
ICCK Journal of Software Engineering
http://dx.doi.org/10.62762/JSE.2025.862549

REVIEW ARTICLE

Requirements Elicitation in Transition: A Review of
Conventional and Contemporary Approaches

Asma Akhtar 1,* and Samia Akhtar 1

1Department of Computer Science, Virtual University of Pakistan, Lahore 54000, Pakistan

Abstract
Requirements elicitation is one of themost important
steps in the software development process. It
involves understanding what users and stakeholders
need from a system before it is built. Traditionally,
this has been done using methods like interviews,
questionnaires, document reviews, and direct
observation. These approaches work well in
structured environments but often fall short when
dealing with large, fast-changing, or agile projects.
In recent years, software development has shifted
toward more flexible and fast-paced practices. This
change has also affected how requirements are
gathered. New techniques now include collaborative
tools, user feedback from online platforms, and
the use of artificial intelligence (AI) and natural
language processing (NLP) to extract requirements
from text automatically. This paper presents
a comparative narrative review based on recent
literature and practical insights. It presents both
traditional and modern requirements elicitation
methods, comparing them in terms of how theywork,
where they are most useful, and what challenges

Academic Editor:
Summair Raza

Submitted: 13 July 2025
Accepted: 29 July 2025
Published: 18 August 2025

Vol. 1, No. 1, 2025.
10.62762/JSE.2025.862549

*Corresponding author:
�Asma Akhtar
asmaakhtarjanjua@gmail.com

they present. A detailed comparison highlights
key differences such as level of user interaction,
tool support, scalability, and suitability for ongoing
development cycles. By reviewing recent research
and real-world practices, this paper identifies current
trends, challenges, and open areas for future work.
The goal is to help researchers, software engineers,
and project teams choose themost suitable elicitation
methods based on their specific project needs. In
the end, this review supports the idea that a
flexible, hybrid approach—blending old and new
techniques—may be the most effective way forward
in today’s evolving software engineering landscape.

Keywords: requirements elicitation, software engineering,
agile development, artificial intelligence, stakeholder
analysis, requirements extraction.

1 Introduction
Requirements elicitation lies at the heart of successful
software development [1]. It is the process through
which software engineers, analysts, and stakeholders
collaboratively discover, understand, and define what
a software system should do. The ultimate goal is to
ensure that the final system meets user expectations,
business goals, and technical constraints [2]. As a
core phase of requirements engineering, elicitation
impacts every subsequent stage of the development

Citation
Akhtar, A., & Akhtar, S. (2025). Requirements Elicitation in Transition:
A Review of Conventional and Contemporary Approaches. ICCK
Journal of Software Engineering, 1(1), 32–45.

© 2025 by the Authors. Published by Institute of
Central Computation and Knowledge. This is an open
access article under the CC BY license (https://creati
vecommons.org/licenses/by/4.0/).

32

http://dx.doi.org/10.62762/JSE.2025.862549
http://crossmark.crossref.org/dialog/?doi=10.62762/JSE.2025.862549&domain=pdf
https://orcid.org/0009-0008-7289-3203
https://orcid.org/0009-0004-4345-793X
https://orcid.org/0000-0001-7405-7948
http://dx.doi.org/10.62762/JSE.2025.862549
mailto:asmaakhtarjanjua@gmail.com
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


ICCK Journal of Software Engineering

lifecycle — from design and implementation to testing
and deployment. Errors or omissions made during
this stage often propagate, leading to costly revisions,
project delays, or even complete system failure.

1.1 Background and Historical Context
In the early days of software development, projects
typically followed rigid, linear development models
such as the Waterfall methodology. These projects
were often executed in well-defined environments
with limited user interaction during development [3].
Accordingly, requirements elicitation was treated as
a one-time, upfront activity, completed during the
initial phases of the project. Analysts conducted
structured interviews, distributed questionnaires,
and analyzed organizational documents to collect
requirements from stakeholders. Use case diagrams,
requirement specification documents, and functional
models were created and often considered "final" once
approved. The assumption was that user needs could
be fully captured before any design or development
began. These traditional methods were sufficient
in stable and predictable domains, such as military
or manufacturing software, where requirements
remained static for long periods. The emphasis
was on documentation and formal validation, with
minimal flexibility to adapt to changes. Tools were
limited, face-to-face communication was prioritized,
and requirements gathering was viewed as more of a
procedural task than an ongoing conversation.

1.2 Evolution of Development Practices and Its
Impact

However, as software systems grew in scale,
complexity, and interactivity, this one-time approach
began to show its limitations [4]. The rise of
Agile methodologies, DevOps culture, cloud-based
deployments, and user-centered design dramatically
changed the pace and structure of software
engineering. In this new landscape, requirements
were no longer static [5]. Stakeholders expected
rapid updates, personalized features, and continuous
delivery — and development teams needed elicitation
methods that could adapt accordingly [6]. Today,
requirements elicitation is seen as a continuous
and iterative activity, woven into each development
sprint or product release cycle [7]. Teams no longer
assume that all requirements can be fully known in
advance. Instead, they actively seek feedback during
development, embracing change and evolution as
constants. This shift has led to the adoption of modern
techniques such as:

• Collaborative modeling tools like Jira,
Confluence, or Trello, which allow teams to
continuously gather and update requirements in
real time

• Crowdsourcing and online user feedback via app
store reviews, support tickets, and social media
monitoring

• Natural language processing (NLP) and
machine learning algorithms that analyze user
feedback and generate requirement suggestions

• Prototyping and wireframing tools that
encourage early and frequent stakeholder input

• Agile ceremonies such as sprint planning,
daily stand-ups, and retrospectives, which keep
requirements discussions active

These contemporary methods are designed to be
lightweight, scalable, and collaborative, addressing
the weaknesses of traditional elicitation approaches in
dynamic environments [8].

1.3 The Elicitation Shift: Then vs. Now
The transition from conventional to contemporary
elicitation methods marks a significant transformation
in software engineering culture. Table 1 below
summarizes some of the key differences:
While traditional methods emphasized formal
structure, traceability, and control, modern techniques
prioritize agility, speed, and inclusivity [9]. However,
this shift also introduces new challenges: over-reliance
on tools, difficulty managing unstructured input,
and potential loss of deep stakeholder insights [10].
Figure 1 shows the evolution of requirement elicitation
techniques over the years.

Figure 1. Timeline illustrating the evolution of requirements
elicitation techniques from traditional methods to modern

AI-driven approaches.

