schemes such as AES-128 and Elliptic
Curve Cryptography (ECC) are commonly employed
to achieve secure communication [28].

To further protect the confidentiality and integrity
of data during transmission, secure communication
protocols such as Datagram Transport Layer Security
(DTLS), IPSec, and IEEE 802.15.4e are typically
used [29]. Although hash functions like MD5 and
SHA-1 were classically used for the purpose of
verifying integrity, they are being replaced by the
more secure SHA-256 algorithm today. User and

device authentication are carried out with the help of
Public Key Infrastructure (PKI) and digital signature
schemes, respectively, but both of these methods have
their limitations in the large-scale implementations
of IIoT due to the complexities involved in key and
certificate management, and the likely introduction
of latency due to the encryption overhead [30].
For that reason, symmetric encryption methods
and lightweight crypto techniques are preferred
in the implementation of the IIoT, particularly in
latency-constrained applications [28].

Apart from the use of cryptographic protection,
the evolution of machine learning (ML) and deep
learning (DL) has increased the effectiveness of
Intrusion Detection Systems (IDS) in the IIoT setting
substantially. Such smart systems provide higher
adaptability and responsiveness with respect to
conventional rule-based IDS through the provision of
quick threat identification and mitigation. ML models
like Random Forest, Support Vector Machines (SVM),
and K-Nearest Neighbors (KNN), and DL structures
like Convolutional Neural Networks (CNN) and Long
Short-Term Memory (LSTM) networks have proved
to be highly effective in recognizing a wide array
of cyber-attacks, namely MiTM attacks, Distributed
Denial-of-Service (DDoS), and zero-day exploits [14].

One such example is the SmartSentry system that
implements an ML and DL hybrid model to detect
online threats in the IIoT network. The system
discusses the application of classifiers such as Random
Forest, Decision Tree, SVM, KNN, and Deep Neural
Networks (DNN) on the dataset Edge-IIoTset and
shows its applicability in protecting the IIoT network.
PCA was utilized in the process of feature selection,
SMOTEmanaged class imbalance, and standardization
was used in feature scaling [31, 32].

The DNN model achieved 100% accuracy in binary
classification and over 94% in multi-class tasks (6- and
15-class problems), showcasing its ability to detect
complex and diverse attack patterns. AI/ML-based
IDS can learn, adapt, and respond to new threat
vectors, making them highly suitable for dynamic
IIoT environments. Unlike traditional signature-based
systems, these models can identify previously unseen
anomalies regardless of network topology complexity.
However, they require large labeled datasets and
high computational power. Processing overhead can
delay responses in time-sensitive IIoT applications.
Deploying optimizedMLmodels on edge or fog nodes
helps reduce latency, but such environments demand
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Table 1. Multi-layer taxonomy of IIoT security threats with real-world incidents.

Category Threats Example
Incident Mitigation Detection

Difficulty

Common
Industries
Affected

Network-level DDoS, jamming,
MitM

105M IoT
DDoS attacks
in 6 months
[14]

Anomaly
detection,
secure routing

High
Manufacturing,
Smart Grids,
Healthcare

Device-level
Firmware
tampering,
botnets

Alexa token
hijack [22];
Mirai botnet
[14]

Secure boot,
lightweight
encryption

Medium-High
Consumer
IoT, Critical
Infrastructure

Cloud
/Edge-level

VNF
misplacement,
data leakage

Breach from
VNF latency
[14]

Access control,
blockchain-based
validation

Medium
Logistics,
Industrial
Automation

Physical-level Tampering,
sensor spoofing

Grid sensor
manipulation
[24]

Tamper-proof
hardware,
physical
monitoring

Low-Medium Oil & Gas,
Utilities, Defense

Application-levelWeak auth,
insider threats

Token theft on
voice assistant
[22]

MFA, access
logging Low

Retail, Smart
Homes,
Transportation

lightweight, resource-efficient algorithms [28]. An
AI/ML-based IDS Workflow in IIoT is shown in Figure
5.

Figure 5. AI/ML-based IDS Workflow in IIOT.

