
ICCK Journal of Software Engineering
http://dx.doi.org/10.62762/JSE.2025.428569

RESEARCH ARTICLE

Comparing Agile Transitions: A Study of XP, Scrum, and
Hybrid Frameworks

Samia Akhtar 1,* and Shabib Aftab 1

1Department of Computer Science, Virtual University of Pakistan, Lahore 54000, Pakistan

Abstract
Agile has become a cornerstone of modern software
development. Among its many frameworks,
Extreme Programming (XP) and Scrum are the
most widely recognized. XP emphasizes technical
practices and engineering discipline while Scrum
provides structured roles and iterative planning.
Over time, many organizations have also adopted
hybrid models that combine the strengths of
both. Despite their popularity, teams often face
challenges when deciding which approach to adopt.
The choice between XP, Scrum or a hybrid is not
always straightforward as each carries different
strengths, limitations and suitability for specific
contexts. This paper addresses this issue by
presenting a comparative analysis of XP, Scrum and
their hybrids. First, we revisit their phases and key
practices along with their strengths, weaknesses
and application. Then a detailed comparison is
presented between XP, Scrum and their Hybrids.
Building on this analysis, we have proposed a
structured decision framework. This framework
provides a clear criteria and step-by-step guidance to
help practitioners select the most suitable approach
for their projects. The framework is supported by

Submitted: 06 September 2025
Accepted: 11 December 2025
Published: 08 February 2026

Vol. 2, No. 1, 2026.
10.62762/JSE.2025.428569

*Corresponding author:
� Samia Akhtar
samiaakhtar9898@gmail.com

subsections that explain evaluation criteria and
conceptual use cases. In addition, published case
studies are discussed to validate the framework
and show how XP, Scrum, and hybrid methods are
applied in practice. The paper also outlines future
directions for agile practices including the role of
AI, scaling strategies and distributed collaboration.
Through this work, the paper offers both critical
insights and practical tools for researchers and
practitioners. It highlights not only how XP and
Scrum compare but also how hybrid approaches
can improve agile adoption in today’s dynamic
development landscape.

Keywords: extreme programming, scrum, agile
methodologies, comparative analysis, hybrid models.

1 Introduction
Software development has always required structured
methods to manage complexity, reduce risk and
deliver quality results [1]. Early approaches such as
the Waterfall model provided clear phases, detailed
documentation and predictable planning. These
qualities gave managers control but they also created
problems when customer needs or market conditions
changed. Long cycles made it difficult to adapt
when projects often ended up delayed, over budget,
or misaligned with user expectations [2]. To

Citation
Akhtar, S., & Aftab, S. (2026). Comparing Agile Transitions: A Study
of XP, Scrum, and Hybrid Frameworks. ICCK Journal of Software
Engineering, 2(1), 30–51.

© 2026 by the Authors. Published by Institute of
Central Computation and Knowledge. This is an open
access article under the CC BY license (https://creati
vecommons.org/licenses/by/4.0/).

30

http://dx.doi.org/10.62762/JSE.2025.428569
http://crossmark.crossref.org/dialog/?doi=10.62762/JSE.2025.428569&domain=pdf
https://orcid.org/0009-0004-4345-793X
https://orcid.org/0000-0002-7662-1394
http://dx.doi.org/10.62762/JSE.2025.428569
mailto:samiaakhtar9898@gmail.com
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


ICCK Journal of Software Engineering

address these weaknesses, iterative and incremental
methods appeared offering feedback at shorter
intervals and allowing course corrections during
development. This evolution eventually led to agile,
which became a defining philosophy in modern
software engineering [3]. Formally introduced in
2001 through the Agile Manifesto, agile shifted the
focus from rigid planning to flexibility, collaboration
and customer value. It emphasized small frequent
deliveries and continuous feedback loops [4]. Over the
years, agile expanded beyond software to industries
such as healthcare, finance, education and government.
Its ability to reduce risk, improve collaboration and
align teams with user needs fueled its adoption. At the
same time, challenges emerged [5]. Agile requires
cultural change and high collaboration, which are
not always easy to achieve. Regulated industries
demand more documentation than agile naturally
provides [6]. Large and distributed teams struggle
to maintain consistent practices. Today, agile is further
shaped by artificial intelligence, DevOps pipelines,
and remote-first environments. These forces have
redefined how agile methods are applied and tested
their ability to remain adaptable and effective.

