
ICCK Journal of Software Engineering
http://dx.doi.org/10.62762/JSE.2025.246843

REVIEW ARTICLE

Software Testing Evolution: Comparative Insights into
Traditional and Emerging Practices

Samia Akhtar 1,*

1Department of Computer Science, Virtual University of Pakistan, Lahore 54000, Pakistan

Abstract
Software testing is a fundamental pillar of software
engineering which ensures that applications
function correctly, meet user requirements, and
remain reliable under different conditions. As
software systems become more complex and the
demand for faster development grows, testing
strategies have evolved to meet new challenges. This
paper aims to comprehensively compare traditional
and modern software testing techniques to provide
practitioners with a structured understanding
of their evolution, strengths, limitations, and
applicability. It covers classical methods such as
unit testing, integration testing, system testing,
acceptance testing and other testing types like
black-box, white-box, and grey-box. Each method
is analyzed based on its purpose, advantages,
limitations, and best use cases. The paper
also explores current testing trends including
AI-augmented testing, continuous testing in
DevOps, shift-left and shift-right testing, and
large scale automated testing. It highlights the
growing importance of testing in cloud-native and

Academic Editor:
Usama Ahmed

Submitted: 11 July 2025
Accepted: 24 July 2025
Published: 19 August 2025

Vol. 1, No. 1, 2025.
10.62762/JSE.2025.246843

*Corresponding author:
� Samia Akhtar
samiaakhtar9898@gmail.com

microservices-based environments. These modern
practices are evaluated for their impact on software
quality assurance, particularly in improving test
coverage, fault detection, usability, and security. The
survey also identifies challenges faced by testing
teams, such as flaky tests, tool complexity, test data
management, and AI explainability. Finally, the
paper offers future directions including smarter
automation and more accessible testing tools. This
work serves as a useful guide for software engineers,
testers, researchers, and QA professionals seeking to
understand the evolving role of software testing and
apply effective strategies in modern development
environments.

Keywords: software testing strategies, software quality
assurance (SQA), black box and white box testing,
AI-augmented testing, test automation.

1 Introduction
Software testing is a crucial part of the software
development lifecycle (SDLC). It helps ensure that
applications work as expected, meet user needs,
and provide a good user experience [1]. As
software systems continue to evolve—becoming more
cloud-based, AI-powered, and user-focused—testing
is more important than ever. It is used not only
for verifying software functionality but also for

Citation
Akhtar, S. (2025). Software Testing Evolution: Comparative Insights
into Traditional and Emerging Practices. ICCK Journal of Software
Engineering, 1(1), 46–62.

© 2025 by the Author. Published by Institute of
Central Computation and Knowledge. This is an open
access article under the CC BY license (https://creati
vecommons.org/licenses/by/4.0/).

46

http://dx.doi.org/10.62762/JSE.2025.246843
http://crossmark.crossref.org/dialog/?doi=10.62762/JSE.2025.246843&domain=pdf
https://orcid.org/0009-0004-4345-793X
https://orcid.org/0000-0001-8433-7185
http://dx.doi.org/10.62762/JSE.2025.246843
mailto:samiaakhtar9898@gmail.com
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


ICCK Journal of Software Engineering

assessing security, performance, usability, and ease
of maintenance. With software playing a major role in
critical fields like healthcare, finance, and self-driving
systems, the need for strong and scalable testing
methods has grown significantly [2].

Traditionally, software testing has been divided into
different levels and techniques, each serving a specific
role. Common types include unit testing, integration
testing, system testing, and acceptance testing. These
help catch bugs at various stages of development.
Testers have also used black-box, white-box, and
grey-box approaches, depending on how much they
know about the system’s internal code. These
traditional methods remain highly relevant and are
widely used in both academic and industry settings
[3–7]. However, modern development practices like
Agile, DevOps, and CI/CD now require faster and
more frequent software updates. This has put more
pressure on teams to test and release high-quality
software quickly. As a result, there is a growing shift
toward automated and AI-assisted testing tools. These
tools reduce manual effort, improve test coverage, and
speed up the process of finding bugs [8].

One major trend is the use of AI and machine
learning in testing. Recent advancements in AI-driven
automation, shift-left testing, and continuous
integration have significantly transformed modern
software testing practices [9, 10]. Tools such as GitHub
Copilot, ChatGPT, and smart automation platforms are
being used to generate test cases, find errors, analyze
logs, and even suggest fixes [11]. While these tools
offer many benefits, they also raise concerns about
trust, explainability, and reliance on good-quality
data. Developers and testers are now working to
find the right balance between human input and AI
support to ensure systems are not only efficient but
also reliable and ethical. The rise of microservices,
container-based apps and cross-platform software has
further complicated the testing process. Now, teams
must also test for interoperability, scalability, resilience,
and security [12]. To handle this growing complexity,
many organizations are adopting continuous testing,
automated regression testing, and test orchestration
platforms to maintain quality throughout the
software’s lifecycle. Figure 1 shows the goals, trends
and some key testing areas in software testing.

While several prior works have discussed individual
testing methods or focused on either traditional or
modern strategies, few have provided a side-by-side
comparison that links classical approaches with

today’s agile, AI-driven, and cloud-based practices.
Moreover, existing literature often lacks practical
insights into tool usage, real-world challenges like
flaky tests or AI explainability, and the evolving role
of testing in continuous delivery environments. This
paper addresses these gaps by offering a unified
survey that bridges foundational conceptswith current
innovations, highlighting both opportunities and
limitations.

This survey paper provides an overview of software
testing strategies, covering both traditional and
modern practices. It compares classical testing
methods by explaining where they work best andwhat
their strengths and weaknesses are. It also explores
how new technologies—like AI-powered testing and
continuous monitoring—are changing the way testing
is done. By reviewing recent research, tools, and
trends from recent years, the paper also points out
key challenges and suggests future directions for
research. Thismakes it a valuable resource for software
engineers, testers, researchers, and decision-makers
who want to understand how software testing is
evolving and what it means for software quality. In
summary, this paper connects traditional software
testing knowledge with modern tools and methods,
helping the reader gain both practical and theoretical
insights into today’s software testing landscape. The
main contributions of this paper are as follows:

• This paper provides a comparative review
of classical testing methods, including unit,
integration, system, and acceptance testing, as
well as black-box, white-box, and grey-box
techniques.

• It presents an overview of modern testing trends
such as AI-augmented testing, continuous testing,
shift-left and shift-right practices, and testing in
cloud-native environments.

• It includes tabular comparisons that clearly
differentiate traditional and modern strategies
based on scalability, automation, and feedback
speed.

• The paper discusses widely used testing tools
and their applicability across both classical and
modern testing workflows.

• It identifies key challenges in current testing
practices, such as flaky tests and AI explainability,
and suggests potential directions for future
improvement

47



ICCK Journal of Software Engineering

Figure 1. Overview of software testing highlighting its main goals, key focus areas, and current industry trends.

2 Related Work
The evolution of software testing has been
well-documented through various scholarlyworks and
industrial reports. In this section, we analyze relevant
studies that provide a foundation for understanding
current testing strategies and their impact on software
quality assurance.

