ICJK

ICCK Journal of Software Engineering
http:/dx.doi.org/10.62762/JSE.2025.729568

RESEARCH ARTICLE

Check for
updates

Secure Software Engineering for Industrial IoT:
Integrating Threat Modeling into the Development

Lifecycle

Misbah Ali®"", Haroon Arif®?, Aamir Raza®® and Moomna Nazir®*

! Department of Computer Science, COMSATS University Islamabad (CUI), Sahiwal Campus, Sahiwal 57000, Pakistan
2Department of Computer Science, Illinois Institute of Technology, Chicago, IL 60616, United States
3 Department of Information Technology and Management, Illinois Institute of Technology, Chicago, IL 60616, United

States

4 Department of Computer Science, Government Postgraduate College for Women, Sahiwal 57040, Pakistan

Abstract
The Industrial Internet of Things (IIoT) is central
to smart manufacturing, enabling real-time

automation, data exchange, and system intelligence.

However, the convergence of cyber-physical
systems with legacy software and heterogeneous
architectures introduces significant security
challenges. This paper explores how software
engineering principles can be strategically
employed to enhance IloT security by integrating

threat modeling into the development lifecycle.

In this study, we review classic models such as
STRIDE, DREAD, and STPA-Sec, and evaluate
their effectiveness when applied at various phases
of the Secure Software Development Life Cycle
(SSDLC). STRIDE focuses on classifying security
threats, DREAD helps score the severity of risks,
and STPA-Sec provides a safety-oriented approach
to identifying unsafe control actions in IIoT

Submitted: 11 July 2025
Accepted: 26 August 2025
Published: 24 October 2025

Vol. 1, No. 2, 2025.
4.10.62762/JSE.2025.729568

*Corresponding author:
Misbah Ali
talktomisbah.ali@gmail.com

environments. Additionally, we propose a secure
development process to embed continuous security
assurance during IIoT software deployment. This
research highlights design-driven security patterns,
model-driven engineering strategies, and secure
API development best practices. This paper aims
to support developers and architects in designing
scalable and threat-aware IIoT systems through
the alignment of software engineering with
IloT-specific threat vectors.

Keywords: industrial I0T, software engineering, threat
modeling, secure software development lifecycle (SSDLC).

1 Introduction

The Industrial Internet of Things (IloI') is becoming
central to industrial operations. It links various devices
including smart sensors, actuators, and machinery
for process automation, reduction of human effort,
and support for intelligent decision-making. IIoT is
fundamental to Industry 4.0 as it enables real-time
data collection, data-driven maintenance, and adds to

Citation

Ali, M., Arif, H., Raza, A., & Nazir, M. (2025). Secure Software
Engineering for Industrial loT: Integrating Threat Modeling into the
Development Lifecycle. ICCK Journal of Software Engineering, 1(2),
63-74.

© 2025 by the Authors. Published by Institute of
Central Computation and Knowledge. This is an open
access article under the CC BY license (https://creati
vecommons.org/licenses/by/4.0/).

63

http://dx.doi.org/10.62762/JSE.2025.729568
http://crossmark.crossref.org/dialog/?doi=10.62762/JSE.2025.729568&domain=pdf
https://orcid.org/0009-0004-0152-150X
https://orcid.org/0009-0003-5674-7752
https://orcid.org/0009-0003-7381-9906
https://orcid.org/0009-0006-2903-4230
http://dx.doi.org/10.62762/JSE.2025.729568
mailto:talktomisbah.ali@gmail.com
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

ICCK Journal of Software Engineering

ICJK

=

Cloud

o

Dashboard

Decision-Making

Smart Sesors
and Actuators

L 4

Real-time data

Edge Devices J
(MQTT, OPC-UA)

& e

P "

Figure 1. A general High-level view of IIoT architecture.

various sectors such as manufacturing and logistics
[1]. This advancement leads to serious security
challenges. A significant number of IloI' systems
integrate advanced smart devices and legacy systems,
which often lack security. The blend of networked
machines, embedded controllers, and cloud systems
makes IIol' systems more susceptible to threats [2].
Compared to traditional IoI systems, Ilol' systems
also demand strict operation timings along with
availability requirements that amplify the impact of
even short-term security failures [3].

Existing research in IloT is often focused on blocking
attacks at runtime by employing advanced machine
learning-based intrusion detection techniques or
secure communication protocols [4-6]. Another study
evaluated [7] how different SDLC structures influence
the adoption of secure practices within software
development teams. It highlighted that security as a
core requirement, is more likely to be implemented
consistently across all lifecycle stages. Moreover,
authors in [8] comprehensively reviewed several
IoT security guidelines from industry, government,
and academia. They found that about 73% of the
actionable advice relates directly to SSDLC phases
like planning, implementation, and testing. This
underscores the need to embed secure development
practices throughout the lifecycle.

However, major system vulnerabilities do not occur
at runtime; but are built into the software during
Software Development Life Cycle (SDLC). These
vulnerabilities comprising weak authentication logic,
insecure APIs, and poor data validation can be
prevented using improved software design [9].
Compared to traditional security methods that often
focus on reactive measures, threat modeling enables
early detection of vulnerabilities during design and

64

planning. This makes it especially suitable for
Industrial IoT systems, where failures can cause
physical damage and downtime. A general high-level
view of IIoT architecture, showing the interaction of
smart sensors, edge devices, communication protocols,
cloud platforms, and decision-making interfaces is
presented in Figure 1.

This gap between security and software engineering
is one of the key reasons why IloT systems remain at
risk, even when strong protection tools are added later.
While several studies have explored security in IIoT,
most either focus on specific phases of development
or lack integration between threat modeling and
secure development practices. There remains a need
for a structured approach that combines early risk
identification with secure automation across the entire
SDLC. This study is focused on embedding security
into SDLC in IloT environments. We explore multiple
threat modeling techniques such as STRIDE, DREAD,
and STPA-Sec; that aim to support the identification
and analysis of security risks during the early phases
of SDLC. The study also investigates the application of
these techniques in each phase of the Secure Software
Development Life Cycle (SSDLC). This analysis covers
defining clear security requirements, designing safer
architectures, adhering to secure coding protocols, and
frequently testing the system vulnerabilities.