Within agile, Extreme Programming (XP) and Scrum
have become two of the most recognized and
debated frameworks. Both are grounded in agile
principles but differ greatly in their emphasis. XP
focuses on technical rigor and engineering discipline
using practices such as test-driven development, pair
programming, continuous integration and frequent
releases. Scrum, in contrast defines structured roles,
artifacts, and ceremonies to manage work through
iterative sprints [7]. This difference has created
uncertainty for practitioners and organizations. Some
find XP effective for highly technical and fast-changing
projects. Others prefer Scrum’s structure for managing
larger teams and organizational processes. Many
adopt hybrids that combine the strengths of both.
However, most existing studies either focus on
one framework or compare them from an earlier
era without considering modern realities such as
AI support, DevOps automation, and distributed
collaboration [8]. This gap limits guidance for
today’s practitioners. In this paper, we critically
re-examine XP and Scrum. We compare their
principles, practices, and applications. We highlight
strengths and weaknesses, explore hybrid approaches,
and propose a decision framework to guide adoption.
By doing so, this paper offers updated insights
and practical recommendations for applying agile

frameworks in today’s evolving software development
landscape.

1.1 Scope and Objectives
While Agile as a whole encompasses a variety of
frameworks, this paper narrows its focus to XP,
Scrum and their hybrids because of their strong
influence on modern software development practices.
The study positions itself not only as a comparison
of established approaches but also as a guide for
navigating the growing complexity of agile adoption
in modern contexts. By including conceptual insights
and practical perspectives, the work bridges the gap
between theory and application ensuring its relevance
to both researchers and practitioners. The objective of
the study is to:
• Revisit and analyze the origins and phases of XP

and Scrum to provide both historical grounding
and conceptual clarity.

• Analyze each framework’s philosophy, practices,
advantages, limitations and modern relevance.

• Explore hybrid models of XP and Scrum and
identify their common practices. Highlight
the benefits and challenges of adopting hybrid
approaches.

• Provide a structured comparative analysis of XP,
Scrum, and their hybrid models.

• Propose a decision framework that offers criteria
and step-by-step guidance for selecting or
tailoring XP, Scrum or hybrid approaches.

• Support the framework with conceptual examples
and real-world case studies to ensure its practical
relevance.

• Outline future directions for agile methodologies
emphasizing scalability, intelligent automation
and collaboration in global settings.

1.2 Paper Organization
The rest of this paper is divided into eight sections.
Section 2 explains the context of agile in the modern
era. It describes the origins of agile, its evolution
over time, and the role of artificial intelligence
in shaping agile practices. Section 3 focuses on
Extreme Programming (XP). It discusses its phases,
core philosophy, key practices, applications, and
relevance in modern projects. Section 4 presents
Scrum. It explains the framework, values, practices,
applications, and its continued importance. Section 5

31



ICCK Journal of Software Engineering

Figure 1. Evolution of software development methodologies fromWaterfall to Modern Agile.

talks about Hybrid of XP and Scrum, their common
practices, benefits and limitations. Section 6 provides
a comparative analysis of XP, Scrum and hybrid
models. It highlights their similarities, differences,
and integration with modern tools and methods.
Section 7 introduces a decision framework. It guides
practitioners in selecting or adapting XP, Scrum, or
hybrid approaches and includes examples from case
studies. Section 8 explores future directions for agile
practice. It emphasizes the influence of AI, DevOps,
distributed teamwork, and scaling strategies. Section
9 concludes the paper by summarizing the findings.
It also highlights the contributions of the study and
provides practical guidance for both practitioners and
researchers.

2 Context of Agile in the Modern Era
Agile has moved far beyond its origins as a lightweight
alternative to traditional software development [9].
Over the past two decades, it has matured into a
dominant philosophy shaping not only how software
is built but also how organizations manage change,
collaboration and delivery [10]. At the same time,
new technologies and shifting work cultures have
continuously reshaped how Agile is practiced [11].
To understand the position of Extreme Programming
(XP) and Scrum within this evolving landscape, it is
essential to examine how Agile itself has transformed
the industries it now serves and the challenges it faces
in contemporary practice.