The authors in [13] have conducted a survey on
prioritization in Automotive Software Testing. They
investigated publication trends, commonly used
prioritization methods, and the quality distribution
of existing studies. Their goal was to assess
how prioritization can reduce testing time while
preserving reliability in safety-critical automotive
systems. They emphasized that early fault detection
is essential to avoid recalls and safety failures. The
study provides insights for both practitioners and
researchers, especially those adopting prioritization
strategies. It also outlines research gaps, including a
lack of studies on test case generation and selection.
Future work includes conducting qualitative studies to
better understand key testing activities in automotive
contexts.

The authors in [14] have discussed how using artificial
intelligence in test automation is changing the way
software quality is managed. They explain that AI
methods like machine learning and computer vision
help reduce common problems such as fragile test
scripts and high maintenance costs. The paper shows
that AI can create tests automatically, fix broken scripts
on its own, and find defects more accurately. It also
describes a four-stage path from basic AI support to
fully automatic testing systems. The authors highlight
how AI improves performance testing by simulating

real loads and spotting problems early. They point
out that AI saves time, improves testing coverage, and
speeds up development. In the end, the paper sees
AI-based testing as a key tool for keeping software
quality high in today’s fast-moving projects.
In [15], researchers have studied how artificial
intelligence andmachine learning are helping improve
different parts of software testing. They explain
that traditional automation tools face problems in
fast-changing CI/CD environments, and AI/ML can
help solve these issues. The paper highlights key
testing tasks such as bug detection, test maintenance,
and automatic test generation where AI has shown
strong results. It also points out which AI techniques
are most commonly used in each activity. The
researchers reviewed various AI-powered automation
tools and how they support different testing needs.
Their findings help researchers understand current
developments and guide QA teams in choosing the
right tools. They conclude that this knowledge can
support better tool selection and lead to more efficient
testing in modern projects.
In [16], researchers studied a new way to test
deep neural networks (DNNs) using black-box input
diversity metrics. They found that traditional
white-box methods, which need access to a model’s
internal parts, are often hard to use and may not give
reliable results. To solve this, they tested three simpler
diversity measures on four datasets and five DNN
models. Their results showed that one measure called
geometric diversity was better at finding faults and
faster than older methods. The authors also used
a clustering method to group similar mistakes and
estimate faults more accurately. Their approach does
not need to run the model or rely on its output, which

48



ICCK Journal of Software Engineering

makes it useful in many real-world situations. They
suggest using geometric diversity as a helpful and
practical way to guide DNN testing.

Researchers explored how artificial intelligence can
improve the software testing process by making it
faster, smarter, and more accurate in [17]. They
highlight the need for quicker testing due to
growing software complexity and business demands.
The paper discusses key AI pillars like machine
learning, deep learning, and natural language
processing that support better test automation. It
suggests that AI-driven testing will become central
to quality assurance, helping organizations release
higher-quality software faster. The authors also predict
that AI will work closely with future technologies like
cloud computing, IoT, and big data. They emphasize
that testers will shift roles, focusing more on training
and fine-tuning AI models. Overall, the paper sees AI
as a major driver of smarter, more efficient, and fully
automated testing in the future.

Researchers in [18] studied how adding automated
testing early in the CI/CD pipeline can improve
software quality and speed up development. They
focused on the shift-left approach, which means
finding and fixing problems as early as possible to save
time and reduce costs. The paper explains different
types of tests—like unit, integration, and end-to-end
tests—and how they fit into early testing. It shows how
shift-left changes the usual testing process by starting
tests during the design phase instead of later. The
authors use real examples to show that this method
leads to better software, faster development, and
lower expenses. They also suggest ways to handle
common problems like test setup, data management,
and keeping tests up to date. In the end, they
found that using automated testing with the shift-left
approach helps teams catch bugs sooner and deliver
better software more quickly.

In [19], researchers emphasized the importance of
software testing in improving quality, reducing bugs,
and lowering development costs. They explain that
testing is a continuous process meant to find defects
rather than prove perfection. The paper reviews
common techniques such as white-box, black-box,
grey-box, and security testing, showing how each
contributes to checking different parts of a system. The
authors point out that testing is time-consuming and
requires proper planning, which is why automation
and modern tools are becoming essential. They
stress the need for testers to understand core testing

principles and suggest that future testing will rely
more on simulation, automation, and model-based
approaches for better results.
In [20], authors reviewed automatic test data
generation, mainly used in compiler testing,
and discussed its potential for broader software
applications. They outlined key techniques, benefits,
and limitations of using it alongside other testing
methods. In [21], researchers explored AI-based
testing, showing how machine learning and NLP
improve test case generation and validation. They
highlighted gains in efficiency and accuracy, while
noting challenges like data quality, AI bias, and
integration with CI/CD workflows.
In summary, prior studies have focused on specific
areas like AI-based automation, prioritization, or early
testing in CI/CD pipelines. However, they often lack a
unified comparison of classical and modern strategies,
as well as practical insights into tools and real-world
challenges like flaky tests and AI explainability. This
paper addresses these gaps through a side-by-side
analysis, tabular comparisons, and actionable insights
relevant to today’s development practices.
Compared to the work of Patel [14] and Pham
et al. [15] for instance, which focus on the role
of AI in testing automation, our paper provides a
broader perspective by not only covering AI-based
techniques but also integrating them with classical
methods like unit, system, and acceptance testing.
While those studies concentrate on automation and
intelligent tools, we expand the discussion to include
practical comparisons, modern challenges, and how
these methods coexist in real-world development
environments.

3 Methodology
The methodology for this survey was designed to offer
a structured and clear overview of software testing
strategies, covering both traditional techniques and
recent advancements in modern software engineering.
The aim is to explore the evolution of testing practices,
highlight current trends, and understand their impact
on software quality assurance. The survey follows a
qualitative approach, focusing on core testing concepts
and their practical relevance in different development
environments.

3.1 Scope of the Survey
This survey includes widely used software testing
techniques that are directly related to improving

49



ICCK Journal of Software Engineering

software quality. The scope covers classical methods
such as unit testing, integration testing, system testing,
and acceptance testing, along with key testing types
like black-box, white-box, and grey-box approaches.
It also considers recent trends in the field, including
AI-assisted testing, test automation, and continuous
testing practices commonly used in Agile and DevOps
environments. This focus on both classical andmodern
techniques was chosen to give a complete picture of
how software testing has changed over time, helping
readers understand both old methods and new trends
in real-world practice.

3.2 Review Approach
A variety of relevant research papers, technical
documents, and domain-relevant literature were
reviewed to gather insights into the evolution and
application of testing techniques. The focus was on
works that present practical strategies, comparative
discussions, or conceptual frameworks related to both
established and emerging testing methods. Special
attention was given to studies and discussions from
recent years to ensure that modern trends and
challenges are well represented.

3.3 Selection Criteria
The materials selected for review were chosen based
on the following criteria:
• Relevance to software testing practices, tools, or

quality assurance strategies
• Inclusion of classical or modern testing methods

with practical implications
• Clear explanation of concepts, benefits,

limitations, or comparisons
• Alignment with contemporary software

development models and needs

3.4 Analytical Approach
The reviewed content was analyzed qualitatively to
extract common testing objectives, strengths and
weaknesses of eachmethod, and their use in real-world
scenarios. Instead of relying on numerical metrics or
empirical results, the analysis focused on conceptual
clarity and practical relevance. Key techniques were
compared based on factors such as:
• Level of abstraction (e.g., unit-level vs.

system-level testing)
• Tester access to internal code or structure

• Suitability for automation
• Applicability in Agile or DevOps workflows
• Overall strengths and trade-offs

3.5 Traditional Trends in Software Testing
Before the rise of modern development models like
Agile and DevOps, software testing followed more
structured and sequential practices [22]. These
traditional testing trends laid the groundwork for
many current quality assurance strategies. This
section explores the foundational testing methods
and approaches that have been widely adopted over
the years, such as unit testing, integration testing,
system testing, and classical black-box and white-box
techniques. All the approaches to be discussed in this
section are summed up in Figure 2.