This study proposes an advanced framework for
SDLC named SecureDev-IIoI, that introduces the
integration of security testing and monitoring into
the software delivery pipeline. This framework
aims to support IIoI' developers and engineers in
building more secure systems without compromising
the performance, scalability, or accessibility. This study
makes the following key contributions: 1) It provides
a comparative analysis of widely used threat modeling

ICJK

ICCK Journal of Software Engineering

techniques, including STRIDE, DREAD, and STPA-Sec,
mapped across the phases of a secure development
lifecycle; 2) It proposes SecureDev-Ilol, a layered
framework that combines threat modeling, SSDLC
practices, and secure development process automation
designed for IloI systems; and 3) Finally, it offers
practical guidelines and illustrations that support
secure software design and deployment in industrial
environments.

The rest of the paper is organized as follows. Section
2 explores multiple threat modeling techniques.
Section 3 is focused on secure software development
lifecycle. Section 4 highlights the integration of
secure development process principles into IloT
software delivery pipelines. Section 5 proposes the
SecureDev-IIoI' framework, through the integration
of threat modeling, SSDLC, and secure development
process into a unified process. Section 6 evaluates
the proposed framework through the comparative
analysis with traditional IIoT security mechanisms.
Section 7 finally concludes the paper along with future
directions.

2 Threat Modeling as a Software Engineering
Practice

Developing secure IIol systems requires more than just
reactive protection tools—it starts with understanding
where threats can appear and how they could
impact the system. This is the core idea behind
threat modeling, a structured approach to identifying
potential vulnerabilities early in the development
lifecycle [10]. In software engineering, threat
modeling helps teams think like an attacker, which
allows them to build stronger defenses during design
and coding rather than after deployment. In
IIoT systems, threat modeling becomes even more
important because of the unique blend of cyber and
physical elements [11]. This section will explore
several widely adopted threat modeling techniques
and their applications within software engineering
processes to strengthen IoT security.

STRIDE is a threat modeling method introduced
by Microsoft to help developers identify six key
security risks. These are spoofing, tampering,
repudiation, information leakage, denial of service,
and elevation of privilege [10]. It is commonly applied
in the early design stage, during the preparation
of system architecture diagrams. In IIoI systems,
STRIDE helps examine the interaction between system
components, including data shared between sensors
and control units. Tampering becomes a concern

if software updates reach edge devices without any
authentication. Spoofing is also possible in cases where
device identification lacks proper verification [11, 12].
Although STRIDE is effective in many areas, it may
not fully address changing IloT environments where
devices are frequently added or removed [13].

The DREAD model is an another advanced technique
based on threat modeling that it is focused on
five main risk factors. It targets damage potential,
reproducibility, exploitability, affected users, and
discoverability [12]. Hence, its application assists
users in prioritizing threats based on their critical
nature. In IIoT' systems, DREAD is efficient
at making risk-based decisions such as deciding
the time investment on input validation logic, or
applying additional encryption to certain data flows.
Specifically, a vulnerable firmware update mechanism
may cause wide-scale disruption; hence, getting
high DREAD score, highlighting the requirement of
redesign [13]. However, DREAD may struggle in
dynamic settings where advanced threats emerge
periodically.

The STPA-Sec (System-Theoretic Process Analysis
for Security) is a state-of-the-art threat modeling
technique [14]. In contrast to STRIDE or DREAD,
STPA-Sec examines the system as a whole. It
evaluates unsafe control actions including sending
commands at the wrong time or missing a safety
check. This system-level threat modeling technique
is particularly applicable for IloT systems as devices
are tightly coupled leveraging automation logic.
STPA-Sec encourages developers to think beyond just
protecting devices and to consider how their software
interacts with physical processes and human operators
[15]. Although STPA-Sec requires more time and
expertise to apply, it is a powerful tool for modeling
safety-critical software behaviors, and can be used
during requirements engineering and architecture
design phases in the SSDLC. The mapping of these
threat modeling techniques to various phases of the
SSDLC for IIoT systems is given in Figure 2.

It illustrates that the STRIDE model is most effective
during the early stages, such as requirements gathering
and system design, where identifying common threat
categories can shape secure architecture. DREAD, on
the other hand, is better suited for implementation
and testing phases, where scoring and prioritizing
risks become critical. STPA-Sec, being a system-level
method, is applicable during both requirements and
design phases and remains relevant in maintenance

65

ICCK Journal of Software Engineering

ICJK

Model Relevance

| |‘ “ ‘ ‘ | ‘

Not Applied
&
Eé‘
&
& o) <
& &
SDLC Phases

Techniques

=== STRIDE == STPA-Sec === DREAD

Figure 2. Mapping of threat modeling techniques to SSDLC
phases for IloI systems.

when revisiting system safety and security logic [16].

While these studies offer important insights into IloT
security and secure development practices, most focus
on isolated phases of the software lifecycle. Few works
integrate threat modeling techniques systematically
across all SSDLC phases, and even fewer align
these models with development process for secure
and automated deployment. In addition, existing
approaches often overlook the practical challenges
of resource-constrained edge environments, legacy
system integration, and post-deployment security

monitoring. This highlights a clear need for a unified
framework that bridges early risk modeling with
continuous security enforcement, as addressed in
this paper. A brief comparison of threat modeling
techniques in IIOT software engineering is presented
in Table 1.

3 Secure Software Development Lifecycle
(SSDLC) for IloT

Secure IloT systems demand the security embedded
at every stage of the SDLC. A Secure Software
Development Life Cycle (SSDLC) includes various
security activities such as threat modeling, secure
coding, and continuous testing [17]. This section
explores each phase of SSDLC, transformed to meet
various challenges of IIoI systems, including resource
constraints and real-time performance requirements.