2.1 The Origin of Agile Methodologies
The origins of agile methodologies can be traced back
to the challenges faced by software teams during the
late twentieth century [12]. Traditional development
models, particularly the Waterfall approach, often
resulted in rigid processes, lengthy delivery cycles
and limited adaptability to changing requirements.
This mismatch between business needs and delivery
capabilities created what was widely referred to
as the “software crisis.” In response, practitioners
and researchers sought alternative approaches that
emphasized adaptability, collaboration and iterative
progress [13]. These efforts culminated in the
publication of the Agile Manifesto in 2001 which
outlined values such as customer collaboration,
responding to change, and delivering working
software frequently. The manifesto did not prescribe
a single method but rather established guiding
principles that shaped a variety of frameworks.
Among these, Extreme Programming (XP) and Scrum
emerged as two of the most influential ones [14]. The
evolution of software development methodologies is
shown in Figure 1.

2.2 Emergence of Extreme Programming (XP)
Extreme Programming (XP) emerged in the late 1990s
as a response to the growing need for high-quality
software delivered at a rapid pace [15]. Introduced
by Kent Beck during his work on the Chrysler
Comprehensive Compensation System project, XP
placed a strong emphasis on engineering practices that

32



ICCK Journal of Software Engineering

directly improved code quality and team collaboration.
Unlike other methodologies of its time, XP pushed
traditional programming practices to their “extreme”
which is how it derived its name. While XP
gained popularity among smaller highly technical
teams, it faced challenges in large-scale adoption
due to its heavy reliance on disciplined engineering
culture [16]. Nevertheless, many of its practices
became foundational elements in modern software
development and continue to influence frameworks
used in recent years.

2.3 Emergence of Scrum
Scrum originated in the mid-1990s through the
work of Jeff Sutherland and Ken Schwaber, who
sought to address inefficiencies in traditional project
management approaches [17]. Inspired by empirical
process control and iterative development, Scrum
emphasized short and time-boxed iterations known
as sprints within which teams delivered potentially
shippable product increments. The framework
introduced well-defined roles including Product
Owner, ScrumMaster and Development Team along
with ceremonies such as sprint planning, daily
stand-ups, sprint reviews, and retrospectives [18].
This structure encouraged transparency and
adaptation which enabled teams to respond more
effectively to evolving customer needs. By the early
2000s, Scrum had become one of the most widely
used agile frameworks. It established itself as the

foundation for scaling models and serving as a
gateway for many organizations transitioning into
agile practices [19].

2.4 Evolution of Agile and the Role of Artificial
Intelligence

Agile practices have undergone significant evolution
since their formal introduction in 2001 [20]. During
the 2010s, Agile shifted from being an experimental
approach to becoming main stream. Enterprises,
government agencies and large-scale projects began
adopting Agile at scale supported by frameworks
such as SAFe (Scaled Agile Framework) and LeSS
(Large-Scale Scrum). At this stage, Agile was no
longer seen as a fringe methodology but as a strategic
enabler of organizational agility. The emphasis
extended beyond software delivery to include
culture, collaboration and responsiveness to market
demands [21]. In recent years, Agile has further
evolved to integrate with paradigms such as DevOps
and continuous delivery. The evolution of agile has
also been shaped by the growing influence of artificial
intelligence and automation. AI is now embedded in
core practices, enhancing decision-making, reducing
repetitive tasks and enabling more predictive and
adaptive processes [22]. Rather than replacing
agile principles, artificial intelligence extends their
applicability marking a shift toward more intelligent
and data-informed frameworks that preserve agility
while amplifying efficiency [23].

Figure 2. Phases of Extreme Programming.

33



ICCK Journal of Software Engineering

3 Extreme Programming (XP)
Extreme Programming (XP) is an agile software
development methodology designed to improve
software quality and responsiveness to changing
customer requirements [24]. XP emphasizes close
collaboration between developers and customers,
rapid feedback and disciplined engineering practices.
Its purpose is to deliver high-value software through
short frequent iterations while maintaining flexibility
to adapt as requirements evolve. Unlike frameworks
that focus primarily on project management, XP
centers on technical excellence. It ensures that code
remains tested and easily adaptable.

3.1 Phases of XP
The Extreme Programming lifecycle can be understood
through six key phases. Each phase emphasizes
iterative development and continuous collaboration.
Figure 2 illustrates the XP lifecycle from exploration to
the final death phase.