Emerging technologies like blockchain and federated
learning (FL) offer promising enhancements
for IIoT security and privacy. These distributed
systems address key concerns such as data integrity,
authentication, and confidentiality in decentralized,
resource-constrained environments. Blockchain
provides immutable distributed ledgers that
enhance trust by recording device interactions
and command logs, preventing unauthorized
changes [33]. Advanced implementations such as
multi-chain architectures and token-based access
control further improve interoperability and trust
across heterogeneous IIoT domains.

Federated learning enables collaborative training
of machine learning models without transmitting
raw data to a central server, preserving privacy
while reducing bandwidth usage. This approach
is particularly effective for anomaly detection and
security monitoring across distributed IIoT nodes
[34]. Despite their advantages, these technologies
also pose deployment challenges. Blockchain’s
consensus mechanisms (e.g., Proof-of-Work
or Proof-of-Authority) introduce latency and
require significant computing resources, hindering
real-time application scalability. FL faces difficulties
in managing device heterogeneity, unstable
communication, and ensuring consistent model
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convergence [35].

Placing security mechanisms closer to IIoT devices
improves detection speed and reduces latency.
Fog-based IDS solutions deploy Virtual Network
Functions (VNFs) including firewalls, deep packet
inspection (DPI), and anomaly detection at the
network edge [36, 37]. A performance-aware ML
framework has been proposed to dynamically
reassign VNFs closer to vulnerable IIoT clusters,
enabling faster responses to DDoS and other cyber
threats [38]. This localized deployment improves
response times, reduces congestion, and enhances
reliability in mission-critical applications. Fog-based
VNF deployment offers superior responsiveness
compared to cloud-based systems due to localized
decision-making and data filtering. However,
challenges remain in scaling these solutions,
particularly in ensuring that fog nodes have adequate
computing and storage capacity. Additionally,
operators must strategically allocate VNFs to maintain
service quality while minimizing resource strain.
Balancing dynamic VNF assignment with continuous
security coverage is critical for building robust IIoT
infrastructures [39]. A brief summary of attack
mitigation techniques in IIoT is presented in Table 2.

Among these techniques, the most advanced in
real-time threat response for IIoT environments is
are integration of fog computing with AI/ML-based
intrusion detection systems (IDS). In Figure 6,
a comparative evaluation of the latency impacts
alongside scalability and resource expenditure of IIoT
mitigation techniques is presented.

Figure 6. Comparative analysis of IIoT mitigation
techniques.

6 Emerging technologies and future trends in
IIoT security

The integration of the IIoT with critical infrastructural
systems is gaining traction alongside the growth
of smart manufacturing and industrial automation.

These advancements are propelling innovations in
security frameworks designed to mitigate risks that
are typically neglected by conventional security
approaches. This part addresses new technologies and
trends anticipated to influence the future of providing
cybersecurity in IIoT environments.

The application of Artificial Intelligence (AI) and
Machine Learning (ML) technologies is transforming
the security capabilities of IIoT systems by providing
real-time threat identification and evaluation, behavior
monitoring, and adaptive threat response. These
smart systems defend IIoT networks by counteracting
anomalous patterns and dynamically evaluating and
responding to the emerging threats, thus adding
another layer of security [31, 40]. As an example, one
recent study put forward a supervised learning model
that used XGBoost for the optimal allocation of VNFs
that included firewalls and intrusion detection systems
(IDS) at fog computing nodes. The model gave an
accuracy of 99.40% in strategic placement identification
during DDoS attack scenarios [14]. Moreover, Long
Short Term Memory (LSTM) and Random Forest
classifiers have advanced AI techniques that effectively
detect complex cyber threats such as MiTM and
ransomware intrusions [17]. These models are better
compared to traditional rule-based systems because
they do not rely solely on historical data. These
models are better than traditional rule-based systems
because they are more flexible to zero-day exploits and
advanced persistent threats (APTs) adaptability.

The adoption of Federated Learning (FL) is a
noteworthy development, allowing individual IIoT
nodes to locally train models without exchanging
sensitive raw data. This decentralized method
improves data privacy and anomaly detection system
responsiveness and scalability. However, the edge
device constraints in IIoT environments from evolving
cyber threats continue to pose challenges when trying
to implement AI/ML models. These challenges have
sparked interest in lightweight models and in hybrid
fog, edge, and cloud-layered deployment architectures,
which aim to provide real-time protection while
conserving resources.