3.1 Requirements Phase: Capturing Security Needs
Early

Requirement engineering is the first phase in SSDLC
that involves gathering both functional and security
requirements. For IIoI systems, it focuses on various
security vulnerabilities in the field. Since IIol systems
often employ remote, autonomous devices, hence,
developers must consider unauthorized access, data
tampering, and physical sabotage while requirement
gathering [17]. Therefore, threat modeling techniques
such as STRIDE and STPA-Sec are specifically

Table 1. Comparison of threat modeling techniques in IloI software engineering.

Aspect STRIDE DREAD STPA-Sec
Focus Area Threat categorization Risk prioritization Unsafe contr(?l actions and
system behavior
) . Implementation / . .
Primary Use Phase Design Testing Requirements / Design
Risk Assessment Identifies threats only Scormg—based System modeling and causal
evaluation analysis
Complexity Low Medium High

System-Level View
Recommended for IloT
Tool Support

Limitations

Strength in IloT Context

Limited to components

Good for analyzing
interfaces and protocols
Strong (e.g., Microsoft
TM Tool)

May miss system-wide
threats

Helps identify
protocol/API risks
early

Focused on individual
issues

Useful but may lack
consistency in scoring
Moderate (used in

select platforms)
Results can be
subjective

Supports remediation
prioritization

Covers full system including
human interaction

Ideal for control logic and
safety-critical zones

Limited (requires manual
modeling or UML/SysML)
Requires detailed system
knowledge and effort

Captures unsafe behaviors in
cyber-physical systems

66

ICJK

ICCK Journal of Software Engineering

appreciated in this phase. STRIDE helps in identifying
common categories of threats, while STPA-Sec
supports a deeper analysis of unsafe control actions
that could potentially result in system-level failures
[14]. This phase ensures the integration of security as
a core part of the initial design discussion.

3.2 Design Phase: Building Secure Architecture

In the design phase, developers and system architects
plan the structure of the software and the roles of
different components. IloT systems are built with
several layers, including the device layer, network layer,
and application layer. Each layer brings its own set of
security risks [18]. To protect these layers, developers
use secure design practices such as limiting access
rights, encrypting data between modules, and adding
input checks in APIs. Some modern protocols like
OPC-UA come with built-in security, while older ones
like Modbus do not include encryption. If legacy
protocols are still in use, they should be separated from
other parts of the system to avoid exposing critical
assets. Tools like attack trees and attack graphs help
to identify possible paths that attackers might use
to reach system components. Security in this phase
enables proactive planning for risk reduction by the
identification of weak sections before writing the code
[19].

3.3 Implementation Phase: Writing Secure Code

This phase involves converting the system design to
system implementation by writing the secure code.
This phase is critical, as coding defects including buffer
overflows, hard-coded passwords, or invalidated
user inputs may create serious vulnerabilities [14].
Following secure coding standards such as MISRA
for embedded C/C++ or CERT guidelines for
Java/Python; is highly essential in secure IloT
systems. Developers must consider avoiding direct
memory access, unsafe system calls, and open ports
without authentication [20]. Additionally, lightweight
encryption and security libraries should be integrated
early; considering the processing limitations of edge
devices.

3.4 Testing Phase: Validating Software Integrity

Security testing is essential along with functional
testing during development phase. In IloT, traditional
testing techniques such as unit testing and integration
testing must be accompanied using security-specific
tests. These tests include: 1) Fuzz testing to identify the
system’s handling of unexpected or malformed inputs.
2) Static and dynamic analysis tools to detect coding

flaws. 3) Penetration testing for identifying real-world
vulnerabilities before deployment [21]. In this phase,
DREAD can be applied to prioritize the severity
of discovered threats and guide fixing decisions.
Additionally, testing should also be introduced in this
phase for protocol security and authentication flows,
particularly for IIoT devices performing crucial tasks.

3.5 Deployment Phase:
Configuration

Securing Release and

After testing, the software is deployed often on
IIoT edge devices, fog nodes, or cloud platforms.
Deployment must be done securely to prevent
man-in-the-middle (MitM) attacks, unauthorized
access, or configuration leaks. This involves secure
boot mechanisms to prevent firmware tampering,
digital signing of software to ensure authenticity,
role-based access control and key management during
device onboarding, and encrypted configuration files
and disabled debugging interfaces [22]. Cloud and
edge environments should also follow Zero Trust
principles, ensuring continuous identity verification
and policy enforcement even post-deployment.

3.6 Maintenance Phase: Ongoing Protection

Security is not a one-time effort as it requires regular
updates and monitoring throughout the system’s
lifetime. In IIoT, many attacks like botnets, firmware
tampering, and supply chain threats emerge after
deployment and evolve over time. Key maintenance
strategies include Over-the-air (OTA) secure updates
with rollback support, Security audits and patch
management, Log analysis, anomaly and revisiting
threat models (e.g., STPA-Sec) after system changes.
This phase also includes end-of-life planning, where
decommissioned IIoT devices must be safely retired
without leaking data or credentials [23].

Each phase of SSDLC when properly adapted, offers
an opportunity to reduce vulnerabilities before they
are exploited in the field [24]. By combining
established software engineering practices with
IloT-specific constraints and threat models, developers
can design, build, and maintain software that is more
resilient, secure, and ready for real-world industrial
environments. A flowchart presenting the phases
of SSDLC based on IloI-specific security practices is
presented in Figure 3.

67

ICCK Journal of Software Engineering

ICJK

Design Phase
* Secure architecture

Requirements Phase

Implementation Phase

« Define security needs « Secure coding

« Apply STRIDE/STPA-Sec « Use safe protocols « No hardcoded credentials

« Threat modeling « Lightweight encryption

« |dentify critical functions

A

4

Deployment Phase

Testing Phase
+ Fuzz & pen testing
« Code analysis
= Riskscoring (DREAD)

Maintenance Phase

J

s Secure OTA updates e— * Secure boot/signing
* Log monitoring

« Update threat models

= RBAC & encryption
* Zero Trust

Figure 3. Phases of SSDLC based on IloI-specific security
practices.