3.1.1 Exploration Phase
In this phase, customers and developers collaborate
to explore project needs and expectations. Customers
share initial requirements and possible features while
developers experiment with technologies, tools, and
architecture. The focus is on learning, discovery and
building a shared understanding rather than finalizing
details. Teams also beginwriting user stories which act
as building blocks for later iterations [25]. By the end
of this phase, both the customer anddevelopment team
have a clearer idea of the project scope and feasibility.
This sets the foundation for a flexible and adaptive
development cycle.

3.1.2 Planning Phase
The planning phase transforms exploration outcomes
into a clear project direction. Customers and
developers estimate time, costs and priorities based
on user stories. XP uses the concept of the "planning
game" where business stakeholders decide what to
build and developers decide how much can be built
within a given iteration. This collaborative process
ensures realistic timelines and balanced workload
distribution. The phase also helps in defining
release plans and iteration schedules. It emphasizes
communication and trust between customers and
developerswhich keeps expectations aligned andgoals
achievable.

3.1.3 Iteration Phase
This phase involves short development cycles. These
are usually one to three weeks long where small
increments of the system are built and tested.
Each iteration delivers working software that can
be reviewed by the customer. Developers apply
XP practices such as test-driven development, pair
programming, continuous integration and refactoring
during this phase [26]. Customer feedback at the
end of each iteration guides future work and ensures
alignment with real needs. Frequent releases reduce
risks by catching problems early and maintaining
steady progress. This phase highlights XP’s emphasis
on adaptability and continuous improvement.

3.1.4 Production Phase
Once the system is stable andmeets core requirements,
the focus shifts toward preparing it for wider
release. Extra testing, performance tuning and
fine-tuning of features are done to ensure quality.
Documentation may be expanded where necessary to
support deployment and future maintenance. Teams
also assess technical debt and resolve issues that
could affect stability [27]. This phase ensures that
the product can perform reliably in real-world use.
Customer input remains valuable, but the primary
focus at this stage shifts toward quality assurance and
ensuring the system is ready for deployment.

3.1.5 Maintenance Phase
After release, the system enters the maintenance
phase where new requirements, bug fixes and
changes continue to emerge. The team applies
XP practices to keep the system adaptable and
robust [28]. Continuous integration, automated
testing and refactoring help in maintaining code
quality while introducing changes. Customer feedback
remains central, guiding which features or fixes are
prioritized. This phase ensures that the system evolves
with changing business needs without losing stability
or performance. It demonstrates XP’s long-term
commitment to sustainable development.

3.1.6 Death Phase
The death phase occurs when the system no longer
requires major changes or when it is replaced by
a new solution. At this point, development slows
down and the focus shifts to minor updates or
eventual decommissioning. The team may write
final documentation and hand over the system to
operations or customers. This phase signals the end
of active development but reflects that the project

34



ICCK Journal of Software Engineering

Figure 3. Core values of XP.

was successfully delivered. The goal is to close the
project smoothly while ensuring value is preserved for
stakeholders.

3.2 Core Philosophy of XP
The core philosophy of Extreme Programming is
built around five fundamental values that guide team
behavior and development practices [29]. These
values form the foundation for every decision
made within an XP project shaping both technical
approaches and interpersonal interactions. Figure 3
highlights the five values that form the foundation of
XP. These values are:

1. Communication: Ensures that team members
and stakeholders maintain constant dialogue
to minimize misunderstandings and enhance
collaboration.

2. Simplicity: Focuses on delivering the simplest
solution that works, avoiding unnecessary
complexity and making code easier to maintain.

3. Feedback: Encourages rapid learning and
adaptation through continuous testing, pair
programming, and frequent customer reviews.

4. Courage: Empowers developers to make
necessary changes, refactor code or address
defects without hesitation.

5. Respect: Fosters a collaborative environment
where each team member’s contributions are
valued, creating trust and cohesion.

These values collectively enable XP teams to deliver
high-quality software while remaining adaptable,
efficient and closely aligned with customer needs.