Figure 2. Some traditional software testing strategies.

3.5.1 Unit Testing
Unit testing focuses on verifying the smallest testable
components of a software system, such as functions,
methods, classes, or modules [23]. The goal is to
ensure each unit behaves as expected according to
its design and specifications. Developers typically
write and execute unit tests during the development
phase, either manually or using automation tools.
Each method or feature is tested individually to detect
and fix errors early. Common techniques in unit
testing include module interface assessment (to check
input and output consistency), validation of temporary
data structures, testing boundary conditions, covering
all independent paths, and verifying error-handling
routes to ensure the module responds properly to

50



ICCK Journal of Software Engineering

unexpected inputs or failures. Table 1 provides the
benefits and challenges of using unit testing.

3.5.2 Integration Testing
Integration testing focuses on verifying the interactions
between different software modules once they are
combined [24]. After individual units are tested, this
phase ensures that the components work together
correctly and that data flows smoothly across
interfaces. It is especially useful for detecting
communication mismatches, interface issues, and
unexpected interactions that may not surface during
unit testing. Integration testing can be carried
out using various strategies, including top-down,
bottom-up, and hybrid approaches, depending on
the system structure [25]. It also plays a key
role in validating the system’s architecture, internal
workflows, and integration with external components
or APIs. Overall, integration testing acts as a bridge
between unit testing and full system testing in the
development lifecycle. Pros and Cons of this testing
strategy are given in Table 2.

3.5.3 System Testing
System testing is a high-level testing phase where
the complete and integrated software is tested as a
whole [26]. It focuses on verifying that the system
meets its functional and non-functional requirements
as specified during the design phase. This type of
testing simulates real-world usage and checks how the
software behaves under different conditions, including
stress, performance, security, and compatibility.
System testing is typically performed by a separate
quality assurance team and not by the developers. It
helps ensure that the software behaves consistently
and reliably across various environments [27]. By
covering end-to-end scenarios, system testing provides
confidence that the product is ready for deployment
and meets both user expectations and business
objectives. Table 3 provides the benefits and challenges
for this technique.

3.5.4 Acceptance Testing
Acceptance testing is the final phase of software
testing, carried out to ensure that the developed
system meets business requirements and is ready
for deployment [28]. It is usually performed by the
end users, clients, or a testing team representing the
customer. This type of testing focuses on validating
the software from the user’s perspective, checking
whether the system performs as expected in real-world
scenarios. Acceptance testing can be formal (User
Acceptance Testing – UAT) or informal, and it may

include both functional and non-functional checks. Its
main goal is to gain confidence that the software is
complete, reliable, and usable. A successful acceptance
test signifies that the product is fit for release and
operational use [29]. Table 4 presents the pros and
cons for this strategy.

3.5.5 Black-Box Testing
Black-box testing is a software testing technique where
the internal structure or code of the system is not
known to the tester [30–32]. Instead, the focus
is on examining inputs and expected outputs to
verify whether the software behaves correctly. Testers
validate functional requirements without considering
how the functionality is implemented. This method is
widely used for system, acceptance, and regression
testing. It helps ensure that the application meets
user expectations and behaves correctly across various
inputs and user actions. Black-box testing can be
applied to all levels of testing but is most common at
the system and acceptance levels. It is especially useful
when developers and testers work independently to
avoid bias or assumptions in validation. Advantages
and disadvantages of this technique are in Table 5.

3.5.6 White-Box Testing
White-box testing, also known as structural or clear-box
testing, involves examining the internal structure,
logic, and code of a software application [33]. Unlike
black-box testing, this technique requires the tester to
have full knowledge of the source code, making it most
suitable for developers or technically skilled testers.
The goal is to test individual paths, conditions, loops,
and branches within the code to ensure they function
as expected. White-box testing is commonly applied
at the unit and integration levels, but it can also be
used to assess security, performance, and logic flaws.
It provides detailed insight into the software’s internal
workings and helps uncover hidden errors that may
not be detected through external testing alone [34].
Table 6 provides the benefits and challenges of using
white-box testing.

3.5.7 Grey-Box Testing
Grey-box testing combines elements of both black-box
and white-box testing. In this approach, testers
have partial knowledge of the system’s internal
workings—such as access to architecture diagrams,
database schemas, or high-level code logic—while
still focusing on input-output behavior [35]. This
hybridmethod is useful for validating both the internal
flow and external functionality of an application. It
enables testers to design better-informed test cases

51



ICCK Journal of Software Engineering

Table 1. Pros and Cons of Unit Testing.

Advantages Disadvantages
Promotes high-quality and well-structured code. Can be time-consuming to implement thoroughly.
Cost-effective in detecting and fixing early-stage
bugs.

Writing effective and meaningful test cases can be
challenging.

Allows isolated testing of specific components
without relying on other parts of the system.

May not detect integration-level issues since units
are tested independently.

Simplifies fault detection and reduces debugging
effort.

Integration bugs or system-level errors may go
unnoticed.

Focuses on small code segments, making the testing
process simple and targeted.

Errors made by the developer can affect the entire
system if not caught early.

Table 2. Pros and Cons of Integration Testing.

Advantages Disadvantages
Ensures that different modules or components work
together correctly.

Can be complex to manage due to dependencies
between components.

Helps identify interface mismatches and
communication issues between modules.

Test case design becomes increasingly difficult as the
number of integrated components increases.

Catches system-level issues that unit testing may
miss.

Errors in individual modules can impact the overall
test results, making fault isolation harder.

Supports early detection of architectural or data flow
problems.

Requires detailed planning and may demand
the presence of partially developed systems
(stubs/drivers).

Improves overall system reliability by validating
component interactions.

Maintenance of integration tests can be
time-consuming, especially in evolving systems.

Table 3. Pros and Cons of System Testing.

Advantages Disadvantages
Validates the complete software system against
requirements.

Requires significant time and resources to execute
fully.

Detects issues missed during unit and integration
testing.

Difficult to trace the exact source of failure in complex
systems.

Covers both functional and non-functional aspects
like performance and security. Test case design is complex due to wide scope.
Ensures system behaves correctly in real-world
conditions. Can be costly, especially for large-scale systems.
Enhances overall product quality and user
confidence. May require complex test environments and setup.

and uncover defects that are missed in pure black-box
or white-box testing. Grey-box testing is especially
beneficial in integration and system-level testing,
where understanding internal structures can improve
efficiency without needing full code access. It
balances test depth and realism, making it valuable in
complex, layered systems involving APIs, databases,
or middleware [36]. Table 7 provides the benefits and
challenges of using grey-box testing.

3.6 Modern Trends in Software Testing
In recent years, software testing has undergone a
substantial transformation due to evolving software
development practices, increasing system complexity,
and the push for rapid, high-quality releases [37].
While foundational testing strategies remain essential,
modern approaches now reflect a shift toward
automation, intelligence, and tight integration with
DevOps and AI-driven workflows. The following

52



ICCK Journal of Software Engineering

Table 4. Pros and Cons of Acceptance Testing.