1.4 Motivation for This Review
Given the rapid changes in software engineering
practices and the growing variety of elicitation

33



ICCK Journal of Software Engineering

Table 1. General differences between conventional and contemporary elicitation approaches.

Aspect Traditional Approaches Modern Approaches
Process Timing One-time, early-stage activity Continuous and iterative
Stakeholder Involvement Limited to initial meetings Ongoing engagement
Techniques Used Interviews, surveys, documents Crowdsourcing, AI tools, feedback mining
Tool Support Minimal or document-based Collaborative platforms and automated tools
Suitability Stable, large-scale projects Agile, fast-paced, evolving systems
Focus Documentation and completeness Responsiveness and adaptability

techniques, it becomes essential to evaluate the current
landscape systematically [11]. Many teams today
operate in hybrid environments, mixing aspects of
Agile, DevOps, and traditional models [12]. As a
result, no single elicitation method fits all contexts,
and understanding the trade-offs between approaches
is crucial. Despite the increasing use of modern
tools and AI-based methods, many organizations still
rely on conventional elicitation techniques, especially
in regulated industries like healthcare, finance, and
aerospace [13–15]. This coexistence of old and new
methods calls for a comprehensive, comparative study
to guide researchers, educators, and practitioners in
making informed decisions. This paper is designed to
fill that gap. It reviews and contrasts both traditional
and modern requirements elicitation techniques based
on existing academic literature, case studies, and
practical implementations. It provides a comparative
framework based on key factors such as:
• Stakeholder involvement
• Degree of automation
• Tool dependence
• Adaptability to change
• Accuracy and completeness
• Suitability for Agile, DevOps, or hybrid

environments
By analyzing the strengths and weaknesses of each
approach, this paper aims to answer a fundamental
question: How should modern software teams elicit
requirements in a world of constant change?

1.5 Objectives and Scope
The primary objectives of this paper are as follows:
• To classify and explain key traditional andmodern

requirements elicitation techniques.
• To compare these techniques across various

criteria relevant to today’s development

workflows.
• To highlight the benefits and challenges associated

with each method.
• To identify gaps in current research and practice.
• To propose areas for future exploration,

particularly in the use of AI, hybrid models, and
tool integration.

While the paper does not propose a new elicitation
methodology, it provides a strong foundation for
further innovation by synthesizing what has been
done, what is being done, and what could be done
better.

2 Related Work
The field of requirements elicitation has changed
significantly in recent years. Traditional practices have
now been enhanced—or in some cases, replaced—by
newer methods powered by artificial intelligence,
machine learning, and data-driven tools. This section
reviews the existing literature in two main areas: (1)
classical approaches that formed the foundation of
elicitation, and (2) recent research that highlights
emerging trends. The section ends with a discussion
of the research gap and how this paper contributes to
the field.

2.1 Classical Foundations
Requirements elicitation has always been a key part
of the software development process. Traditional
techniques include interviews, questionnaires,
observations, document reviews, and JointApplication
Development (JAD) sessions. These methods were
commonly used in structuredmodels like theWaterfall
and V-Model, where all requirements were gathered
early in the project.
[16] proposed a structured approach in Software
Requirements: Objects, Functions and States, emphasizing
formal specification and traceability. He classified

34



ICCK Journal of Software Engineering

requirements into object, function, and state views to
improve clarity and analysis.
[17] introduced a well-structured and planned
approach to elicitation in their book Requirements
Engineering: A Good Practice Guide. They emphasized
systematic planning, stakeholder identification, and
the use of traditional techniques such as structured
interviews, questionnaires, and document analysis.
Building on this foundation, [18] offered a detailed
classification of elicitation techniques into two major
categories: stakeholder-driven techniques—including
interviews, focus groups, and workshops—and
artifact-driven techniques such as document analysis,
scenarios, and prototyping.
With the rise of Agile methodologies, [19] emphasized
the shift away from heavy upfront documentation
toward continuous, lightweight elicitation. He
advocated for the use of user stories, maintained by
product owners, as a means of capturing requirements
in iterative cycles.
[20] further explored how Agile teams adopt iterative
elicitation strategies. They highlighted techniques
such as on-site customer collaboration, daily stand-ups,
and incremental feedback loops that prioritize
informal communication and evolving requirements.
While these classical approaches are still widely
used—particularly in government, healthcare,
and safety-critical projects—they face challenges
in fast-moving, large-scale, or highly automated
development environments.

2.2 Recent Literature
The past five years have brought a surge in AI, natural
language processing (NLP), and machine learning
(ML) methods that support or automate parts of
the elicitation process. These technologies improve
scalability, reduce manual effort, and make it possible
to handle complex stakeholder needs and large data
sources.

2.2.1 AI and NLP-Based Elicitation
[21] reviewed a number of studies to assess how
NLP techniques are used in requirements engineering.
They found a shift from older rule-based models
to transformer-based models such as BERT, which
offer better performance in classifying and extracting
requirements from text.
[22] conducted a systematic review focused on
automating requirement formalization through NLP

and ML. They noted that while traditional heuristics
are still in use, there is growing interest in deep
learning due to its ability to handle contextual and
ambiguous language.
[23] proposed RECOVER, a transformer-based tool
that generates requirements directly from stakeholder
conversations. The tool showed strong results
in completeness and clarity compared to manual
methods.
[24] introduced Elicitron, a simulation framework
powered by large language models (LLMs). This
system mimics stakeholder interviews using AI agents
and consistently generated richer and more diverse
requirements than human-led sessions.

2.2.2 ML and Recommendation Systems
[25] reviewed 92 papers to explore how machine
learning supports requirements elicitation. They
found ML useful for requirement classification,
clustering, and recommendation. Their work
proposed a framework linking ML methods to specific
elicitation tasks.
[26] investigated how applying SMOTE (Synthetic
Minority Over-sampling Technique) and
feature-selection strategies can enhance the accuracy of
ML models used for selecting requirements elicitation
techniques. Their experiments demonstrated that
balancing imbalanced datasets and choosing key input
features significantly improved model performance,
reducing overfitting risks.
[27] conducted a systematic literature review on
recommendation systems in software requirements
elicitation. They highlighted how collaborative
and content-based filtering approaches assist
in stakeholder identification, prioritization, and
technique selection.