3.3 Key Practices in XP
Extreme Programming emphasizes technical
excellence and customer-centric development through
structured yet adaptable practices [30]. By combining
iterative development, close collaboration and
continuous feedback, XP ensures that teams can
respond effectively to changing requirements. These
practices not only improve code quality but also foster
a culture of shared responsibility and learning within
the team. The key practices of XP are:
• Pair Programming: Two developers work together

at a single workstation continuously reviewing
each other’s code to reduce errors and promote
knowledge sharing.

• Test-Driven Development (TDD): Automated
tests are written before coding to ensure that
functionality meets requirements and supports
safe refactoring.

• Continuous Integration: Code changes are
integrated into a shared repository frequently,
allowing early detection and resolution of
conflicts.

• Refactoring: Code is regularly improved for
simplicity, clarity, and maintainability, reducing
technical debt over time.

• Small, Frequent Releases: Delivering working
software in short iterations allows customers to
see results quickly and provide timely feedback.

• Collective Code Ownership: All team members
share responsibility for the code base. They
encourage collaboration and accountability.

• Sustainable Pace: Teams maintain a work
rhythm that avoids burnout, ensuring consistent

35



ICCK Journal of Software Engineering

Table 1. Benefits and limitations of extreme programming (XP).
Aspect Strengths Limitations
Code Quality Encourages high-quality code through

TDD, continuous integration and
refactoring

Requires disciplined practices; errors may
occur if standards are not followed

Collaboration Close teamwork via pair programming
and collective ownership improves
communication and knowledge sharing

Heavy reliance on collaboration; may be
challenging for distributed or large teams

Customer
Feedback

Frequent releases and customer
involvement ensure alignment with
user needs

Continuous customer availability is
required, which may not always be
feasible

Flexibility Highly adaptable to changing
requirements and priorities

Not easily scalable for very large or
complex projects

Productivity Short iterations and sustainable pace
maintain steady progress

Teams unfamiliar with XP may experience
a learning curve

Risk
Management

Early detection of defects and risks
through iterative testing and feedback

Relies on team discipline and experience
for effective risk management

Knowledge
Sharing

Promotes learning and skill transfer
among team members through pair
programming and collaboration

May slow down development initially if
team members are inexperienced

productivity over the project lifecycle.

3.4 Advantages and Limitations
Extreme Programming offers a range of strengths that
makes it highly effective for delivering high-quality
software in an agile environment but it also has certain
limitations that teamsmust consider [31]. Its emphasis
on collaboration and disciplined engineering practices
provides tangible benefits such as improved code
quality, rapid feedback and enhanced adaptability. At
the same time, successful implementation requires
strong team discipline, customer involvement and
familiarity with XP practices. Table 1 summarizes
the key advantages and limitations of XP. It highlights
the areas where it excels and potential challenges that
organizations may encounter.

3.5 Applications of Extreme Programming
XP is highly applicable in software development
environments that demand rapid delivery, continuous
quality improvement and strong collaboration
between developers and stakeholders [32]. It is
particularly effective for small to medium-sized teams
working on complex systems where requirements are
expected to evolve frequently. The iterative nature
of XP allows teams to respond quickly to changing
business needs. It makes it ideal for web development,
mobile applications and enterprise software where
user expectations and technology trends can shift
rapidly. XP is also widely adopted in startup

environments and innovation-driven projects where
early and continuous delivery of working software
is critical to validate ideas and gather customer
feedback. Additionally, XP practices have influenced
modern DevOps pipelines, particularly in automated
testing, continuous deployment and refactoring
processes to help organizations reduce defects
and accelerate release cycles. Beyond traditional
software development, XP principles are applied in
mission-critical systems such as healthcare software,
financial platforms and e-commerce solutions where
both quality and responsiveness are essential [33].
By fostering a culture of shared ownership and
continuous improvement, XP enables teams to
maintain a sustainable pace while delivering features
that closely align with customer needs.