The use of lightweight DTLS over CoAP and
IPv6 over 6LoWPAN has recently gained traction.
These protocols provide low-power wide-area
network (LPWAN) encrypted communication
employing economically efficient cryptographic
methods like ECC and AES-128, designed for
resource-constrained IIoT devices. While supporting
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Table 2. Summary of Attack Mitigation Techniques in IIoT

Mitigation
Technique Key Techniques Latency

Impact Scalability Resource
Overhead Notes

Cryptography AES, ECC, DTLS,
hash functions Moderate

High (with
efficient key
management)

Low to
Moderate

Needs a balance
between strength
and device limits

AI/ML-based
IDS

XGBoost,
Random Forest,
Fog-based
models

Variable
(depends
on model
complexity)

Moderate
(distributed
ML helps)

High (training
and inference)

Edge
deployment
reduces latency,
requires
optimization

Blockchain
& Federated
Learning

Distributed
ledger,
decentralized
ML

High
(blockchain
consensus
delays)

Moderate
to Low
(depending on
network)

High
(computational
and
communication)

Suitable for
integrity &
privacy, less for
real-time control

Edge/Fog
Computing
Security

VNFs, local IDS,
adaptive VNF
placement

Low High Moderate
Real-time
analytics closer
to the data source

low-power sensor-level processing, a practical balance
between device efficiency and encryption level
remains challenging. As a promising new approach
to augment cybersecurity in IIoT systems, twin
digital technologies, which create virtual replicas of
physical assets are achieving traction. The continuous
comparison of sensor input data against operating
benchmarks allows for the simulation of systems
in real time and the detection of deviations from
expected behaviors. This enables early identification
of deviations that may indicate cyber intrusions,
thereby supporting predictive maintenance and threat
response strategies.

For example, some studies use AI-driven digital twins
with techniques like autoencoders and LSTMnetworks
to detect anomalies in manufacturing processes [42].
Other research has shown that digital twins can
simulate potential attack scenarios in industrial control
systems and apply ensemble classifiers to accurately
detect real-time threats [43].

To address privacy concerns in distributed industrial
environments, privacy-preserving machine learning
models are gaining prominence. While some VNF
placement studies have not directly implemented
such methods, they emphasize the need for federated
learning and on-device training to avoid centralized
data exposure and support regulatory compliance
(e.g., GDPR) [33]. Federated learning trains models
locally and eliminates the need for data centralization,
but it introduces synchronization and convergence

challenges, especially across heterogeneous IIoT nodes.
In addition, homomorphic encryption (HE) and
secure multi-party computation (SMPC) are being
explored to enable confidential data processing
without revealing raw information. A framework
called SmartCrypt demonstrated efficient time-series
data aggregation using homomorphic encryption,
outperforming traditional schemes in throughput and
scalability [44].

Other approaches combine additive HE with
SMPC for privacy-preserving joint analysis in
blockchain-integrated IIoT systems, ensuring
confidentiality without disclosing individual
data contributions [45]. Collectively, these
privacy-preserving techniques, including FL,
HE, and SMPC, offer promising solutions for
secure collaborative analytics in IIoT. However,
their implementation complexity, including latency
and communication overhead, poses significant
deployment challenges.

The Industrial Internet of Things requires advanced
IDS technologies that can perform real-time threat
detection and response. Deploying IDS at fog or
edge nodes closer to IIoT devices reduces detection
latency and enables prompt local reactions to security
incidents, which is crucial for bandwidth-limited
environments [46]. One study demonstrated how
VNFs placed at network edges can act as near-device
cybersecurity agents, significantly reducing attack
response time. Fog-level IDSs enable rapid anomaly
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detection and augment the response speed of
mitigation for temporally-sensitive attacks, including
DDoS and others [14]. Figure 7 illustrates the
application of federated learning, homomorphic
encryption, and SMPC into the IIoT ecosystem.

Figure 7. The integration of federated learning,
homomorphic encryption, and SMPC in IIoT.