4 Secure development process in IIoT Software
Delivery

As IloT systems become increasingly complex and
distributed, ensuring their security after deployment
is no longer sufficient. Modern industrial software
development must embrace secure development
process, an approach that integrates security practices
directly into the development and delivery pipeline.
Secure development process encourages "security as
code", enabling faster, safer, and more reliable software
releases by automating testing, monitoring, and policy
enforcement from the very beginning [25].

In IIoT systems, this integration is especially important
due to the safety-critical nature of operations,
limited physical access to devices, and heterogeneity
of platforms. Unlike traditional IT applications,
ITIoI' deployments must consider not just cloud or
mobile environments but also edge and fog nodes,
where deployment and updates can be risky and
resource-intensive.

4.1 Integrating Security into CI/CD Pipelines

Continuous Integration and Continuous Deployment
(CI/CD) is central to any secure development process
pipeline. In IloT development, these pipelines can be
extended with tools that automatically scan identified
vulnerabilities. These tools support code scanning
and help developers follow secure coding standards
[26]. The process includes running Static Application
Security Testing during code commits and Dynamic
Application Security Testing before releasing the
software. Builds that contain major security issues
or outdated libraries are stopped automatically. This
helps detect risks early and ensures that only trusted
code is moved forward to production.

68

4.2 Infrastructure Code and

Security-as-Code

as (IaC)

Handling infrastructure by hand becomes difficult
in IIol' environments, particularly in setups that
include many sensors, actuators, edge nodes,
and control units. Infrastructure as Code (IaC)
helps define configurations, network rules, and
security settings through scripts and templates.
Security-as-Code allows teams to apply rules for
encryption, firewall setup, access permissions, and
compliance requirements. This approach helps keep
deployments uniform, easier to check, and less likely
to include mistakes during setup and updates [27].

4.3 Secure Software Deployment on Edge and Fog
Devices

A common issue in IIoT involves installing software
on edge and fog devices with limited resources.
These devices usually operate on real-time systems or
minimal Linux versions and often do not include full
operating system security features. To support secure
secure development process, in this environment
minimal, signed container images (e.g., using Docker
or Balena for embedded) should be used to prevent
tampering. Moreover, the use of hardware-based root
of trust, such as TPM (Trusted Platform Module),
can ensure only authenticated software is executed.
Additionally, enabling immutable infrastructure
techniques—where changes are made via full
re-deployments rather than ad hoc patches—can
improve auditability and rollback safety. These
practices reduce the risk of deploying compromised
software or leaving vulnerable components active in
the field [26].

4.4 Monitoring, Drift Detection,

Enforcement

and Policy

Security continues even after the software has been
deployed. Secure development process supports
ongoing monitoring and policy enforcement to keep
IIoT systems protected. One important task in
this stage is detecting configuration drift. This
helps identify any changes in device settings or
network rules that were not approved. Moreover,
log aggregation and threat detection, using tools
like ELK stack, OSSEC, or cloud-based security
monitoring. Additionally, Policy-as-code should be
introduced, allowing organizations to define and
enforce security rules that are automatically applied
and verified during deployments. These strategies
make it possible to respond to evolving threats and
maintain compliance even in distributed and dynamic

ICJK

ICCK Journal of Software Engineering

IIoT networks [27].

4.5 Privacy-Aware Automation in Industrial

Pipelines

Many IloI' systems collect sensitive operational
data, some of which may include employee
movement, machine health, or customer behavior.
Integrating privacy-aware automation into secure
development process practices ensures that personal
and confidential data is protected during processing,
storage, and transfer. This includes Data masking and
pseudonymization before transfer to cloud analytics
engines. Moreover, secure key management using
vault systems like HashiCorp Vault or AWS KMS
should also be focused on. Additionally, ensuring
compliance with data protection standards such as
GDPR and ISO/IEC 27001 would help multinational
industrial deployments [28]. By embedding these
capabilities into the pipeline, privacy can be enforced
just like functional or performance requirements. The
secure development process pipeline adapted for
IloT systems is presented in Figure 4. It illustrates
the security integration from the coding phase to
monitoring phase.

+ Secure coding « Sign artifacts
Scan dependencies

« Enforce policies

< 77
J-‘@ﬂ
el

I « Signed containers
: * Zero Trust config
1 ¢ lacC for consistency

s Logalerts
* Detect drift
s Secure OTA updates

%
Monitor &
Maintain

1
+ Static analysis :n
« Threat Modeling [

Build &
Test

SAST & DAST
Fuzz & unit tests
Cl security checks

Figure 4. A secure development process workflow
customized for Industrial IoT systems.

5 Proposed Framework: SecureDev-IloT

The complexity of IIol systems demands a structured
approach that combines threat modeling, secure
software engineering, and advanced secure
development process. We propose a conceptual
development framework named SecureDev-IloT
that is designed to guide industrial teams to build
secure-by-design IIol systems. This framework
ensures appropriate security techniques across all
stages of SDLC. Additionally, it also incorporates
automation and continuous validation through secure
development process. The following section briefly
describes the overview of the proposed framework, its
lifecycle flow, and its architecture.

5.1 Framework Overview

The SecureDev-IIoT framework is built on three layers
that work together to improve software security in
industrial environments. The first layer deals with
threat modeling. This step helps teams identify
risks early in the development cycle. These methods
are applied during the planning and design stages
to reveal possible entry points in IIoI' systems.
The findings guide design decisions, support risk
prioritization, and help form a stronger security
foundation before coding begins.

The second layer improves development by including
activities that strengthen security in areas specific to
IIoT. Each phase involves actions such as applying
control checks, writing secure code, and performing
stress tests. These additions help ensure that
security is considered across the full process instead
of limiting it to a single stage. The third layer
introduces automation using secure development
process. It supports the application of security policies
during both development and deployment. Tasks in
this layer involve scanning source code, identifying
vulnerabilities, and validating configurations within
the CI/CD workflow. This setup helps teams produce
secure software builds. The same process supports
secure deployment across edge and fog systems.
Continuous monitoring maintains compliance and
provides protection against new threats that may
appear after release.