3.6 Modern Relevance of XP
Extreme Programming (XP) continues to play an
important role in modern software development. Its
value lies in technical practices that improve code
quality and long-term sustainability. These practices
remain critical even in AI-driven environments.
Artificial intelligence can now support coding, testing,
and defect detection, but XP ensures these tools are
applied in a disciplinedway. InDevOps pipelines, XP’s
focus on frequent releases and close customer feedback
aligns naturally with continuous delivery models [34].
As teams become more distributed, practices such as
pair programming and collective code ownership help

36



ICCK Journal of Software Engineering

maintain knowledge sharing and code consistency.
These qualities make XP useful for projects that
require high technical rigor and flexibility. It is
especially relevant in projects with rapidly changing
requirements where adaptability must be combined
with strong engineering discipline. XP also helps
organizations balance speed with quality. While AI
tools can automate repetitive tasks, they cannot replace
human collaboration and decision-making. XP’s
practices encourage teamwork, communication, and
shared responsibility which are essential for long-term
project success. Instead of being replaced by modern
technologies, XP provides the engineering discipline
and human-centered practices that alloworganizations
to use new tools effectively while keeping software
quality and agility intact. Its continued relevance
shows that strong technical foundations remain just as
important as new innovations in shaping successful
software projects.

4 Scrum
Scrum is a widely adopted agile framework designed
to help teams deliver high-quality software
through iterative development and continuous
collaboration [35]. Scrum provides a structured
yet flexible approach that emphasizes transparency
and adaptation. Unlike methodologies that focused
primarily on engineering practices, Scrum centers
on project management, defining roles, events, and
artifacts that enable teams to work incrementally and
respond effectively to changing requirements. Its
lightweight framework has made it popular across
industries from startups to large enterprises. It serves
as the foundation for scaling models and hybrid agile
approaches.

4.1 Scrum Framework and Phases
Scrum organizes work into iterative cycles called
sprints that typically last for two to four weeks [36].
This allows teams to deliver incremental value
regularly. The framework revolves around a set of
clearly defined roles, artifacts and ceremonies that
ensure continuous improvement. Figure 4 illustrates
the Scrum workflow, moving from backlog refinement
to sprint execution and review.

4.1.1 Product Backlog Refinement
The Product Backlog is a living list of features,
enhancements, bug fixes and technical work that the
team may deliver. It changes with business priorities
and customer needs. It makes sure development
stays aligned with organizational goals. In backlog

refinement sessions, the team reviews items, estimates
effort and clarifies requirements [37]. High-priority
items are broken into smaller tasks that can be
completed within a sprint. This process improves
transparency and lets stakeholders see which features
are planned. Refinement also helps the team spot
dependencies, risks and technical challenges early
which provide a clearer roadmap. By keeping the
backlog well maintained, teams can maximize value
delivery and remain flexible in handling changing
requirements.

4.1.2 Sprint Planning
Sprint Planning marks the beginning of a sprint and
sets the foundation for what the team will deliver [38].
During this meeting, the team selects items from
the Product Backlog based on priority and team
capacity to create a focused Sprint Backlog. Each
item is analyzed and tasks are broken down to ensure
clear understanding and achievable goals within the
sprint. The team discusses dependencies, potential
risks and approaches to complete each task effectively.
Sprint Planning emphasizes collaboration between the
Development Team and Product Owner to balance
value delivery with realistic workload expectations.
By the end of the session, the team commits to a clear
sprint goal and is able to provide a shared vision for
the upcoming iteration.

4.1.3 Sprint Execution
The Sprint Execution phase involves the actual
development work to complete the items in the Sprint
Backlog. Team members collaborate closely and
apply cross-functional skills to deliver high quality
increments of software. Practices such as code reviews,
automated testing and continuous integration are often
applied to maintain quality and reduce risks. Progress
is tracked daily and any obstacles are immediately
addressed to ensure the sprint remains on track [39].
Flexibility is maintained within the sprint to adapt
to minor changes while preserving the sprint goal.
Sprint Execution emphasizes both technical excellence
and collaboration. This makes sure that work aligns
with planned objectives. By the end of this phase, the
team aims to deliver a fully functional and potentially
shippable increment of the product.

4.1.4 Daily Scrum / Stand-ups
Daily Scrummeetings are short time-boxed gatherings
designed to synchronize team activities and identify
impediments. Each team member shares progress
and plans for the day or any blockers that may
hinder delivery. These stand-ups foster transparency

37



ICCK Journal of Software Engineering

Figure 4. Phases of the Scrum Framework.

and team cohesion which helps the group remain
focused on sprint goals. Impediments raised
during the meeting are addressed immediately
or escalated to ensure they do not affect the
progress. Daily Scrums also provide a platform for
collaborative problem-solving for allowing the team
to adjust workflows and priorities in real-time. By
maintaining consistent communication, teams can
reduce misunderstandings and stay aligned with
sprint objectives. This practice reinforces Scrum’s
principle of iterative inspection and adaptation while
keeping development on track.