2.2.3 Feedback Mining and Automation
[28] conducted an empirical study evaluating app
review mining tools for requirements engineering,
focusing on feature-specific opinion mining and
feature-based search. They found that existing tools
often underperformed compared to earlier claims,
revealing a significant gap between reported and
real-world effectiveness.
[29] present a comprehensive framework
for automated processing of user feedback
in requirements engineering. They detail
techniques—from extraction and clustering to
summarization and sentiment analysis—using ML,

35



ICCK Journal of Software Engineering

NLP, and LLMs to handle both volume and quality
of feedback. Their work also highlights pipelines
and benchmark resources to guide practitioners in
implementing scalable, trustworthy feedback-mining
solutions.

2.3 Research Gap and Contribution of this Paper
Although several papers have reviewed traditional
techniques and others have focused on modern,
AI-based methods, few studies offer a comparative
review that brings both together. Similarly,
foundational papersmainly focus on legacy techniques
without mentioning newer innovations. Another
gap lies in the lack of evaluation across diverse
software contexts, such as Agile, DevOps, hybrid, or
safety-critical systems. It is unclear how practitioners
can mix and match techniques to meet the specific
demands of each environment.
This paper addresses these gaps by:
• Providing a comparative analysis of traditional

and contemporary elicitation techniques;
• Classifying techniques based on interaction

style, tool support, adaptability, and stakeholder
involvement;

• Highlighting advances such as large language
models, NLP-based extraction, and machine
learning–assisted recommendation systems;

• Proposing a flexible framework to guide the
selection of elicitation methods according to
context, complexity, and project goals.

By offering this balanced perspective, the paper helps
both researchers and practitioners understand the
transition in elicitation approaches and choose the

best combination of techniques for modern software
development.

3 Comparative Overview of Requirements
Elicitation Techniques

This section presents a clear comparison between
traditional and modern requirements elicitation
techniques. We conducted a narrative review using
IEEE Xplore, ACM Digital Library, and Google
Scholar. Selection was based on relevance, citation
impact, and practical significance. Keywords included
"requirements elicitation," "traditional methods," and
"modern techniques." Classification dimensions were
adapted from prior studies and refined through
thematic analysis. Techniques were chosen for
their prevalence, relevance, and diversity across
development settings. Traditional methods focus
on human involvement, face-to-face interaction,
and manual documentation. In contrast, modern
approaches use artificial intelligence, automation, and
data-driven tools to improve speed, scalability, and
coverage. Figure 2 provides an overview of the
techniques discussed in this study.

3.1 Traditional Techniques
Traditional elicitationmethods have been the backbone
of software engineering for decades [30]. These
approaches rely on direct stakeholder input, structured
processes, and manual analysis. While still widely
used, they often face challenges in large-scale or
fast-paced environments. A few important techniques
are discussed below and Table 2 shows advantages
and disadvantages of each.

Figure 2. Flowchart categorizing traditional and contemporary requirements elicitation techniques.

36



ICCK Journal of Software Engineering

3.1.1 Interviews
Interviews are one of the most widely used techniques
for gathering requirements [31]. Analysts meet with
stakeholders individually or in small groups to ask
open-ended or structured questions. Interviews
help explore business goals, user needs, and
constraints through direct communication. They
allow clarification of ambiguities and discovery of
undocumented insights. Interviews are especially
useful during early project phases or when working
with domain experts [32]. However, the quality
of results depends on the interviewer’s skill, and
the process can be time-consuming. Scheduling
interviews and interpreting subjective responses
can be challenging, especially in large or distributed
teams.

3.1.2 Surveys and Questionnaires
Surveys are used to collect structured feedback from
a wide range of users [33]. They consist of closed-
or open-ended questions, distributed online or in
print. Surveys allow stakeholders to respond at their
convenience, making them ideal for remote teams and
large user bases. They are cost-effective, provide quick
statistical summaries, and support early requirement
validation. However, they lack the depth of face-to-face
methods, and poor question design can result in
misleading or incomplete responses. Surveys are best
suited for confirming known requirements rather than
exploring new ones, and they often fail to capture
nuanced user expectations or behavior [34].

3.1.3 Document Analysis
Document analysis involves examining existing
sources such as business reports, policy manuals,
technical specifications, and project documentation.
This technique helps analysts understand past
decisions, stakeholder expectations, and legacy
systems [35]. It is particularly valuable when
stakeholders are unavailable or when historical
context is needed. Document analysis requires
minimal stakeholder interaction and can be performed
independently. However, documents may be
outdated, incomplete, or inconsistent. Analysts must
also interpret the content carefully, as documents
rarely capture full stakeholder intent. Despite its
limitations, this method is often used to supplement
other techniques and reduce the need for repetitive
stakeholder input.

3.1.4 Observation
Observation requires the analyst to watch
stakeholders perform their tasks within a real
work setting. This technique helps uncover tacit
knowledge—information users don’t realize they
need to communicate. It is useful in understanding
workflows, interface usability, and pain points in
current systems [36]. Observation supports the
discovery of real-world behaviors and edge cases
that may not emerge in discussions. However, it
demands time, planning, and ethical sensitivity. Users
may behave differently under observation, and rare
scenarios might not occur during the observed period.
Despite this, it remains an effective method to validate
assumptions and supplement interview findings [37].

3.1.5 Joint Application Development (JAD)
Joint Application Development (JAD) involves
structured workshops where end users, developers,
and facilitators collaborate to gather and refine
requirements. These sessions create a shared
understanding of system goals and ensure quick
feedback. JAD improves stakeholder buy-in by giving
everyone a voice during requirement definition [38].
It reduces documentation time by consolidating
multiple meetings into a single, focused session.
However, successful JAD sessions require skilled
moderation, stakeholder availability, and proper
planning. Without clear objectives or balanced
participation, discussions can become unproductive.
JAD is especially helpful for aligning technical and
business teams, particularly in time-constrained
environments that demand rapid consensus.

3.2 Contemporary Techniques
Contemporary techniques for elicitation use emerging
technologies to address the limitations of traditional
methods [39]. These approaches are well-suited to
modern software environments that demand speed,
automation, and the ability to process large volumes of
data. Major techniques are discussed below and pros
and cons of each technique are provided in Table 3.

3.2.1 LLM-Powered Chatbots
LLM-powered chatbots, based on large language
models like GPT, simulate interviews and collect
requirements by interactingwith stakeholders through
natural language [40]. These AI agents ask dynamic
questions, adapt to context, and log responses in
structured form. They are scalable, operate 24/7,
and reduce reliance on human analysts. Chatbots
can be integrated into websites, project management

37



ICCK Journal of Software Engineering

Table 2. Pros and Cons of Traditional Elicitation Techniques.