The adaptability of IIoT security systems is greatly
improved by combining signature-based detection
with anomaly-based models. This hybrid approach
allows for strong defense against both familiar threats
and new, emerging attacks. Signature-based methods
are effective at identifying previously known attack
patterns, while anomaly-based techniques offer the
flexibility to detect unusual or evolving intrusions
[41]. This shift reflects a broader trend in the industry
from traditional, reactive security to smarter, proactive,
and distributed strategies designed specifically for IIoT
environments.

The integration of artificial intelligence (AI) with
edge computing and lightweight cryptography
is helping IIoT security systems become more
scalable, responsive, and resilient. At the
same time, privacy-focused solutions are being
developed through technologies like federated
learning, homomorphic encryption, and digital
twin architectures. These innovations aim to
protect sensitive data while still improving threat
detection accuracy [40, 47]. Overall, these advances
highlight a growing focus on adaptive, decentralized
cybersecurity models that are better suited to
the complex and constantly changing nature of
industrial IoT systems. For an overview of the latest
developments in IIoT security, see Table 3.

7 Challenges and Future Directions
The IIoT has great potential to transform the
automation of industrial processes using real-time

data, capital, decision making, and optimizing
processes in real-time. Nevertheless, an unresolved
set of security problems continues to stand in the
way of the exploitation of IIoT’s full potential value.
One such gaping problem is apparent in a vast
distributed and heterogeneous IIoT network with
incorporates IIoT components. The scalability of their
security mechanisms is rather modest in resolving
targeted security issues. Due to the diversity of
security devices, limited device intercommunication,
and the absence of centralized supervision, classical
centralized security systems are obsolete in today’s
IIoT environments [33, 48]. The spread of advanced
technology increases the likelihood of inconsistent
protocols and interfaces, introducing fragmented
control methods... hence elevating the pre-existing
Security problems, including the lack of device and
network integrity. Another significant issue is the
absence of a standard, comprehensive, and global
security paradigm. Current IIoT security solutions are
often highly proprietary and provide minimal security
and cross-platform collaboration, further segregating
systems into architectural silos along vendor and
industry lines [49]. This absence of standardization in
defence architecture hampers the ability to implement
scalable, robust, integrated responses coordinated
across the tiers of IIoT ecosystems.

Latency-sensitive IIoT applications, such as those
involving real-time industrial control, also face the
latency-security trade-off. Although strong encryption
and authentication mechanisms are vital for securing
the IIoT systems, they incur a significant delay,
which may be detrimental to time-critical industrial
operations [40, 50]. Another issue of concern is
data privacy, especially because IIoT systems are
designed to capture, relay, and process sensitive
operational data. Weak protective measures could
result in significant data leaks, which may breach
regulatory requirements, such as the General Data
Protection Regulation (GDPR) and other relevant
industry compliance regulations [51].

In addition, cybersecurity threats are addressed
insufficiently with a majority of operational
frameworks, as they fail to respond to new and
rapidly evolving risk scenarios. They are often
based on static thresholds and historical data, which
makes them useless for real-time cyberattacks and
unpredictable attack angles [14, 52]. This emphasizes
the need for intelligence and more flexible defense
systems for automated responses.
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Table 3. Summary of emerging technologies and the future in IIoT security.

Innovation Techniques Benefits Challenges

AI-driven Threat
Prediction

ML-based VNF placement
(XGBoost), traffic
classification

Fast, adaptive, highly
accurate

Requires retraining and
quality data

Lightweight Security
Protocols

ECC, DTLS, secure CoAP,
AES-128

Efficient on constrained
devices

Trade-off with
robustness

Digital Twin Security Virtual replicas for anomaly
simulation

Predictive detection,
system modeling

High initial setup, not
yet mainstream

Privacy-Preserving ML On-device learning,
federated models

Reduces data exposure
risks Complex coordination

Real-Time IDS Systems Fog-based IDS, fast
mitigation VNFs

Low latency, local
response

Edge resource
constraints

To meet these issues, shifts requiring a need
for cross-domain and scalable security, which go
beyond traditional approaches, are on the rise.
The merging of IIoT with 5G advancements and
cloud computing services opens up possibilities
for more robust, scalable, and adaptive defensive
infrastructures [38, 53]. Moreover, employing a
ZTA (Zero Trust Architecture) configured specifically
for IIoT frameworks can improve overall network
security by enforcing continuous identity validation,
eliminating implicit trust assumptions, insider threats,
and horizontal movement on trusted connections.