4.1.5 Sprint Review
At the end of each sprint, the Sprint Review provides
an opportunity to inspect the delivered increment
and gather feedback from stakeholders. The team
demonstrates completed features, discusses what
went well and identifies areas for improvement.
Stakeholders provide input on priority adjustments,
additional requirements or changes in scope [40]. This
review ensures that the product evolves in alignment
with business needs and user expectations. Sprint
Reviews also promote transparency by making the
team’s work visible to stakeholders and encouraging
collaborative decision-making. It serves as a
checkpoint for validating assumptions and making
informed decisions about future work. Feedback

collected during this phase directly informs the next
sprint, closing the loop for continuous improvement
and value delivery.

4.1.6 Sprint Retrospective
The Sprint Retrospective focuses on process
improvement, team dynamics and learning rather
than product features. Retrospectives encourage open
communication, psychological safety and a culture
of continuous improvement. Lessons learned may
include technical practices, collaboration strategies or
workflow adjustments [41]. The goal is to enhance
efficiency and remove impediments while maintaining
team morale over the long term. Retrospectives
also foster innovation by allowing the team to
experiment with new approaches in subsequent
sprints. This phase reinforces Scrum’s commitment to
inspect-and-adapt cycles, ensuring that teams not only
deliver value but also evolve in their ways of working.
By consistently applying insights from retrospectives,
teams become more resilient and aligned with both
project and organizational goals.

4.2 Core Philosophy of Scrum
Scrum is guided by a set of fundamental values
and principles that shape how teams collaborate and
make decisions to deliver software iteratively [42].
By internalizing these values, Scrum teams create

38



ICCK Journal of Software Engineering

Table 2. Benefits and limitations of scrum.
Aspect Strengths Limitations
Flexibility Highly adaptable to changing

requirements and business priorities
Frequent changes may disrupt teams if not
managed effectively

Collaboration Promotes strong team interaction and
stakeholder engagement

Heavy reliance on communication;
distributed teams may face challenges

Transparency Clear visibility of progress through
artifacts and ceremonies

Requires disciplined tracking and active
participation from all team members

Incremental
Delivery

Delivers working software frequently,
enabling early feedback and adjustments

May not suit projects needing a fixed,
detailed plan upfront

Productivity Time-boxed sprints and clear goals
maintain steady progress

Teams new to Scrummay initially struggle
with velocity estimation

Continuous
Improvement

Retrospectives foster learning, process
enhancements, and innovation

Requires commitment and openness;
some teams may resist change

Accountability Defined roles and responsibilities increase
ownership and alignment

Misunderstanding of roles can lead to
conflicts or inefficiencies

Stakeholder
Engagement

Regular feedback ensures alignment with
business and customer needs

Continuous involvement of stakeholders
may be challenging in some contexts

an environment that encourages trust, collaboration
and sustainable productivity. Figure 5 highlights the
philosophy of Scrum. It can be summarized as follows:

Figure 5. Core Values of Scrum.

• Commitment: Team members are dedicated to
achieving sprint goals and delivering valuable
outcomes consistently.

• Focus: Scrum ensures attention remains on
the work planned for the sprint, minimizing
distractions and enhancing productivity.

• Openness: It promotes transparency in progress,
challenges and decisions, enabling informed
collaboration among team members and
stakeholders.

• Respect: It encourages valuing every individual’s
contributions, fostering trust, cohesion and a
collaborative team environment.

• Courage: It empowers teams to embrace change,
address challenges proactively, and experiment
with innovative approaches to improve processes
and deliverables.

These values form the backbone of Scrum’s iterative
framework. They guide teams in maintaining
alignment with customer needs and continuously
improving workflows. These values help in delivering
high-quality software efficiently.

4.3 Practices in Scrum
Scrum relies on a set of disciplined practices that enable
teams to deliver high-quality software in an iterative
and collaborative manner [43]. The key practices of
Scrum include:
• Time-Boxed Sprints: Development occurs in

fixed-length iterations, typically 2–4 weeks,
ensuring predictable delivery cycles and frequent
feedback.

• Incremental Delivery: Each sprint produces a
potentially shippable product increment, allowing
stakeholders to inspect and provide feedback early
and often.