Technique Benefits Limitations

Interviews

• Deep exploration of stakeholder
needs

• Allows clarification in real-time
• Builds trust and rapport

• Time-consuming to schedule and
conduct

• May be biased by interviewer
• Difficult to scale in large projects

Surveys/Questionnaires

• Can reach many stakeholders
quickly

• Quantifiable and easy to analyze
• Cost-effective for remote input

• Lacks depth and context
• Low response rate risk
• Misleading if poorly designed

Document Analysis

• Uses existing internal knowledge
• Low-cost and requires no

scheduling
• Supports historical insight

• May contain outdated/inaccurate
information

• Can be hard to interpret intent
• Ignores undocumented requirements

Observation
• Captures actual user behavior
• Uncovers tacit knowledge
• Helps validate assumptions

• Time-intensive setup and analysis
• Observer bias possible
• Users may change behavior when

watched

JAD Sessions

• Encourages real-time
collaboration

• Reduces rework through
consensus

• Increases stakeholder buy-in

• Hard to schedule all participants
• Risk of dominant voices leading

decisions
• Requires skilled facilitation

tools, or messaging apps. However, their performance
depends on prompt design and model reliability. They
may generate vague or incorrect answers, particularly
without fine-tuning. Despite these limitations, they
offer significant promise for projects with limited
analyst availability or high communication demands.

3.2.2 NLP-Based Text Mining
Natural Language Processing (NLP) is used to
extract requirements from unstructured text such as
emails, reviews, bug reports, or transcripts. These
tools help automate requirements discovery, reduce
manual analysis, and highlight relevant patterns [41].
Techniques like named entity recognition, sentiment
analysis, and topic modeling are commonly used. NLP
is valuable for large-scale or fast-changing projects,
especially in Agile environments. However, success
depends on language model quality, domain-specific
vocabulary, and preprocessing. Poorly formatted text,
informal language, or inconsistent phrasing can limit
effectiveness. Despite challenges, NLP-based mining

improves efficiency and supports semi-automated
elicitation in data-rich software projects [42].

3.2.3 Crowdsourced Feedback Mining
Crowdsourced feedback mining gathers requirements
from user-generated content, including app store
reviews, support forums, and social media. It
captures real opinions and highlights issues not
covered in formal sessions [43]. This method
reveals trends, common complaints, and desired
features across large user populations. It is especially
useful for consumer-facing apps or platforms with
active communities. However, data quality can be
inconsistent, and filtering noise is critical. Automated
tools are often used to classify and summarize
comments. While not a complete replacement for
direct interaction, feedback mining provides valuable
context for decision-making and can shape product
roadmaps effectively.

38



ICCK Journal of Software Engineering

Table 3. Pros and Cons of Contemporary Elicitation Techniques.

Technique Benefits Limitations

LLM-Powered
Chatbots

• 24/7 availability
• Effortless cross-project scaling
• Automates question flow

• Can produce hallucinated or vague
outputs

• Lacks emotional intelligence
• Requires careful prompt engineering

NLP-Based Text
Mining

• Extracts insights from large data
volumes

• Reduces human effort
• Identifies hidden or indirect

requirements

• Depends on data quality and
preprocessing

• May miss domain-specific language
• Limited support for ambiguous text

Crowdsourced
Feedback Mining

• Reflects real user pain points
• Captures emerging trends in usage
• Inexpensive to collect and analyze

• High noise-to-signal ratio
• Data not always relevant to business

goals
• Needs strong filtering and cleaning tools

ML-Based
Technique
Recommendation

• Suggests best-fit elicitation
methods

• Learns from project patterns
• Reduces planning bias

• Needs large training datasets
• Lacks transparency in decision-making
• May not adapt to unique project

scenarios

Conversational
Tools

• Auto-generates structured
requirements

• Saves documentation time
• Supports traceability and

versioning

• Dependent on clean conversation inputs
• Prone to missing subtleties or tone
• Requires validation by a human analyst

3.2.4 ML-Based Technique Recommendation
Machine Learning (ML) models can analyze historical
project data to suggest suitable elicitation techniques
based on variables like domain type, stakeholder roles,
team size, and past outcomes [44]. These systems
support more objective and data-driven planning.
Recommendation engines reduce analyst bias, speed
uppreparation, and improve technique alignmentwith
project context. However, their accuracy depends on
the quality and quantity of available training data.
Such systems may struggle to adapt in unique or new
project types. Despite this, ML-based recommendation
tools are emerging as helpful assistants in tailoring
elicitation strategies to fit the needs of complex
software environments [45].

3.2.5 Conversational Requirement Generation
Tools like RECOVER use transformer-based models to
automatically convert stakeholder conversations into

structured requirements. These tools listen to recorded
or real-time discussions and extract key requirements,
goals, and constraints. This approach reduces manual
note-taking, improves traceability, and speeds up
documentation. It is especially useful in Agile and
DevOps settings where requirements evolve quickly.
However, these tools depend on clear speech, accurate
transcription, and context-aware interpretation. Errors
may occur if the conversation is fragmented or informal
[46–49]. Despite this, conversational generation tools
are becoming popular for enhancing productivity
in requirements workshops and remote stakeholder
meetings.

4 Comparative Analysis and Discussion
Requirements elicitation techniques have
matured significantly over time, moving from
conventional, human-led approaches to advanced,
technology-supported methods. This shift reflects

39



ICCK Journal of Software Engineering

Table 4. Comparison of Traditional vs. Contemporary Elicitation Techniques.