The SecureDev-IIoI framework introduces a unique
layered integration of three well-established threat
modeling techniques—STRIDE, DREAD, and
STPA-Sec within the structure of the SDLC. Unlike
earlier approaches that apply a single technique at a
fixed stage, this method distributes each technique
based on its strengths across different SDLC phases.
STPA-Sec is employed during the requirement phase
to analyze unsafe control actions in industrial control
environments. STRIDE supports the design phase by
helping identify threats in system architecture, data
flows, and interface interactions. During testing and
validation, DREAD is used to score and prioritize
identified threats based on their potential impact.
This multi-technique approach ensures both proactive
and reactive security coverage, which is particularly
essential in the complex, high-risk environment
of IloT systems. By combining these methods in
a coordinated way, the framework offers a more
complete and adaptable threat assessment process
across the entire software lifecycle—something not
addressed in earlier models.

69

ICCK Journal of Software Engineering

ICJK

STPA-Sec,
STRIDE

STRIDE
Attack Trees

ENIT
STPA:Sec
(revisit)

Reqwrements

Remisiy
DLC High

STPA-ec
revisit

SDLC

\

Implementatlon

Secure Development

Policy Secure Signed
templates, configs binaries

Cartailly

laC rules

Figure 5. SecureDev-IIoT lifecycle, illustrating threat
modeling and secure development activities.

Figure 5 shows
illustrating the threat modeling and secure
development activities aligning with each phase of the
SSDLC in a continuous, circular process.

While the framework is methodology-focused, parts

of it can be implemented using widely available tools.

For example, Microsoft Threat Modeling Tool supports
STRIDE analysis, while OWASP Threat Dragon can
assist in modeling attack surfaces. Secure coding
and static analysis are supported through tools like
SonarQube and CodeQL, and DevOps automation can
be configured using platforms like GitHub Actions or
Jenkins for CI/CD integration [29-31].

5.2 SecureDev-IIoT Lifecycle Flow

The SecureDev-Ilol' framework is divided into six
phases. Each phase includes specific security activities
designed for IIoT systems. In the first phase, STPA-Sec
is used to examine system behaviors that may cause
unsafe conditions. At the same time, STRIDE is
applied to identify security concerns related to data
exchange, system interfaces, and communication
protocols. These methods help teams address both
safety and security from the early stages.

The following phase focuses on system design.

Developers build the structure of the system and use
tools such as attack trees and threat graphs to explore

possible intrusion paths. Secure protocols are applied,

and legacy components are kept separate from critical

70

the SecureDev-lIol' lifecycle,

functions to reduce potential exposure. The third
phase is about writing secure code. Developers follow
industry rules, such as MISRA for embedded software,
and scan their code to catch issues early. Simple
encryption is also added to keep data safe, even on
devices with limited resources.

The fourth phase involves testing. Teams run unit
and integration tests along with security checks such
as fuzzing and penetration testing. DREAD scoring
helps them decide which issues are more serious and
need attention first. The fifth phase focuses on putting
the software into real environments. Signed files are
used to ensure software has not been changed. Access
is controlled through RBAC, and every connection is
checked using Zero Trust methods.

In the final phase, the system continues to stay
protected after it goes live. Secure OTA updates are
used to fix issues quickly. Logs are reviewed, and
unusual behavior is flagged. Threat models are also
updated over time, so security stays strong even as the
system grows and changes.

5.3 Architecture of SecureDev-IloT

The architecture of SecureDev-Ilol' is aimed at
applying specific security methodologies in each
phase of SDLC. This framework integrates security
techniques across all the stages of SDLC. It supports
security from initial requirements analysis to final
maintenance phase. The main goal is to incorporate
proactive and reactive security approaches considering
the dynamic nature of attack surface and Ilol
limitations.

In the initial phase of requirement gathering, various
techniques such as STRIDE and STPA-Sec identify
threats and unsafe control actions ahead of software
development phase. In the design phase, developers
use tools such as attack trees and secure API guidelines
to create systems that are both safe and scalable. The
next phase begins with implementation. At this stage,
developers apply secure coding practices and run static
analysis tools to find possible security issues in the
code.

The testing phase includes techniques such as fuzzing
and penetration testing. DREAD scoring is used to
help teams focus on fixing the most serious issues first.
In the deployment phase, security involves checking
the build using signed files and applying Infrastructure
as Code to enforce system settings. During the
final phase, maintenance, secure Over The Air (OTA)
updates are used to keep the system reliable. These

ICJK

ICCK Journal of Software Engineering

AL - STRIDE DREAD STPA-Sec ()
Threat g
Modeling 5THi| DE Attacklﬁ raphs Logs Fllewew
Layer 2: i ;
| | [-
soDLc ks | l | | o
Policy Secure configs, SAST OTA updates, log
templates, laC IAC, version integration in monitoring
Layer 3: rules control polices Cl, commit hoks anomaly detection
DevSecOps B & h A 4 N
Activities E Q QA 0
Policy templates, Fuzzing, DAST, CI c“:;ﬂjﬂerﬁiﬂﬂiﬂso mﬁ;ﬁﬁ:.ﬁ'“ﬂ
laC rues security testi ng_/l- 9 GII:% :;:x .{nﬂmaly i

Figure 6. SecureDev-IIol: A layered framework combining threat modeling, SSDLC, and secure development process.

updates also support clear and traceable actions in
systems where safety is a priority. The full framework,
including threat modeling and secure development
activities is shown in Figure 6.

The phase-wise mapping of SDLC to the applied
techniques and security goals is summarized in Table 2.

Table 2. SDLC phases alongside the techniques employed
and their respective security goals.

Technique

Phase applied Security goal
Requirement STRIDE, i(iiinhfy de?iﬂy
equirements .\ o sks, efine
secure goals
Desien Attack Trees, Architect
& Secure APIs resilient systems
. Secure Coding, Eliminate
Implementation . .2 common
Static Analysis Teps
vulnerabilities
. DRE.AD' Validate security
Testing Fuzzing, robustness
SAST/DAST
Signed Secure and
Deployment Containers, consistent
RBAC, IaC releases
Maintenance OTA Updates, ir;su-irm
Drift Detection 5

system integrity

The SecureDev-1Iol framework is adaptable across
various industrial domains. In energy systems, it
helps protect SCADA and grid communication. In
healthcare, it supports secure updates for connected
devices. In manufacturing, it ensures control logic
integrity and protects Programmable Logic Controllers
(PLCs). This flexibility allows the framework to be
reused across sectors without major changes.