Advantages Disadvantages

Validates the system from the user’s point of view. Often dependent on user availability and
cooperation.

Ensures the software meets business goals and
requirements.

May miss technical or backend issues due to user
focus.

Builds customer confidence before the product is
launched.

Users may lack technical expertise to conduct
thorough testing.

Acts as the final approval before deployment. Feedback can be subjective and vary between testers.
Helps identify usability and functionality issues in
real scenarios.

Test cases may not cover all possible edge cases or
exceptions.

Table 5. Pros and Cons of Black-Box Testing.

Advantages Disadvantages
Tests the system from the user’s perspective without
needing to understand the internal code.

Limited ability to identify internal code or logic
errors.

Useful for validating functional requirements and
user interactions.

Can miss logical errors if not all input paths are
tested.

Effective for large systems and complex user
interfaces.

Test case design relies heavily on requirements and
documentation.

Allows independent testing by non-developers. Difficult to trace the cause of failure due to lack of
internal visibility.

Encourages unbiased testing since implementation
details are hidden.

Inefficient for testing edge cases or internal
boundaries.

Table 6. Pros and Cons of White-Box Testing.

Advantages Disadvantages
Offers in-depth testing by covering internal logic and
control structures.

Requires detailed knowledge of the source code,
limiting who can perform it.

Helps detect hidden errors, unreachable code, and
security vulnerabilities.

Not suitable for validating user-facing features or UI
behavior.

Supports high test coverage with path, loop, and
condition testing.

Time-consuming, especially for large and complex
codebases.

Aids in code optimization and improving overall
code quality.

Maintenance becomes harder if code changes
frequently.

Useful for early-stage testing, especially during
development.

May miss integration or system-level issues not
visible at code level.

sub-sections discuss the key trends that have shaped
the software testing landscape. These trends are
summed up in Figure 3.

3.6.1 AI-Augmented Testing
AI-augmented testing refers to the integration of
artificial intelligence techniques—such as machine
learning, natural language processing, and pattern
recognition—into the software testing process [38–
40]. Unlike traditional automation, which depends
on static, human-written test scripts, AI-powered

tools are capable of learning from data, adapting to
application changes, and making predictions about
potential problem areas. These tools can analyze
source code, user stories, or even documentation
written in natural language to automatically generate
relevant test cases. They can also detect changes
in the user interface and autonomously update or
"self-heal" test scripts, reducing manual intervention.
Intelligent visual testing is another powerful feature
of AI-driven tools, enabling them to identify layout

53



ICCK Journal of Software Engineering

Table 7. Pros and Cons of Grey-Box Testing.

Advantages Disadvantages
Combines the strengths of both black-box and
white-box testing.

Partial knowledge may still limit full code-level
analysis.

Allows more accurate and focused test case design. Requires testers with both technical and functional
knowledge.

Helps detect issues in data flow, integration points,
and internal processes.

May not fully explore deep logic errors without full
code access.

Suitable for testing layered systems like web apps,
APIs, and databases.

Defining boundaries between what’s tested
externally vs. internally can be tricky.

Increases test coverage without requiring full
developer-level access.

Can become complex in large systems with many
interdependencies.

Figure 3. Modern software testing strategies discussed in
this study.

issues that might otherwise go unnoticed. Platforms
such as Testim, Applitools, and Functionize are already
implementing these capabilities in real-world QA
environments.

Benefits and Challenges AI-augmented testing
brings several advantages that enhance the speed,
accuracy, and adaptability of software testing. It
reduces manual effort by generating and maintaining
test cases automatically, increases test coverage by
exploring diverse inputs, and supports continuous
testing in fast-paced development cycles. AI tools can
detect UI changes and self-heal test scripts, improving
test stability, while intelligent visual testing helps
identify subtle layout issues. Additionally, AI’s ability
to learn from past defects enables early bug detection.
However, challenges remain. AI-generated results can
be difficult to interpret, especially in high-risk systems

where transparency is critical. Trust in AI decisions is
still developing, and the quality of outcomes depends
heavily on the data used to train the models. Issues
like overfitting, false positives, and poor generalization
to new environments require human oversight and
careful tuning to ensure consistent and reliable testing
performance.

3.6.2 Continuous Testing in DevOps Pipelines
Continuous testing is a modern testing approach
designed to support Agile and DevOps workflows
[41]. It involves running automated tests consistently
throughout the entire software development lifecycle,
especially within CI/CD (Continuous Integration and
Continuous Delivery) pipelines. Instead of waiting
until the end of development to test, continuous testing
integrates quality checks at every stage—from code
commit to deployment. This ensures that defects
are caught early, feedback is provided quickly, and
code remains production-ready at all times. Common
tools like Jenkins, GitLab CI, GitHub Actions, and
CircleCI help trigger andmanage automated test suites,
including unit, integration, and end-to-end tests, every
time new code is added. As a result, development
teams can identify and resolve issues before they reach
production, maintain higher software quality, and
deliver updates more reliably and efficiently.

Benefits and Challenges Continuous testing offers
several important advantages. It accelerates the
feedback cycle, reduces post-deployment failures,
and increases the speed of software delivery. By
testing every code change automatically, it minimizes
risks and ensures consistent software quality. This
approach also encourages better collaboration among
developers, testers, and operations teams, who
now share responsibility for quality. Moreover,
it supports faster decision-making and improves

54



ICCK Journal of Software Engineering

confidence in each build before release. Despite its
strengths, continuous testing brings specific challenges.
Managing test data and maintaining stable test
environments can be difficult, especially in systems
with many services or configurations [42]. Flaky tests
that pass or fail unpredictably may reduce trust in
test results. Additionally, achieving a balance between
test coverage and pipeline performance requires
careful optimization. Poorly designed tests or long
execution times can slow down development. Still,
when implemented thoughtfully, continuous testing
is essential for achieving both speed and reliability in
modern software delivery.

3.6.3 Shift-Left and Shift-Right Testing
Shift-left and shift-right testing are two complementary
strategies used to improve software quality across the
development lifecycle [43]. Shift-left testing moves
testing earlier in the process during planning, design,
and coding. Techniques like Test-Driven Development
(TDD) and Behavior-Driven Development (BDD) help
developers write tests early, detect bugs sooner, and
produce cleaner, more reliable code. This approach
encourages collaboration and helps reduce the cost
and effort of fixing issues later. Shift-right testing
takes place after deployment, using real-world data to
monitor performance and user behavior. Methods like
A/B testing, canary releases, and chaos engineering
help teams identify problems in production and
fine-tune future releases. Together, these approaches
ensure that quality is built in early and continuously
validated in real use.
Benefits and Challenges Shift-left testing reduces
development delays by catching bugs early and
improving code quality. It promotes collaboration
between developers and testers and aligns testing
with requirements. Shift-right testing adds real-time
insights, helping teams detect unexpected issues in
production and refine user experience. Challenges
exist for both. Shift-left requires teams to adopt
early testing habits and automation tools. Shift-right
depends on strong monitoring and safe release
practices. Implementing both effectively takes
coordination and maturity, but together they lead to
better, faster, and more resilient software.