Criteria Traditional Techniques Contemporary Techniques

Stakeholder Interaction High, face-to-face or synchronous Low to medium, asynchronous or
automated

Scalability Low—limited by time and resources High—can scale across users and
datasets

Speed of Execution Slower, often requires scheduling Faster, automates many tasks
Cost Efficiency Moderate to

high—human-intensive Lower per-user cost after setup
Tool Dependency Low—primarily manual methods High—depends on AI, NLP, ML tools
Data Type Handled Structured or verbal input Unstructured text, voice, reviews,

transcripts
Flexibility/Adaptability Medium—requires process

customization
High—adapts dynamically based on
data and context

Risk of Misinterpretation Subjective but manageable through
discussion

High—depends onmodel accuracy and
training

Best Fit For Complex domains, small to medium
teams, regulated industries

Large-scale apps, fast-paced teams,
customer-facing platforms

Human Oversight
Requirement

High—manual review and
validation needed

Medium to high—automated but still
needs validation

Traceability Manual documentation and
tracking

Automated logs, model-based
traceability

Reusability of Artifacts Limited—documents are
case-specific

High—datasets, models, and patterns
can be reused

Feedback Integration Slower—feedback loops via
meetings or reviews

Faster—automated feedback capture
from users and systems

Training Requirement Low tomoderate—based on domain
expertise

High—requires technical skills to
manage tools/models

Error Handling Direct discussion to clarify errors Error-prone if training data is biased or
incomplete

Stakeholder Inclusivity Limited to reachable participants Broader—can include remote, global,
or passive users

Documentation Quality Rich narrative, manually curated Structured, machine-generated
summaries or insights

Cognitive Load on
Stakeholders High—active participation needed Low to medium—passive data sources

can be used
Change Management Rigid—requires renegotiation Agile—can adapt to requirement

changes dynamically
Ethical/Privacy Concerns Low—clear boundaries and control Higher—data-driven methods raise

ethical/privacy risks

the growing complexity of software projects, the
rise of agile and DevOps cultures, and the need
to handle large volumes of user feedback in real
time. Traditional methods such as interviews,
surveys, document analysis, and JAD sessions
are still widely used because they provide rich,
contextual understanding of stakeholder needs. They
are especially effective in domains where personal
interaction, legal compliance, or domain-specific

knowledge is critical—such as healthcare, defense, or
government systems.

However, these methods tend to struggle in large-scale
projects where scalability, speed, and automation
are essential. Scheduling interviews or conducting
JAD sessions in globally distributed teams can
be difficult and time-consuming. Furthermore,
traditional techniques often rely on subjective
interpretation and can suffer from stakeholder bias,

40



ICCK Journal of Software Engineering

Table 5. Recommended Elicitation Techniques for Different Project Types Using Traditional and Modern Approaches.

Project Type Recommended Traditional
Techniques Recommended Modern Techniques

Government / Defense Interviews, Document Analysis,
JAD

NLP Mining for legacy docs,
Conversational AI Tools

Startup / MVP Informal Interviews, Surveys LLM Chatbots, Feedback Mining, ML
Technique Selection

Mobile Application Surveys, Observation Crowdsourced App Review Mining,
Sentiment Analysis Tools

Enterprise System JAD,Document Reviews, Structured
Interviews

Conversational NLP, ML-Augmented
Traceability Tools

AI/ML Product Expert Panels, Goal-Oriented
Interviews

LLMs, NLP Pipelines, Requirements
Extraction Models

E-Commerce Platform User Behavior Observation,
Feedback Forms

Review Mining, Personalized
Elicitation via Recommenders

Healthcare Systems Stakeholder Workshops, Regulatory
Document Study

NLP for Clinical Guidelines,
Semi-Automated Classification

Educational Portals Focus Groups, Interviews with
Teachers/Students

Chatbots for Learning Needs, Text
Analysis of Feedback

Financial/Banking Apps Risk Analysis Interviews,
Compliance Checks

ML for Fraud Detection Requirements,
Secure Chat Interfaces

Open-Source Projects Forum Mining, Email/Commit
Analysis

GitHub Issue Mining, Topic Modeling
on Community Data

inconsistent documentation, or incomplete inputs.
These limitations have fueled the development of
modern techniques that leverage Artificial Intelligence
(AI), Natural Language Processing (NLP), and
Machine Learning (ML).

Modern techniques, such as LLM-powered chatbots,
NLP-based text mining, and conversational
requirement generators, are designed to address these
limitations by automating parts of the elicitation
process. They allow teams to gather feedback at scale,
extract insights from unstructured data, and provide
round-the-clock assistance. However, they are not
without challenges. AI-driven tools can misinterpret
ambiguous language, lack emotional intelligence,
and require high-quality training data. Moreover,
such tools still need human oversight to validate
and refine the outputs, especially in safety-critical or
ethics-sensitive domains.

In large-scale, user-facing applications like
e-commerce or mobile platforms, modern techniques
such as feedback mining and sentiment analysis
consistently outperform traditional methods by
enabling real-time, high-volume input processing.
Conversely, in regulated domains like healthcare
or government, traditional techniques such as

document analysis and stakeholder interviews remain
superior due to their interpretability, traceability, and
compliance alignment. The hybrid use of LLMs for
draft generation alongside human-led workshops
has also shown to reduce stakeholder fatigue while
improving requirement clarity. These differences
underscore the importance of context-aware technique
selection rather than one-size-fits-all adoption.

Despite the differences, traditional and contemporary
techniques are not mutually exclusive. In fact,
combining them often leads to better outcomes.
For instance, interviews or JAD sessions can be
used to frame the initial requirements, followed
by NLP tools to process written feedback or refine
documentation. Similarly, LLMs can act as assistants
during stakeholder meetings, generating questions
or summarizing outcomes in real time. A hybrid
approach is especially useful in agile settings, where
rapid iteration and frequent feedback cycles are
expected.

Ultimately, the choice of elicitation technique depends
on several factors, including project scale, domain
complexity, team distribution, and tool availability.
While traditional methods provide depth and trust,
modern methods offer speed and scalability. A

41



ICCK Journal of Software Engineering

thoughtful combination, tailored to the project’s
context, can lead to more complete, accurate, and
actionable requirements. Table 4 provides the
comparison between the discussed traditional and
recent requirement elicitation techniques.
To better guide practitioners, we present a use-case
mapping in Table 5, which aligns specific project
types with the most effective elicitation techniques.
This mapping considers project characteristics such
as regulatory demands, team scale, and delivery
speed. For instance, government and defense
projects, which require traceability and extensive
documentation, often rely on traditional techniques
like JAD sessions and document analysis. On the other
hand, fast-moving startups or mobile applications
benefit more from modern approaches such as
feedback mining or LLM-based assistance, where
speed and automation are essential. This classification
helps in selecting themost suitable strategies for varied
development environments.
In another example, consider a mid-sized fintech
startup launching a mobile banking app under strict
regulatory compliance. The team combines structured
interviews and compliance checks (traditional) with
AI-driven feedback mining (modern) to balance
legal accuracy with user-centered design. Table 5
helps identify this hybrid strategy by aligning project
needs—security, speed, and usability—with suitable
elicitation techniques.
While this review aims to provide a comprehensive
comparison of traditional and modern elicitation
techniques, it is subject to certain limitations. The
literature selection may carry bias due to the focus
on peer-reviewed sources, potentially overlooking
valuable gray literature. Additionally, some modern
techniques discussed are closely tied to specific
technologies, which may limit generalizability across
all software contexts. The classification framework,
though grounded in recurring themes, is interpretive
in nature and may evolve with future advancements.