6 Evaluation and Discussion

The SecureDev-1Iol framework addresses the specific
requirements and constraints of IloI systems while
supporting secure software engineering practices
along with threat modeling. The following section will
examine its advantages and limitations by comparing
it to existing security mechanisms.

Existing IloI' security approaches often focus on
runtime protection by employing intrusion detection
systems, encryption protocols, or access control
mechanisms [32]. These techniques are reactive
and may fail in preventing vulnerabilities that were
introduced during initial stages of SDLC. While
SecureDev-IIoT is proactive as it promotes the early
identification of risks and mitigates them during the
requirements and design phases. It also reduces the
likelihood of crucial errors reaching to production
stage. The key differences between SecureDev-IloT
and traditional runtime-based security approaches are
highlighted in Table 3.

The key strengths of SecureDev-Ilol' lie in its

71

ICCK Journal of Software Engineering

ICJK

Table 3. Comparison of secureDev-IIoT with runtime security approaches.

Aspect Traditional IIoT Security SecureDev-IIoT Framework

Focus Detection and mitigation at runtime Prevention and secure-by-design
development

Lifecycle Coverage Mostly post-deployment Full SSDLC integration

Threat Modeling Rarely applied
Automation (CI/CD, Limited
[aC)

Customization for IIoI' Often generic

Maintenance Support Patch-driven, reactive

Applied early and throughout

Fully integrated via secure development
process

Tailored to IIoT constraints

OTA updates, drift detection, secure

logging

comprehensive coverage, lightweight applicability,
and process adaptability. Specifically, it can be
applied in both large-scale industrial environments
and small, embedded IloI' projects. It also aims
to support compliance with international standards
such as IEC 62443, ISO/IEC 27001, and GDPR,
making it suitable for global deployment. Moreover,
the framework is modular and compatible with
Agile and DevOps, which helps industrial teams
adopt security gradually without disrupting existing
workflows. Additionally, because the framework
is technique-agnostic, organizations can plug in
their preferred tools (e.g., SonarQube, OpenVAS,
HashiCorp Vault) without being locked into specific
vendors.

The SecureDev-IIoT framework is adaptable across a
variety of industrial domains. In smart manufacturing
and energy sectors, it supports secure PLC updates,
control logic integrity, SCADA protection, and grid
monitoring. It also benefits healthcare Iol and
supply chain automation by securing connected
medical devices, asset tracking systems, and RFID
infrastructure. In all these domains, the need
for early risk identification, safe deployment, and
reliable maintenance is consistent, validating the
generalizability of the proposed approach.

Although SecureDev-IIoI ensures secure IloI systems,
however, its implementation has certain challenges.
Introducing threat modeling and secure coding
practices in early phases of SDLC could delay
project initiation [28]. Additionally, development
teams need to have familiarity with threat modeling
techniques, hence, their appropriate training is
required. Moreover, the integration of security
tools into secure development process can be
complicated supplementary delaying the project
timeline. Furthermore, the success of the proposed

72

framework is dependent on the maturity of the
organization, i.e., the willingness of the resources to
employ SSDLC principles. Strong project management
and security leadership is also required so that
development teams may not opt for short-term
development shortcuts while bypassing SSDLC
protocols.

As security tools continue to evolve, future platforms
may offer tighter integration between threat modeling,
code analysis, and deployment pipelines. For example,
automated mapping of threat models to CI/CD
policies or Al-powered vulnerability detection could
reduce manual overhead and improve response times.
These advancements would help overcome current
limitations in scalability and ease of use, especially
in complex IIoT environments with frequent device
changes and software updates.

6.1 Practical Scenario Illustration:

Consider a smart manufacturing plant that uses PLCs
to control robotic arms and conveyor systems. During
the requirements phase, STPA-Sec is applied to identify
control actions that may lead to unsafe operations, such
as unauthorized speed adjustments. STRIDE helps
analyze data flows between PLCs and central systems
to uncover spoofing or tampering threats. DREAD
scoring is used during testing to rank the severity of
detected vulnerabilities, ensuring that high-risk issues
are addressed first. Secure development automation
supports regular secure firmware updates on edge
devices while maintaining compliance. This scenario
shows how SecureDev-IIoT can be applied step by step
in a realistic industrial setting to strengthen both safety
and security.

7 Conclusion

The industrial IoT systems are essential across various
sectors; hence, they require secure, robust, and

ICJK

ICCK Journal of Software Engineering

maintainable software. This study presented a
comprehensive review of multiple threat modeling
techniques, secure SDLC practices, and secure
development process to systematically integrate them
into the IloT lifecycle. We proposed a conceptual
framework called SecureDev-IloT that supports threat
analysis with SSDLC phases and automates security
implementation through modern CI/CD pipelines.
SecureDev-IIoI' helps organizations build secure
software by integrating security in all phases of SDLC,
hence proactively providing consistent shield against
evolving threats. The framework proposed a flexible
foundation that could be adapted across diverse
industrial domains. In future, the work will aim
to extend the framework through toolchain support
and also validate it in real-world IIoI environments
including smart manufacturing and energy sectors.

Data Availability Statement

Data will be made available on request.

Funding

This work was supported without any funding.

Conflicts of Interest

The authors declare no conflicts of interest.

Ethical Approval and Consent to Participate
Not applicable.