3.6.4 Testing in Cloud-Native and Microservices
Architectures

Cloud-native development and microservices
architecture have reshaped how modern software
is built and tested. Unlike traditional monolithic
applications, microservices split functionality into

small, independent services that interact through
APIs. This design improves scalability and agility
but introduces new testing challenges due to
the distributed, dynamic nature of such systems.
Testing must now cover not only individual services
but also how they work together [44]. Unit and
integration tests remain important but are not enough.
Microservices need to be tested both in isolation and
in combination with others. Contract testing helps
verify communication between services even when
they’re developed separately. Tools like Pact and
service virtualization make this possible by simulating
dependencies. Since cloud-native applications
run in containers using platforms like Docker and
Kubernetes, test environments must closely match
production settings to ensure realistic and reliable
testing outcomes.

Benefits and Challenges Testing in cloud-native
systems improves fault detection, speeds up feedback,
and supports scalable development. Cloud platforms
also offer tools for automation, monitoring, and
load testing. However, coordinating tests across
many services is difficult, especially with different
teams or technologies. Managing test data, handling
service versions, and debugging across distributed
components are ongoing challenges. Still, with
the right strategies, testing in microservices and
cloud environments ensures better performance and
reliability.

3.6.5 Large-Scale Test Automation
Large-scale test automation has become essential in
modern software development, especially with the
rise of faster release cycles and growing codebases. It
involves using automation tools to execute tests—such
as unit, integration, functional, and performance
tests—across various environments without manual
input. Unlike traditional manual testing, which is
slow and prone to human error, large-scale automation
allows teams to run thousands of tests in parallel
within CI/CD pipelines [45]. This ensures quick
feedback, reduced regression time, and better software
stability. Tools like Selenium, Cypress, Playwright,
Postman, and JMeter have made it easier to automate
bothUI and backend testing. Cloud integration further
enhances scalability by allowing tests to run on virtual
environments and containers, making automation
more accessible and efficient.

Benefits and Challenges Test automation at scale
improves productivity, enables faster releases,
and increases test coverage [46]. It supports

55



ICCK Journal of Software Engineering

early bug detection and maintains quality, even
as systems grow more complex. Tools with
low-code or record-and-playback features also allow
non-developers to contribute, making automation
more inclusive. However, maintaining stable test
scripts is challenging, especially with frequent UI
changes or data issues. Managing large test suites,
version compatibility, and execution time requires
careful planning. Automation may also miss usability
flaws or creative bugs that require human insight.
Without test optimization or proper monitoring, build
times can slow down instead of speeding up. Still,
when applied thoughtfully, large-scale automation
becomes a key driver of agile success, continuous
testing, and long-term software reliability.

4 Comparison and Discussion
This section discusses and compares the different
software testing techniques explored in the paper.
It reflects on both traditional and modern methods,
highlighting how each one fits into today’s software
development practices. By examining key aspects such
as test coverage, ease of automation, technical skills
required, and how well each method works in real
projects, we can better understand their strengths and
limitations. Traditional techniques like unit testing,
integration testing, and black-box testing have long
been essential in software quality assurance. They
are well-suited for structured environments and help
ensure that each part of the system works correctly.
These methods are clear, reliable, and often easier
to apply when the system is stable and predictable.
However, in fast-moving projects where software is
released frequently, these traditional methods can fall
short, especially when it comes to speed, scalability,
and handling change.
Modern testing trends—such as AI-augmented testing,
shift-left and shift-right practices, continuous testing
in DevOps, and large-scale test automation—help
fill these gaps. They are designed to support rapid
development and constant feedback. For example, AI
tools can create and update test cases automatically,
while continuous testing checks the system at every
stage of development. These practices are highly
useful in agile, cloud-based, and distributed systems
where fast feedback and real-time quality checks are
critical. Still, modern techniques come with their
own challenges. Setting up large-scale automation
or AI-powered testing often requires more time,
better tools, and experienced testers. Tests may fail
due to minor changes in the system or unstable

environments. Similarly, shift-right testing—done
after release—needs strong monitoring and the ability
to safely test in production. Without proper planning,
these advanced methods can become difficult to
manage and may slow down development instead of
helping it. Table 8 presents the comparative overview
of all the discussed strategies. Table 9 highlights the
major differences between traditional and modern
testing strategies.
One clear takeaway is that no single testing method
works best for all situations. Traditional methods
are dependable and straightforward, while modern
techniques offer flexibility, speed, and deeper insights.
The most effective approach is usually a combination
of both. By using classical testing for stability and
structure, and modern testing for agility and coverage,
teams can build a more complete and reliable testing
process. In practice, this means applying the right
mix based on the project’s goals, team skills, and
system complexity. Combining unit and integration
tests with automation, AI, and post-release monitoring
can lead to better results. However, this also requires
good coordination between developers, testers, and
operations teams, as well as the right tools and
planning. In conclusion, testing is no longer a one-time
step in development—it is a continuous activity that
must evolve with the software itself. The reported
automation levels, scalability ratings, and tool support
shown in our comparison tables help practitioners
assess how feasible or impactful each technique is
in real-world settings. High automation support,
for instance, implies faster feedback and reduced
manual workload, while scalability reflects how well
a method handles growing system complexity. By
understanding when and how to apply each method,
teams can deliver higher-quality products, reduce
risks, and keep up with the demands of modern
software development.
To highlight how this survey contributes beyond
existing studies, Table 10 has been added below. It
contrasts this work with selected recent papers that
focus on specific areas of software testing. Unlike
prior studies that concentrate solely on modern trends
or classical methods, this survey provides a broader
perspective. The comparison also considers tool
insights, structure, and practical value.

4.1 Impact of Testing Strategies on Software Quality
Assurance

Software Quality Assurance (SQA) is essential for
ensuring that software meets expected standards in

56



ICCK Journal of Software Engineering

Table 8. Comparative Overview of Classical and Modern Software Testing Strategies Across Key Evaluation Criteria.

Strategy Level of
Testing Test Focus Automation

Support Scalability Primary Benefits Key Challenges Common
Tools

Unit Testing Unit Code logic High High
Early bug
detection,
supports TDD

Limited to
isolated code,
may miss
integration
issues

JUnit,
NUnit,
PyTest,
GoogleTest

Integration
Testing Integration Module

interaction Medium Medium
Verifies data flow
and component
interaction

Complex
debugging,
relies on stable
components

TestNG,
Postman,
SoapUI

System
Testing System Full system

behavior Medium High
Validates
overall system
functionality

Time-consuming,
may miss
lower-level
errors

Selenium,
Katalon,
TestComplete

Acceptance
Testing Acceptance

Business
requirements,
usability

Low Medium
Ensures product
meets user
expectations

Subjective
feedback, late
discovery of
critical issues

Cucumber,
Zephyr,
FitNesse

Black-Box
Testing All levels Functional

behavior Medium High
Tests from user’s
perspective,
requires no code
knowledge

Misses internal
logic errors, may
need large test
sets

TestLink,
Selenium,
Postman

White-Box
Testing

Unit
/System

Internal code
paths High Medium

High code
coverage, logical
validation

Requires code
access, less
user-focused

JaCoCo,
JUnit,
PyTest

Grey-Box
Testing

Integration
/System

Partial logic
+ behavior Medium Medium

Balanced view
of logic and
behavior

Limited access
to internals,
relies on design
artifacts

Selenium,
SoapUI

AI-Augmented
Testing

UI /API
/System

Predictive
test
generation,
visuals

High High
Intelligent test
generation,
adaptive scripts

Requires
quality data,
explainability
limitations

Applitools,
Testim,
Mabl

Continuous
Testing
(DevOps)