5 Conclusion and Future Work
Requirements elicitation continues to play a pivotal
role in shaping the success of software projects.
Over the decades, the field has evolved from heavily
manual and interaction-based practices to more
automated, intelligent, and scalable solutions powered
by recent advances in artificial intelligence and data
mining. Traditional techniques such as interviews,
document reviews, and JAD sessions remain

valuable, especially in domains that require deep
contextual understanding, regulatory compliance,
or trust-building through personal interaction. On
the other hand, modern techniques—including
NLP-driven mining, LLM-powered chatbots, and
machine learning-based recommendations—have
addressed many of the scalability and efficiency
limitations faced by traditional approaches. This paper
presented a comprehensive review and comparison of
both traditional and contemporary elicitation methods.
Through structured analysis, use-case mapping, and
feature-based comparison, it was observed that no
single technique universally applies to all project
types. Instead, the most effective elicitation strategies
are those that balance human-centered insights with
automated scalability, adapting techniques based on
project scope, domain complexity, and stakeholder
availability. This comparative synthesis offers a
foundation for both academic and industry audiences
for making informed decisions about elicitation
practices in an era of rapid digital transformation.

Despite recent progress, several challenges remain
in the practice and research of requirements
elicitation. Future work should focus on refining
hybrid elicitation models that seamlessly integrate
traditional human-led methods with intelligent
automation. Research into context-aware LLMs and
domain-specific NLP models could further enhance
the precision of automated requirement extraction.
Another promising direction lies in the development
of adaptive elicitation systems that learn from
stakeholder behavior and dynamically switch between
elicitationmodes during a project’s lifecycle. Moreover,
there is a need to explore ethical concerns around
AI-powered elicitation—particularly issues related
to data privacy, consent, and bias in requirement
formulation. Additionally, empirical studies should
be conducted across diverse domains to evaluate
the real-world effectiveness of modern techniques,
especially in terms of stakeholder satisfaction,
requirement completeness, and project success
rates. Finally, greater emphasis should be placed on
creating open-source datasets and benchmarks to
enable consistent evaluation of elicitation tools and
techniques. As the software industry continues to
embrace agility, automation, and AI, requirements
elicitation must evolve in parallel—remaining
adaptive, inclusive, and intelligent in meeting the
demands of tomorrow’s software systems.

Data Availability Statement

42



ICCK Journal of Software Engineering

Data will be made available on request.

Funding
This work was supported without any funding.

Conflicts of Interest
The authors declare no conflicts of interest.

Ethical Approval and Consent to Participate
Not applicable.

References
[1] Gobov, D., & Huchenko, I. (2021, February). Software

Requirements Elicitation Techniques SelectionMethod
for the Project ScopeManagement. In ITPM (pp. 1-10).

[2] Görer, B., & Aydemir, F. B. (2023, September).
Generating requirements elicitation interview
scripts with large language models. In 2023 IEEE
31st international requirements engineering conference
workshops (rew) (pp. 44-51). IEEE. [Crossref]

[3] Canedo, E. D., Calazans, A. T. S., Bandeira, I. N., Costa,
P. H. T., & Masson, E. T. S. (2022). Guidelines adopted
by agile teams in privacy requirements elicitation
after the Brazilian general data protection law (LGPD)
implementation. Requirements Engineering, 27(4),
545-567. [Crossref]

[4] Ronanki, K., Berger, C., & Horkoff, J. (2023,
September). Investigating chatgpt’s potential to
assist in requirements elicitation processes. In 2023
49th Euromicro conference on software engineering and
advanced applications (SEAA) (pp. 354-361). IEEE.
[Crossref]

[5] Wang, Z., Chen, C. H., Zheng, P., Li, X., & Khoo, L.
P. (2021). A graph-based context-aware requirement
elicitation approach in smart product-service systems.
International Journal of Production Research, 59(2),
635-651. [Crossref]

[6] Zhang, K., Lin, K. Y., Wang, J., Ma, Y., Li, H.,
Zhang, L., ... & Feng, L. (2023). UNISON framework
for user requirement elicitation and classification of
smart product-service system. Advanced Engineering
Informatics, 57, 101996. [Crossref]

[7] Alturaief, N., Aljamaan, H., & Baslyman, M. (2021,
November). Aware: Aspect-based sentiment analysis
dataset of apps reviews for requirements elicitation.
In 2021 36th IEEE/ACM International Conference on
Automated Software EngineeringWorkshops (ASEW) (pp.
211-218). IEEE. [Crossref]

[8] White, J., Hays, S., Fu, Q., Spencer-Smith, J., & Schmidt,
D. C. (2024). Chatgpt prompt patterns for improving
code quality, refactoring, requirements elicitation, and
software design. In Generative AI for Effective Software
Development (pp. 71-108). Cham: Springer Nature
Switzerland. [Crossref]

[9] Faik, I., & Sengupta, A. (2024). INCLUSION BY
DESIGN: REQUIREMENTS ELICITATION WITH
DIGITALLY MARGINALIZED COMMUNITIES. MIS
Quarterly, 48(1). [Crossref]

[10] Gupta, S. (2022). Non-functional requirements
elicitation for edge computing. Internet of Things, 18,
100503. [Crossref]

[11] Rahamathunnisa, U., Subhashini, P., Aancy, H. M.,
Meenakshi, S., & Boopathi, S. (2023). Solutions for
software requirement risks using artificial intelligence
techniques. In Handbook of Research on Data Science and
Cybersecurity Innovations in Industry 4.0 Technologies
(pp. 45-64). IGI Global. [Crossref]

[12] Arora, C., Grundy, J., & Abdelrazek, M. (2024).
Advancing requirements engineering through
generative ai: Assessing the role of llms. In Generative
AI for Effective Software Development (pp. 129-148).
Cham: Springer Nature Switzerland. [Crossref]

[13] Nazim, Z., Ishaq, K., Alvi, A., Rosdi, F., Nawaz, N.
A., & Dogar, A. B. (2025). Toward a Gamification
Framework for Requirement Elicitation: Insights From
a Systematic Literature Review. Human Behavior and
Emerging Technologies, 2025(1), 3255995. [Crossref]

[14] Aqeel, S., & Khan, N. A. (2025). Challenges and Issues
in Requirements Elicitation for Based Systems: A
Systematic Literature Review. Bridging Global Divides
for Transnational Higher Education in the AI Era, 423-446.
[Crossref]

[15] Ozkan, B., Jungerius, N., Adali, O. E., & Turetken,
O. (2025). Value cocreation-oriented digital platform
design: a method for requirements elicitation and
platform assessment. Production Planning & Control,
1-19. [Crossref]

[16] Davis, A. M. (1993). Software requirements: objects,
functions, and states. Prentice-Hall, Inc..