References

[1] Hou, K. M., Diao, X., Shi, H., Ding, H., Zhou, H,,
& de Vaulx, C. (2023). Trends and challenges in
AloT/IloT /IoT implementation. Sensors, 23(11), 5074.
[Crossref]

Sheng, C., Zhou, W,, Han, Q. L., Ma, W., Zhu,
X., Wen, S., & Xiang, Y. (2025). Network traffic
fingerprinting for IloT device identification: A survey.
IEEE Transactions on Industrial Informatics. [Crossref]

Bahaa, A., Abdelaziz, A., Sayed, A., Elfangary, L.,
& Fahmy, H. (2021). Monitoring real time security
attacks for IoT systems using DevSecOps: a systematic
literature review. Information, 12(4), 154. [Crossref]
De Oliveira, G. W., Nogueira, M., dos Santos, A. L.,
& Batista, D. M. (2023). Intelligent VNF placement
to mitigate DDoS attacks on industrial IoI. IEEE
Transactions on Network and Service Management, 20(2),
1319-1331. [Crossref]

Sarjan, H., Ameli, A., & Ghafouri, M. (2022).
Cyber-security of industrial internet of things in

[12]

electric power systems. IEEE Access, 10, 92390-92409.
[Crossref]

Kavitha, D., & Thejas, S. (2024). Ai enabled
threat detection: Leveraging artificial intelligence for
advanced security and cyber threat mitigation. IEEE
Access. [Crossref]

Khan, R. A., Khan, S. U., Akbar, M. A., & Alzahrani, M.
(2024). Security risks of global software development
life cycle: Industry practitioner’s perspective. Journal of
Software: Evolution and Process, 36(3), €2521. [Crossref]

Barrera, D., Bellman, C., & Van Oorschot, P. (2023).
Security best practices: a critical analysis using IoT as
a case study. ACM Transactions on Privacy and Security,
26(2),1-30. [Crossref]

Ali, A., Husain, M., & Hans, P. (2025). Federated
Learning-Enhanced Blockchain Framework for
Privacy-Preserving Intrusion Detection in Industrial
IoT. arXiv preprint arXiv:2505.15376.

Crothers, E. N., Japkowicz, N., & Viktor, H. L. (2023).
Machine-generated text: A comprehensive survey of
threat models and detection methods. IEEE Access, 11,
70977-71002. [Crossref]

Ali, M., Raza, A., Akram, M. A., Arif, H, &
Ali, A. (2025). Enhancing IOT Security: A review
of Machine Learning-Driven Approaches to Cyber
Threat Detection: Enhancing IOT Security: A review
of Machine Learning-Driven Approaches to Cyber
Threat Detection. Journal of Informatics and Interactive
Technology, 2(1), 316-324. [Crossref]

Benmalek, M. (2024). Ransomware on cyber-physical
systems: Taxonomies, case studies, security gaps, and
open challenges. Internet of Things and Cyber-Physical
Systems, 4, 186-202. [Crossref]

Kim, K. H, Kim, K, & Kim, H. K. (2022).
STRIDE-based threat modeling and DREAD
evaluation for the distributed control system in the oil
refinery. ETRI Journal, 44(6), 991-1003. [Crossref]

Yu, J., Wagner, S., & Luo, F. (2021). Data-flow-based
adaption of the system-theoretic process analysis for
security (STPA-sec). Peer] Computer Science, 7, €362.
[Crossref]

Mohanty, R. K., Padmaja, C. V. R., Kanaparthi, S. K., &
Rajan, A. (2025). Unified threat modeling: Strategies
for comprehensive risk assessment in modern systems.
In Integrating Technology in Problem-Solving Educational
Practices (pp. 429-450). IGI Global. [Crossref]

He, P, Du, X., Li, Y., Guo, H., & Cui, J. (2025).
An integration methodology of safety and security
requirements for autonomous vehicles. Journal of
Transportation Safety & Security, 17(3), 253-271.
[Crossref]

Alauthman, M., Al-Qerem, A., Aldweesh, A., &
Almomani, A. (2025). Secure SDLC Frameworks:
Leveraging DevSecOps to Enhance Software Security.

In Modern Insights on Smart and Secure Software
Development (pp. 77-118). IGI Global Scientific

73

https://doi.org/10.3390/s23115074
https://doi.org/10.1109/TII.2025.3534441
https://doi.org/10.3390/info12040154
https://doi.org/10.1109/TNSM.2023.3274364
https://doi.org/10.1109/ACCESS.2022.3202914
https://doi.org/10.1109/ACCESS.2024.3493957
https://doi.org/10.1002/smr.2521
https://doi.org/10.1145/3563392
https://doi.org/10.1109/ACCESS.2023.3294090
https://doi.org/10.63547/jiite.v2i1.64
https://doi.org/10.1016/j.iotcps.2023.12.001
https://doi.org/10.4218/etrij.2021-0181
https://doi.org/10.7717/peerj-cs.362
https://doi.org/10.4018/979-8-3693-6745-2.ch018
https://doi.org/10.1080/19439962.2024.2400894

ICCK Journal of Software Engineering

ICJK

[22]

[25]

[26]

74

Publishing. [Crossref]

Yu, Z., Gao, H., Cong, X., Wu, N., & Song, H. H.
(2023). A survey on cyber—physical systems security.
IEEE Internet of Things Journal, 10(24), 21670-21686.
[Crossref]

Rathee, G., Ahmad, F,, Jaglan, N., & Konstantinou, C.
(2022). A secure and trusted mechanism for industrial
IoT network using blockchain. IEEE Transactions on
Industrial Informatics, 19(2), 1894-1902. [Crossref]

Hameed, A., Violos, |., & Leivadeas, A. (2022). A deep
learning approach for IoT traffic multi-classification
in a smart-city scenario. IEEE Access, 10, 21193-21210.
[Crossref]

Ajiga, D., Okeleke, P. A, Folorunsho, S. O., &
Ezeigweneme, C. (2024). Designing cybersecurity
measures for enterprise software applications to
protect data integrity. Computer Science & IT Research
Journal, 5(8), 1920-1941. [Crossref]

Akerele,]. I, Uzoka, A., Ojukwu, P. U., & Olamijuwon,
0.]. (2024). Increasing software deployment speed in
agile environments through automated configuration

management. International Journal of Engineering
Research Updates, 7(02), 028-035. [Crossref]

Mustonen, J. (2024). Designing a security framework
for enhanced monitoring and secure development
during the software life cycle.