All stages
End-to-end,
regression,
feedback

High High
Real-time
defect detection,
integrates with CI
/CD

Environment
stability, flaky
tests

Jenkins,
GitHub
Actions,
GitLab CI

Shift-Left
Testing

Unit
/Integration

Early-phase
logic,
requirement
validation

High High
Prevents early
defects, improves
design alignment

Requires cultural
shift and technical
setup

Cucumber,
SonarQube,
ESLint

Shift-Right
Testing Production

Performance,
monitoring,
feedback

Medium High

Captures
real-world
behavior,
validates user
experience

Needs
observability,
may expose users
to failures

New Relic,
Dynatrace,
Gremlin

Cloud-Native
&
Microservices
Testing

Integration
/System

Service
communication,
scaling

High High

Simulates
real-world
deployment,
supports fault
isolation

Complex setup,
inter-service
dependencies

Docker,
Pact,
Kubernetes

Large-Scale
Test
Automation

All levels Broad test
coverage High High

Fast feedback
loops, reduced
regression effort

Maintenance
burden, brittle
scripts

Selenium,
Cypress,
Playwright,
Robot
Framework

57



ICCK Journal of Software Engineering

Table 9. Comparative Summary of Foundational Differences Between Classical and Modern Software Testing Approaches.

Aspect Classical Testing Strategies Modern Testing Strategies
Testing
Philosophy Sequential and phase-based Integrated, continuous, and iterative
Development
Model Alignment Waterfall, V-Model, structured SDLC Agile, DevOps, CI/CD

Focus Area Functional correctness, requirement
validation

Speed, adaptability, automation, real-time
feedback

Timing of Testing Mid to late development phase Throughout the lifecycle (early and
post-deployment)

Manual vs.
Automated Mostly manual or semi-automated Heavily automated using smart tools

Tester Role Dedicated QA professionals Developers, testers, and DevOps
engineers share responsibility

Tool Dependence Mature but often standalone tools Integrated toolchains and cloud-native
platforms

Environment Static test environments Dynamic, containerized, and cloud-based
environments

Scalability Limited scalability in large systems High scalability for distributed and
large-scale systems

Test Coverage Focused on defined features and paths Broader scope including edge cases,
behavioral patterns, user experience

Test Feedback
Speed Slower feedback cycles Fast and continuous feedback
Flexibility Less adaptable to changing requirements Highly flexible and responsive to change
Example
Techniques

Unit testing, Integration testing, System
testing, Acceptance testing

AI-Augmented testing, Continuous
testing, Shift-left/right, Cloud-native

Challenges Late defect detection, manual overhead,
slower release cycles

Tool complexity, flaky tests, reliance on
automation, learning curve

Overall Objective Validate functionality and requirement
compliance

Ensure rapid, reliable, and resilient
delivery at scale

functionality, performance, reliability, security, and
user satisfaction [45]. Testing plays a central role
in SQA by identifying bugs, weaknesses, and risks
that could affect the final product. Classical testing
strategies—such as unit, integration, system, and
acceptance testing—provide a structured approach
to verify software components at different levels and
are particularly valuable in long-term or safety-critical
projects. However, they are typically applied later
in the development cycle, which can lead to delays
and higher costs if issues are discovered late. In
contrast, modern testing strategies like continuous
testing, AI-augmented testing, shift-left, and shift-right
approaches emphasize early, frequent, and automated
testing, enabling faster feedback, better scalability,
and improved user experience. These methods also
support real-time monitoring, usability improvements,
and early risk detection. Still, modern practices

face challenges such as test maintenance, flaky
test behavior, trust in AI decisions, and managing
complex environments. In practice, many teams
adopt a hybrid approach—starting with classical
tests and incorporating automation, monitoring, and
user feedback—to maintain quality across the entire
software lifecycle. Ultimately, selecting the rightmix of
testing strategies is crucial for building reliable, secure,
and adaptable software that meets evolving user and
business needs.

4.2 Challenges and Future Directions
Despite advancements in software testing, several
challenges continue to impact modern development.
Automated test maintenance is a major concern,
as frequent UI or code changes often break
scripts—especially in continuous testing setups.
Test data management is also complex, particularly in

58



ICCK Journal of Software Engineering

Table 10. Comparison of this survey with selected prior works.

Study Focus Area
Classical
Techniques
Covered

Modern
Testing
Trends
Covered

Tool/Practical
Insights

Comparative
Discussion Unique Contribution

[14] AI in Software
Testing No Yes Partial No

Focus on AI-based
testing tools and
methods

[15] CI/CD + Test
Automation No Yes Yes No Explores continuous

testing and pipelines
[16] Deep Learning

Test Coverage No Yes No No Introduces test
diversity metric

[19] Classical Testing
Overview Yes No No No

Describes
foundational testing
only

This
Survey

Classical +
Modern Testing Yes Yes Yes Yes

Unified, structured
view with practical
tools

distributed and cloud-native systems where services
must stay synchronized. Flaky tests reduce trust
in results and complicate debugging. AI-driven
testing introduces power but also risk, as many
tools lack transparency and rely on high-quality
training data. Additionally, the growing need for
strong technical skills in testing creates barriers for
non-expert QA professionals. These issues can slow
down development and compromise software quality
if not properly addressed.
To address these challenges, the future of testing
should focus on smarter, more adaptable solutions.
Tools powered by explainable AI would increase trust
and accountability, particularly in regulated domains.
Advancing self-healing test scripts and automated
data generation can reduce manual effort and improve
test reliability. Testing in production—using feature
flags, canary releases, and real-time monitoring—can
help teams gather valuable feedback from real usage.
Low-code and no-code platforms should be expanded
to make automation accessible to a wider range of
users. Moving forward, ethical and inclusive testing
practices, combined with closer collaboration among
developers, testers, and researchers, will be essential
to building reliable and resilient software systems.

5 Conclusion
Software testing remains a critical part of software
engineering, playing a central role in ensuring that
software is functional, reliable, secure, and aligned
with user needs. This paper has presented a

comprehensive survey of classical and modern testing
strategies, comparing their principles, applications,
strengths, and limitations. Classical approaches—such
as unit testing, integration testing, system testing,
and acceptance testing—continue to provide a strong
foundation for structured quality assurance. At the
same time, modern trends like AI-augmented testing,
continuous testing in DevOps pipelines, shift-left
and shift-right practices, and cloud-native testing
have introduced more dynamic and scalable solutions.
While modern methods offer clear benefits, they
also come with challenges such as flaky tests, tool
complexity, the need for technical upskilling, and
concerns over AI explainability. Nevertheless, the
integration of classical discipline with modern agility
presents a promising path forward. A hybrid testing
approach—tailored to the project’s size, architecture,
and team expertise—can help organizations build
more robust, maintainable, and user-friendly software.
In conclusion, testing is no longer a standalone phase
but an ongoing process that supports software quality
across every stage of development anddeployment. As
technologies continue to evolve, testing strategies must
also adapt automation, intelligence, and user feedback.