[17] Sommerville, I., & Sawyer, P. (1997). Requirements
engineering: a good practice guide. John Wiley & Sons,
Inc..

[18] Zowghi, D., & Coulin, C. (2005). Requirements
elicitation: A survey of techniques, approaches, and
tools. In Engineering and managing software requirements
(pp. 19-46). Berlin, Heidelberg: Springer Berlin
Heidelberg. [Crossref]

[19] Cohn, M. (2004). User stories applied: For agile software
development. Addison-Wesley Professional.

[20] Paetsch, F., Eberlein, A., & Maurer, F. (2003,
June). Requirements engineering and agile software
development. In WET ICE 2003. Proceedings. Twelfth
IEEE International Workshops on Enabling Technologies:
Infrastructure for Collaborative Enterprises, 2003. (pp.
308-313). IEEE. [Crossref]

[21] Sonbol, R., Rebdawi, G., & Ghneim, N. (2022). The use
of nlp-based text representation techniques to support
requirement engineering tasks: A systematic mapping
review. IEEE Access, 10, 62811-62830. [Crossref]

43

https://doi.org/10.1109/REW57809.2023.00015
https://doi.org/10.1007/s00766-022-00391-7
https://doi.org/10.1109/SEAA60479.2023.00061
https://doi.org/10.1080/00207543.2019.1702227
https://doi.org/10.1016/j.aei.2023.101996
https://doi.org/10.1109/ASEW52652.2021.00049
https://doi.org/10.1007/978-3-031-55642-5_4
https://doi.org/10.25300/MISQ/2023/17225
https://doi.org/10.1016/j.iot.2022.100503
https://doi.org/10.4018/978-1-6684-8145-5.ch003
https://doi.org/10.1007/978-3-031-55642-5_6
https://doi.org/10.1155/hbe2/3255995
https://doi.org/10.4018/979-8-3693-7016-2.ch020
https://doi.org/10.1080/09537287.2025.2456965
https://doi.org/10.1007/3-540-28244-0_2
https://doi.org/10.1109/ENABL.2003.1231428
https://doi.org/10.1109/ACCESS.2022.3182372


ICCK Journal of Software Engineering

[22] Kolahdouz-Rahimi, S., Lano, K., & Lin, C. (2023).
Requirement formalisation using natural language
processing andmachine learning: A systematic review.
arXiv preprint arXiv:2303.13365. [Crossref]

[23] Voria, G., Casillo, F., Gravino, C., Catolino, G., &
Palomba, F. (2025). RECOVER: Toward Requirements
Generation from Stakeholders’ Conversations. IEEE
Transactions on Software Engineering. [CrossRef]

[24] Ataei, M., Cheong, H., Grandi, D., Wang, Y., Morris,
N., & Tessier, A. (2025). Elicitron: A large language
model agent-based simulation framework for design
requirements elicitation. Journal of Computing and
Information Science in Engineering, 25(2), 021012.
[Crossref]

[25] Cheligeer, C., Huang, J., Wu, G., Bhuiyan, N., Xu, Y., &
Zeng, Y. (2022). Machine learning in requirements
elicitation: A literature review. AI EDAM, 36, e32.
[Crossref]

[26] Gobov, D., & Solovei, O. (2023, March). Approaches to
improving the accuracy of machine learning models
in requirements elicitation techniques selection.
In International Conference on Computer Science,
Engineering and Education Applications (pp. 574-584).
Cham: Springer Nature Switzerland. [Crossref]

[27] Akram, F., Ahmad, T., & Sadiq, M. (2024).
Recommendation systems-based software
requirements elicitation process—a systematic
literature review. Journal of Engineering and Applied
Science, 71(1), 29. [Crossref]

[28] Dąbrowski, J., Letier, E., Perini, A., & Susi, A. (2023).
Mining and searching app reviews for requirements
engineering: Evaluation and replication studies.
Information Systems, 114, 102181. [Crossref]

[29] Maalej, W., Biryuk, V., Wei, J., & Panse, F. (2025).
On the automated processing of user feedback.
In Handbook on Natural Language Processing for
Requirements Engineering (pp. 279-308). Cham:
Springer Nature Switzerland. [Crossref]

[30] Haq, I. U., Saddique, T., Basharat, M., & Butt, W. H.
(2024, July). A Hybrid S/W Requirement Elicitation
Approach to Improve Quality of Requirements.
In International conference on WorldS4 (pp. 75-85).
Singapore: Springer Nature Singapore. [Crossref]

[31] Dunsin, D. BUSINESS ANALYSIS TECHNIQUES
FOR EFFECTIVE PROJECT REQUIREMENTS
GATHERING.

[32] Liu, K., Reddivari, S., & Reddivari, K. (2022, August).
Artificial intelligence in software requirements
engineering: State-of-the-art. In 2022 IEEE 23rd
International Conference on Information Reuse and
Integration for Data Science (IRI) (pp. 106-111). IEEE.
[Crossref]

[33] Ali, N., Hong, J. E., & Chung, L. (2021). Social network
sites and requirements engineering: A systematic
literature review. Journal of Software: Evolution and
Process, 33(4), e2332. [Crossref]

[34] Ferrari, A., Spoletini, P., & Debnath, S. (2022). How do
requirements evolve during elicitation? An empirical
study combining interviews and app store analysis.
Requirements Engineering, 27(4), 489-519. [Crossref]

[35] Shahzad, B., Javed, I., Shaikh, A., Sulaiman, A., Abro,
A., & Ali Memon, M. (2021). Reliable requirements
engineering practices for COVID-19 using blockchain.
Sustainability, 13(12), 6748. [Crossref]