Ali, M., Mazhar, T., Al-Rasheed, A., Shahzad, T.,
Ghadi, Y. Y., & Khan, M. A. (2024). Enhancing
software defect prediction: a framework with
improved feature selection and ensemble machine
learning. Peer] Computer Science, 10, €1860. [Crossref]

Padmapriya, V. M., Thenmozhi, K., Hemalatha, M.,
Thanikaiselvan, V., Lakshmi, C., Chidambaram, N.,
& Rengarajan, A. (2025). Secured IloT against trust
deficit-A flexi cryptic approach. Multimedia Tools and
Applications, 84(9), 5625-5652. [Crossref]

Lalar, S., Kumar, T., Kamboj, S., & Kumar, R. (2024).
Security challenges and solutions in cloud, fog, and
edge computing for sustainable development. In Cloud
and Fog Optimization-based Solutions for Sustainable
Developments (pp. 178-200). CRC Press.

Veldi, S. R. (2025). Infrastructure-as-Code with
Scripting: A Technical Review. Journal of Computer
Science and Technology Studies, 7(6), 345-352. [Crossref]

Reyes-Acosta, R. E., Mendoza-Gonzélez, R., Oswaldo
Diaz, E., Vargas Martin, M., Luna Rosas, F
J., Martinez Romo, J. C., & Mendoza-Gonzalez,
A. (2025). Cybersecurity Conceptual Framework
Applied to Edge Computing and Internet of Things
Environments. Electronics, 14(11), 2109. [Crossref]

Hwang, 1., Cho, H,, & Kim, S. (2025). Deriving
Usability Evaluation Criteria for Threat Modeling
Tools. IEEE Access. [Crossref]

Bar, K. (2025). Al for Code Synthesis: Can LLMs
Generate Secure Code?. Available at SSRN 5157837.

[Crossref]

[31] Gajera Jr, A. (2025). Comparative Analysis of
Jenkins, GitLab CI, and GitHub Actions: Performance
Evaluation in CI/CD Pipelines.

[32] Khan, I. A., Keshk, M., Pi, D., Khan, N., Hussain,
Y., & Soliman, H. (2022). Enhancing IIoT networks
protection: A robust security model for attack
detection in Internet Industrial Control Systems. Ad
Hoc Networks, 134, 102930. [Crossref]

Misbah Ali is a PhD scholar at COMSATS
university Islamabad, with research interests
in Machine Learning, Deep Learning,
Generative Artificial Intelligence, and
Software Engineering. Her work focuses
on the development of secure, intelligent
systems across domains such as healthcare,
education, and industrial cyber-security.
She has authored multiple peer-reviewed
publications and presented her research at
international conferences. She also contributes to the academic
community as a reviewer for several reputed journals. (Email:
talktomisbah.ali@gmail.com)

Haroon ARIF received his Bachelor’s
degree in Computer Science from Preston
University, Islamabad, and his Master’s
degree in Cybersecurity from the Illinois
Institute of Technology, Chicago. He is a
cybersecurity professional and researcher with
expertise in cloud security, threat intelligence,
post-quantum cryptography, and Al-driven
threat detection.He has published multiple
papers on topics such as Al-enhanced cloud
security, dynamic cryptographic algorithm selection, and resilient
enterprise architectures. His research aims to develop innovative,
data-driven solutions for securing modern digital infrastructures.
(Email: harif@hawk.iit.edu)

Aamir Raza is currently pursuing a Master’s degree in
the Department of Information Technology and Management
at the Illinois Institute of Technology, Chicago, USA. His
research interests include Industrial IoT security, secure software
development, DevSecOps practices, and threat modeling. He is
particularly focused on integrating software engineering principles
with modern cybersecurity approaches to build resilient systems
in industrial environments. (Email: araza7@hawk.iit.edu)

Moomna Nazir holds a Bachelor’s degree in Computer Science
from COMSATS University Islamabad, Pakistan. Her academic
interests focus on machine learning, IoT systems, and software
design. She is passionate about applying practical security
methods to real-world computing environments and continues
to explore research opportunities in the field of emerging
technologies. (Email: moomnanazir@gmail.com)

https://doi.org/10.4018/979-8-3693-9851-7.ch003
https://doi.org/10.1109/JIOT.2023.3289625
https://doi.org/10.1109/TII.2022.3182121
https://doi.org/10.1109/ACCESS.2022.3153331
https://doi.org/10.51594/csitrj.v5i8.1451
: https://doi.org/10.53430/ijeru.2024.7.2.0047
https://doi.org/10.7717/peerj-cs.1860
https://doi.org/10.1007/s11042-024-18962-x
https://doi.org/10.32996/jcsts.2025.7.6.41
https://doi.org/10.3390/electronics14112109
https://doi.org/10.1109/ACCESS.2025.3559917
https://doi.org/10.2139/ssrn.5157837
https://doi.org/10.1016/j.adhoc.2022.102930

	Introduction
	Threat Modeling as a Software Engineering Practice
	Secure Software Development Lifecycle (SSDLC) for IIoT
	Requirements Phase: Capturing Security Needs Early
	Design Phase: Building Secure Architecture
	Implementation Phase: Writing Secure Code
	Testing Phase: Validating Software Integrity
	Deployment Phase: Securing Release and Configuration
	Maintenance Phase: Ongoing Protection

	Secure development process in IIoT Software Delivery
	Integrating Security into CI/CD Pipelines
	Infrastructure as Code (IaC) and Security-as-Code
	Secure Software Deployment on Edge and Fog Devices
	Monitoring, Drift Detection, and Policy Enforcement
	Privacy-Aware Automation in Industrial Pipelines

	Proposed Framework: SecureDev-IIoT
	Framework Overview
	SecureDev-IIoT Lifecycle Flow
	Architecture of SecureDev-IIoT

	Evaluation and Discussion
	Practical Scenario Illustration:

	Conclusion
	Misbah Ali
	Haroon ARIF
	Aamir Raza
	Moomna Nazir