The comparative framework in this study offers
clear and organized insights into both traditional
and modern testing techniques. It helps readers
understand how different approaches apply in
real-world development. One of its strengths is
balancing well-known practices with newer trends
in a practical way. However, since the study is

59



ICCK Journal of Software Engineering

based on literature, it doesn’t include hands-on
experiments or tool-based testing results. This
means real-life outcomes might differ based on the
specific tools, teams, or environments used. Future
work could explore these strategies through case
studies or practical implementation to strengthen the
findings. Future work could also focus on making
testing smarter, more transparent, and more inclusive,
enabling teams to deliver high-quality software that
meets the needs of both businesses and users.

Data Availability Statement
Data will be made available on request.

Funding
This work was supported without any funding.

Conflicts of Interest
The authors declare no conflicts of interest.

Ethical Approval and Consent to Participate
Not applicable.

References
[1] Kumar, S. (2023). Reviewing software testing models

and optimization techniques: an analysis of efficiency
and advancement needs. Journal of Computers,
Mechanical and Management, 2(1), 32-46. [Crossref]

[2] Pargaonkar, S. (2023). A study on the benefits
and limitations of software testing principles and
techniques: software quality engineering. [Crossref]

[3] Khaliq, Z., Farooq, S. U., & Khan, D. A. (2022).
Artificial intelligence in software testing: Impact,
problems, challenges and prospect. arXiv preprint
arXiv:2201.05371. [Crossref]

[4] Nama, P., Bhoyar, M., & Chinta, S. (2024).
Autonomous test oracles: integrating ai for intelligent
decision-making in automated software testing.Well
Testing Journal, 33(S2), 326-353.

[5] Hunko, I. (2025). Adaptive Approaches to Software
Testing with Embedded Artificial Intelligence in
Dynamic Environments. International Journal of Current
Science Research and Review, 8(05). [Crossref]

[6] Najihi, S., Elhadi, S., Ait Abdelouahid, R., &
Marzak, A. (2022). Software Testing from an Agile
and Traditional view. Procedia Computer Science, 203,
775-782. [Crossref]

[7] Formica, F., Fan, T., &Menghi, C. (2023). Search-based
software testing driven by automatically generated
and manually defined fitness functions. ACM
Transactions on Software Engineering and Methodology,
33(2), 1-37. [Crossref]

[8] Delgado-Pérez, P., Medina-Bulo, I., Álvarez-García,
M. Á., & Valle-Gómez, K. J. (2021, May). Mutation
testing and self/peer assessment: analyzing their
effect on students in a software testing course. In 2021
IEEE/ACM 43rd International Conference on Software
Engineering: Software Engineering Education and
Training (ICSE-SEET) (pp. 231-240). IEEE. [Crossref]

[9] Eisty, N. U., Kanewala, U., & Carver, J. C. (2025).
Testing research software: an in-depth survey of
practices, methods, and tools. Empirical Software
Engineering, 30(3), 81. [Crossref]

[10] Krafft, T. D., Hauer, M. P., & Zweig, K. (2024).
Black-Box Testing and Auditing of Bias in ADM
Systems. Minds and Machines, 34(2), 15. [Crossref]

[11] Adu, G. (2024). Artificial Intelligence in Software Testing:
Test scenario and case generation with an AI model
(gpt-3.5-turbo) using Prompt engineering, Fine-tuning
and Retrieval augmented generation techniques (Master’s
thesis, Itä-Suomen yliopisto).

[12] Vaddadi, S. A., Thatikonda, R., Padthe, A., &Arnepalli,
P. R. R. (2023). Shift left testing paradigm process
implementation for quality of software based on fuzzy.
Soft Computing, 1-13. [Crossref]

[13] Dadwal, A., Washizaki, H., Fukazawa, Y., Iida, T.,
Mizoguchi, M., & Yoshimura, K. (2018). Prioritization
in Automotive Software Testing: Systematic Literature
Review. QuASoQ@ APSEC, 52-58.

[14] Patel, J. S. (2025). AI-Driven Test Automation:
Transforming Software Quality Engineering. Journal of
Computer Science and Technology Studies, 7(2), 339-347.
[Crossref]

[15] Pham, P., Nguyen, V., & Nguyen, T. (2022, October).
A review of ai-augmented end-to-end test automation
tools. In Proceedings of the 37th IEEE/ACM International
Conference on Automated Software Engineering (pp. 1-4).
[Crossref]

[16] Aghababaeyan, Z., Abdellatif, M., Briand, L., &
Bagherzadeh, M. (2023). Black-box testing of deep
neural networks through test case diversity. IEEE
Transactions on Software Engineering, 49(5), 3182-3204.
[Crossref]

[17] Hourani, H., Hammad, A., & Lafi, M. (2019, April).
The impact of artificial intelligence on software testing.
In 2019 IEEE Jordan International Joint Conference
on Electrical Engineering and Information Technology
(JEEIT) (pp. 565-570). IEEE. [Crossref]

[18] Kulkarni, N. (2020). Automated testing as part
of CI/CD pipeline-shift left implementation. North
American Journal of Engineering Research, 1(3).

[19] Anwar, N., & Kar, S. (2019). Review paper on various
software testing techniques & strategies. Global Journal
of Computer Science and Technology, 19(2), 43-49.

[20] Burgess, C. J. (2025). Software testing using an
automatic generator of test data.WIT Transactions on
Information and Communication Technologies, 4.

60

 10.57159/gadl.jcmm.2.1.23041.
https://doi.org/10.31219/osf.io/5847q
https://doi.org/10.48550/arXiv.2201.05371
https://doi.org/10.1016/j.procs.2022.07.116
https://doi.org/10.1145/3624745
10.1109/ICSE-SEET52601.2021.00033
https://doi.org/10.1007/s10664-025-10620-6
https://doi.org/10.1007/s11023-024-09666-0
https://doi.org/10.1007/s00500-023-08741-5
https://doi.org/10.32996/jcsts.2025.7.2.35
https://doi.org/10.1145/3551349.3563240
10.1109/TSE.2023.3243522
10.1109/JEEIT.2019.8717439


ICCK Journal of Software Engineering

[21] Baqar, M., & Khanda, R. (2025, June). The Future of
Software Testing: AI–Powered Test Case Generation
and Validation. In Intelligent Computing-Proceedings
of the Computing Conference (pp. 276-300). Cham:
Springer Nature Switzerland. [Crossref]

[22] Andriadi, K., Soeparno, H., Gaol, F. L., & Arifin,
Y. (2023, August). The impact of shift-left testing
to software quality in agile methodology: A case
study. In 2023 International Conference on Information
Management and Technology (ICIMTech) (pp. 259-264).
IEEE. [Crossref]

[23] Gurcan, F., Dalveren, G. G. M., Cagiltay, N. E., Roman,
D., & Soylu, A. (2022). Evolution of software testing
strategies and trends: Semantic content analysis of
software research corpus of the last 40 years. IEEE
Access, 10, 106093-106109. [Crossref]

[24] Jalil, S., Rafi, S., LaToza, T. D., Moran, K., & Lam, W.
(2023, April). Chatgpt and software testing education:
Promises & perils. In 2023 IEEE international conference
on software testing, verification and validation workshops
(ICSTW) (pp. 4130-4137). IEEE. [Crossref]

[25] Raksawat, C., & Charoenporn, P. (2021). Software
testing system development based on ISO 29119.
Journal of Advances in Information Technology, 12(2),
128-134.