[36] Pei, Z., Liu, L., Wang, C., & Wang, J. (2022, August).
Requirements engineering for machine learning: A
review and reflection. In 2022 IEEE 30th International
Requirements Engineering Conference Workshops (REW)
(pp. 166-175). IEEE. [Crossref]

[37] Sari, D. A. P., Putri, A. Y., Hanggareni, M., Anjani,
A., Siswondo, M. L. O., & Raharjana, I. K. (2021,
February). Crowdsourcing as a tool to elicit software
requirements. In AIP Conference Proceedings (Vol. 2329,
No. 1, p. 050001). AIP Publishing LLC. [Crossref]

[38] Khairat, M. I. S. B., Priyadi, Y., & Adrian, M.
(2022, January). Usability measurement in user
interface design using heuristic evaluation & severity
rating (case study: Mobile ta application based on
MVVM). In 2022 IEEE 12th Annual Computing and
Communication Workshop and Conference (CCWC) (pp.
0974-0979). IEEE. [Crossref]

[39] Dalpiaz, F., Gieske, P., & Sturm, A. (2021). On
deriving conceptual models from user requirements:
An empirical study. Information and Software Technology,
131, 106484. [Crossref]

[40] Oleson, A., Solomon, M., Perdriau, C., & Ko, A.
(2023). Teaching inclusive design skills with the cider
assumption elicitation technique. ACM Transactions on
Computer-Human Interaction, 30(1), 1-49. [Crossref]

[41] Villamizar, H., Escovedo, T., & Kalinowski, M.
(2021, September). Requirements engineering for
machine learning: A systematic mapping study. In
2021 47th Euromicro conference on software engineering
and advanced applications (SEAA) (pp. 29-36). IEEE.
[Crossref]

[42] Olukoya, O. (2022). Assessing frameworks for
eliciting privacy & security requirements from laws
and regulations. Computers & Security, 117, 102697.
[Crossref]

[43] Atoum, I., Baklizi, M. K., Alsmadi, I., Otoom, A.
A., Alhersh, T., Ababneh, J., ... & Alshahrani, S. M.
(2021). Challenges of software requirements quality
assurance and validation: A systematic literature
review. IEEE Access, 9, 137613-137634. [Crossref]

[44] Dar, H., Lali, M. I., Ashraf, H., Ramzan, M., Amjad, T.,
& Shahzad, B. (2018). A systematic study on software
requirements elicitation techniques and its challenges
in mobile application development. IEEE Access, 6,
63859-63867. [Crossref]

[45] Kiran, H. M., & Ali, Z. (2018). Requirement elicitation
techniques for open source systems: a review.
International Journal of Advanced Computer Science and

44

https://doi.org/10.5220/0011789700003402
https://doi.org/10.1109/tse.2025.3572056
https://doi.org/10.1115/1.4067388
https://doi.org/10.1017/S0890060422000166
https://doi.org/10.1007/978-3-031-36118-0_51
https://doi.org/10.1186/s44147-024-00363-4
https://doi.org/10.1016/j.is.2023.102181
https://doi.org/10.1007/978-3-031-73143-3_10
https://doi.org/10.1007/978-981-97-9324-2_7
https://doi.org/10.1109/IRI54793.2022.00034
https://doi.org/10.1002/smr.2332
https://doi.org/10.1007/s00766-022-00383-7
https://doi.org/10.3390/su13126748
https://doi.org/10.1109/REW56159.2022.00039
https://doi.org/10.1063/5.0042134
https://doi.org/10.1109/CCWC54503.2022.9720876
https://doi.org/10.1016/j.infsof.2020.106484
https://doi.org/10.1145/3549074
https://doi.org/10.1109/SEAA53835.2021.00013
https://doi.org/10.1016/j.cose.2022.102697
https://doi.org/10.1109/ACCESS.2021.3117989
https://doi.org/10.1109/ACCESS.2018.2874981


ICCK Journal of Software Engineering

Applications, 9(1). [CrossRef]
[46] Saeed, S., Fatima, U., & Iqbal, F. (2018). A review of

Requirement Elicitation techniques in OSSD. Int. J.
Comput. Sci. Netw. Secur, 18, 86.

[47] Okesola, O. J., Okokpujie, K., Goddy-Worlu, R.,
Ogunbanwo, A., & Iheanetu, O. (2019). Qualitative
comparisons of elicitation techniques in requirement
engineering. ARPN J. Eng. Appl. Sci, 14(2), 565-570.

[48] Lim, T. Y., Chua, F. F., & Tajuddin, B. B. (2018,
December). Elicitation techniques for internet of
things applications requirements: A systematic review.
In Proceedings of the 2018 VII International Conference on
Network, Communication and Computing (pp. 182-188).
[Crossref]

[49] Mishra, D., Aydin, S., Mishra, A., & Ostrovska,
S. (2018). Knowledge management in requirement
elicitation: Situational methods view. Computer
Standards & Interfaces, 56, 49-61. [Crossref]

Asma Akhtar is a researcher who has received
her degree in M.S. Computer Science from
Virtual University of Pakistan, Lahore. Her
research interests lie in the fields of Software
Engineering and Machine learning. (Email:
asmaakhtarjanjua@gmail.com)

Samia Akhtar received her M.S. degree in
Computer Science from Virtual University
of Pakistan, Lahore. Her research interests
lie in the fields of Software Engineering,
Machine Learning and Deep Learning. (Email:
samiaakhtar9898@gmail.com)

45

https://doi.org/10.14569/ijacsa.2018.090145
https://doi.org/10.1145/3301326.3301360
https://doi.org/10.1016/j.csi.2017.09.004

	Introduction
	Background and Historical Context
	Evolution of Development Practices and Its Impact
	The Elicitation Shift: Then vs. Now
	Motivation for This Review
	Objectives and Scope

	Related Work
	Classical Foundations
	Recent Literature
	AI and NLP-Based Elicitation
	ML and Recommendation Systems
	Feedback Mining and Automation

	Research Gap and Contribution of this Paper

	Comparative Overview of Requirements Elicitation Techniques
	Traditional Techniques
	Interviews
	Surveys and Questionnaires
	Document Analysis
	Observation
	Joint Application Development (JAD)

	Contemporary Techniques
	LLM-Powered Chatbots
	NLP-Based Text Mining
	Crowdsourced Feedback Mining
	ML-Based Technique Recommendation
	Conversational Requirement Generation


	Comparative Analysis and Discussion
	Conclusion and Future Work
	Asma Akhtar
	Samia Akhtar