A promising emerging solution involves utilizing
digital twin technology, which simulates physical
assets in real time. Digital twins enhance proactive
anomaly detection and risk forecasting while
enabling virtual patch testing, minimizing live-update
disruptions, and improving security agility [54–56].
Moreover, as the complexity and autonomy of
IIoT systems grow, the inclusion of explainable
artificial intelligence (XAI) becomes more critical.
By providing human-readable rationales for model
decisions, particularly in anomaly detection, XAI
enhances transparency, trust, and accountability in
industrial systems essential to business operations.

This ensures accountability and trust in automated
threat detection systems, particularly where decisions
impact safety or compliance [57]. Emerging
Generative AI (GenAI) models such as GANs
and transformers are increasingly being used for
generating synthetic data, simulating sophisticated
attacks, and enhancing detection accuracy in low-data
environments [31]. Lastly, future architectures
should embed policy-driven automation to enhance
consistency, responsiveness, and compliance.

Techniques such as intent-based networking, coupled
with formal policy specification languages, can
help enforce adaptive security rules, minimize
manual errors, and reduce reaction time during cyber
incidents [58]. The year-wise distribution of targeted
studies is provided in Table 4.

A visual summary of the year-wise distribution of
selected studies is provided in Figure 8.

Figure 8. Year-wise distribution of selected studies.

8 Conclusion
The IIoT offers transformative advantages for
industrial systems but also introduces significant
cybersecurity challenges. This review has examined
key threats such as DoS, data injection, and APTs,
along with mitigation approaches including threat
modeling, AI-driven IDS, blockchain frameworks,
and software-defined networking. Persistent
challenges such as scalability, fragmented standards,
latency-security trade-offs, and real-time monitoring
limitations remain unresolved. The growing
heterogeneity of IIoT devices, lack of unified policies,
and privacy concerns further complicate secure
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Table 4. Year-wise summary of selected studies.

Year References Contribution

2015 [29, 48] Early cryptography protocols and basic IIoT security
frameworks

2016 [24] Physical layer threats, such as jamming and device
tampering

2017 [2, 21, 22] Introduction of lightweight protocols; MiTM attack case
studies

2018 [6, 7, 11, 12, 27, 49–51]
Standardization issues, threat modeling
(STRIDE/DREAD), data privacy, and protocol
vulnerabilities

2019 [8, 13, 37, 52] Blockchain security use cases and early AI for IDS
2020 [1, 9, 35] Security architectures and fog computing for IIoT security

2021 [5, 18, 23, 25] STPA-Sec modeling, physical attacks, and hardware
security

2022 [15, 30, 36, 39, 43, 44] ML-based IDS, VNF deployments, and homomorphic
encryption

2023 [10, 14, 20, 26, 38, 46, 53, 57] Edge computing, federated learning, privacy-preserving
techniques, and XAI

2024 [4, 16, 19, 28, 31, 32, 40, 47, 54, 56]
Discuss AI-based model classifiers like SVM, NB, DT,RF,
CNN, LSTM, Digital twins enhance proactive anomaly
detection and risk forecasting

2025 [3, 17, 33, 34, 41, 42, 45, 55, 58]

To address privacy concerns in distributed industrial
environments, privacy-preserving machine learning
models are gaining prominence. Distributed systems
address key concerns.

deployments. Emerging solutions like digital twins
for threat simulation, Zero Trust Architectures
for continuous verification, and generative AI for
synthetic anomaly detection represent promising
directions. Likewise, explainable AI (XAI) and
policy-driven automation will be essential for building
resilient, interpretable, and adaptive security systems.
A secure, scalable, and future-ready IIoT ecosystem
will depend on the seamless integration of these
advanced technologies with regulatory compliance
and real-time responsiveness. This review aims to
guide both researchers and practitioners toward
sustainable cybersecurity innovations in the era of
Industry 4.0. Despite providing a broad overview
of IIoT security strategies this review is limited by
the rapidly evolving nature of the field where many
solutions are still in experimental or at prototype
stages. Additionally, the review focuses primarily
on technical aspects and does not deeply explore
regulatory, organizational or economic barriers to the
security solution implementations.
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