[26] Arcuri, A., Zhang, M., Golmohammadi, A., Belhadi,
A., Galeotti, J. P., Marculescu, B., & Seran, S. (2023,
April). Emb: A curated corpus of web/enterprise
applications and library support for software testing
research. In 2023 IEEE Conference on Software Testing,
Verification and Validation (ICST) (pp. 433-442). IEEE.
[Crossref]

[27] AbuSalim, S. W., Ibrahim, R., & Wahab, J. A. (2021,
February). Comparative analysis of software testing
techniques for mobile applications. In Journal of
Physics: Conference Series (Vol. 1793, No. 1, p. 012036).
IOP Publishing. [Crossref]

[28] Kassaymeh, S., Abdullah, S., Alweshah, M., &
Hammouri, A. I. (2021, October). A hybrid salp swarm
algorithm with artificial neural network model for
predicting the team size required for software testing
phase. In 2021 International Conference on Electrical
Engineering and Informatics (ICEEI) (pp. 1-6). IEEE.
[Crossref]

[29] Palani, N. (2021). Automated Software Testing with
Cypress. Auerbach Publications. [Crossref]

[30] Bajjouk, M., Rana, M. E., Ramachandiran, C. R., &
Chelliah, S. (2021). Software testing for reliability and
quality improvement. Journal of Applied Technology and
Innovation, 5(2), 40-46.

[31] Verma, A. S., Choudhary, A., & Tiwari, S. (2023).
Software test case generation tools and techniques:
A review. International Journal of Mathematical,
Engineering and Management Sciences, 8(2), 293.
[Crossref]

[32] Bernardo, S., Orviz, P., David, M., Gomes, J., Arce, D.,

Naranjo, D., ... & Pina, J. (2024). Software Quality
Assurance as a Service: Encompassing the quality
assessment of software and services. Future Generation
Computer Systems, 156, 254-268. [Crossref]

[33] Atoum, I., Baklizi, M. K., Alsmadi, I., Otoom, A.
A., Alhersh, T., Ababneh, J., ... & Alshahrani, S. M.
(2021). Challenges of software requirements quality
assurance and validation: A systematic literature
review. IEEE Access, 9, 137613-137634. [Crossref]

[34] Pysmennyi, I., Kyslyi, R., & Kleshch, K. (2025).
AI-driven tools in modern software quality assurance:
an assessment of benefits, challenges, and future
directions. arXiv preprint arXiv:2506.16586.

[35] Forgács, I., & Kovács, A. (2024).Modern software testing
techniques. Apress. [Crossref]

[36] Pargaonkar, S. (2023). Advancements in Modern
Computer Technology and Their Influence on
Software Testing Practices: A Comprehensive Review.
Beyond Silicon: Advancements and Trends in Modern
Computer Technology, 221-237.

[37] Júnior, M. C., Amalfitano, D., Garcés, L., Fasolino, A.
R., Andrade, S. A., & Delamaro, M. (2022). Dynamic
testing techniques of non-functional requirements
in mobile apps: A systematic mapping study. ACM
Computing Surveys (CSUR), 54(10s), 1-38. [Crossref]

[38] Valle-Gómez, K. J., García-Domínguez, A.,
Delgado-Pérez, P., & Medina-Bulo, I. (2022).
Mutation-inspired symbolic execution for software
testing. IET Software, 16(5), 478-492. [Crossref]

[39] Boukhlif, M., Kharmoum, N., & Hanine, M. (2024,
April). Llms for intelligent software testing: a
comparative study. In Proceedings of the 7th International
Conference on Networking, Intelligent Systems and
Security (pp. 1-8). [Crossref]

[40] Witte, F. (2022). Strategy, Planning and Organization
of Test Processes.Wiesbaden: Springer. DOI, 10, 978-3.
[Crossref]

[41] Ali, S., & Yue, T. (2023, May). Quantum software
testing: A brief introduction. In 2023 IEEE/ACM
45th International Conference on Software Engineering:
Companion Proceedings (ICSE-Companion) (pp.
332-333). IEEE. [Crossref]

[42] Bhanushali, A. (2023). Ensuring Software Quality
Through Effective Quality Assurance Testing: Best
Practices and Case Studies. International Journal of
Advances in Scientific Research and Engineering, 26(1),
1-18.

[43] Ahammad, A., El Bajta, M., & Radgui, M. (2024,
October). Automated Software Testing UsingMachine
Learning: A Systematic Mapping Study. In 2024 10th
International Conference on Optimization and Applications
(ICOA) (pp. 1-6). IEEE. [Crossref]

[44] Pecorelli, F., Catolino, G., Ferrucci, F., De Lucia, A.,
& Palomba, F. (2022). Software testing and android
applications: a large-scale empirical study. Empirical
Software Engineering, 27(2), 31. [Crossref]

61

https://doi.org/10.1007/978-3-031-92605-1_18
10.1109/ICIMTech59029.2023.10277919
10.1109/ACCESS.2022.3211949
10.1109/ICSTW58534.2023.00078
10.1109/ICST57152.2023.00047
10.1109/ICEEI52609.2021.9611128
https://doi.org/10.1201/9781003145110
https://doi.org/10.33889/IJMEMS.2023.8.2.018
https://doi.org/10.1016/j.future.2024.03.024
10.1109/ACCESS.2021.3117989
https://doi.org/10.1007/978-1-4842-9893-0
https://doi.org/10.1145/3507903
https://doi.org/10.1049/sfw2.12063
https://doi.org/10.1145/3659677.3659749
https://doi.org/10.1007/978-3-658-36981-1
10.1109/ICSE-Companion58688.2023.00093
10.1109/ICOA62581.2024.10754031
https://doi.org/10.1007/s10664-021-10059-5


ICCK Journal of Software Engineering

[45] Jha, P., Sahu, M., Bisoy, S. K., Pati, B., & Panigrahi,
C. R. (2022, December). Application of Machine
Learning in Software Testing of Healthcare Domain.
In International Conference on Advanced Computing and
Intelligent Engineering (pp. 63-73). Singapore: Springer
Nature Singapore. [Crossref]

[46] Kaluarachchi, P. L., Wadasinghe, D. V., Ranaweera,
E. T. M., Weerasooriya, W. M. S., De Silva, D. I., &
Amarasinghe, J. V. A. A Comparative Analysis of Unit
Testing and Integration Testing Based on Adding a
New Feature in an E-commerce Application.

Samia Akhtar received her M.S. degree in
Computer Science from the Virtual University
of Pakistan, Lahore, Pakistan, in 2025. (Email:
samiaakhtar9898@gmail.com)

62

https://doi.org/10.1007/978-981-99-5015-7_6

	Introduction
	Related Work
	Methodology
	Scope of the Survey
	Review Approach
	Selection Criteria
	Analytical Approach
	Traditional Trends in Software Testing
	Unit Testing
	Integration Testing
	System Testing
	Acceptance Testing
	Black-Box Testing
	White-Box Testing
	Grey-Box Testing

	Modern Trends in Software Testing
	AI-Augmented Testing
	Continuous Testing in DevOps Pipelines
	Shift-Left and Shift-Right Testing
	Testing in Cloud-Native and Microservices Architectures
	Large-Scale Test Automation


	Comparison and Discussion
	Impact of Testing Strategies on Software Quality Assurance
	Challenges and Future Directions

	Conclusion
	Samia Akhtar