• Cross-Functional Teams: Teams consist of
members with complementary skills who
collaborate to complete work without handoffs or
silos.

• Scrum Roles: Clearly defined roles—Product
Owner, Scrum Master, and Development

39



ICCK Journal of Software Engineering

Figure 6. Hybrid Agile models combining Extreme Programming (XP) and Scrum.

Team—ensure accountability and structured
collaboration.

• Scrum Ceremonies: Regular events such as Sprint
Planning, Daily Scrum, Sprint Review, and Sprint
Retrospective support planning, coordination,
and continuous improvement.

• Product and Sprint Backlogs: Artifacts that
provide transparency, prioritize work, and
maintain alignment with evolving customer
needs.

• Definition of Done (DoD): Establishes clear
criteria for when work is considered complete,
ensuring quality and consistency.

4.4 Advantages and Limitations
Scrum provides numerous benefits in agile software
development, but it also has some limitations that
teams must consider. Table 2 summarizes the key
strengths and potential challenges of Scrum.

4.5 Applications of Scrum
Scrum is widely applied across industries and project
types particularly where flexibility, iterative delivery,
and stakeholder collaboration are essential. It is
commonly used in software development projects
including web and mobile applications, enterprise
solutions and product development initiatives where
requirements frequently change and incremental
delivery adds value. Scrum is also popular in startups
and innovation-driven environments where rapid
prototyping and continuous feedback are critical for
validating ideas and adapting to market demands [44].
Beyond software development, Scrum principles have

been applied to non-IT domains, such as marketing,
education, and operational process improvements,
demonstrating its versatility. Large organizations
often implement scaled Scrum frameworks like SAFe,
LeSS, or Nexus to coordinate multiple teams working
on complex projects, maintaining alignment and
delivering integrated increments. With the adoption
of DevOps practices, cloud platforms, and AI-powered
project management tools, Scrum teams can automate
workflows, track progress more effectively and
enhance collaboration across distributed environments.
Overall, Scrum’s structured yet adaptive approach
makes it a practical and effective framework for
managing projects that demand both speed and quality
in dynamic, fast-changing environments [45].

4.6 Modern Relevance of Scrum
Scrum remains highly relevant in modern software
development. It provides structure through clear
roles, ceremonies and time-boxed sprints. These
elements provide clarity and rhythm to the teams.
This is essential even with advanced tools and
automation. Artificial intelligence can help with
backlog prioritization, sprint forecasting, and progress
tracking. However, Scrum ensures that these insights
are used in a disciplined way. Its iterative approach
encourages continuous inspection and adaptation.
This makes Scrum effective in environments where
requirements change quickly [46]. In DevOps
pipelines, Scrum works alongside automation to keep
business goals aligned with technical delivery. It
ensures that every sprint focuses on customer value.
For distributed and hybrid teams, Scrum ceremonies
such as daily stand-ups and sprint reviews maintain
transparency and accountability. These practices

40



ICCK Journal of Software Engineering

Table 3. Benefits and limitations of hybrid models.
Aspect Strengths Limitations
Balance of
Practices

Combines Scrum’s structured roles with
XP’s technical rigor for a well-rounded
approach

Risk of overlap or confusion when
blending roles and practices

Delivery Predictable sprint cycles ensure visibility
while XP practices maintain code quality

Coordination overheadmay slow progress
if practices are not well integrated

Collaboration Strong stakeholder engagement (Scrum)
plus deep developer collaboration (XP)

Requires high communication discipline;
harder with distributed teams

Technical
Quality

Continuous integration, TDD, and
refactoring reduce defects and improve
maintainability

Demands skilled developers and
consistent adherence to engineering
practices

Flexibility Adapts to changing requirements while
maintaining quality and visibility

Complexity increases when scaling hybrid
models across large organizations

Learning
Curve

Builds a culture of shared ownership and
continuous improvement

Teams need additional training to master
both Scrum and XP simultaneously

create a shared rhythm that AI tools cannot replace.
Scrum has adapted by integrating digital assistants,
smart dashboards, and AI-powered analytics. Its
strength lies in balancing technological support
with human collaboration. It provides teams a
clear process that guides decision-making, improves
communication, and sustains delivery of customer
value in fast-changing environments. Scrum also
encourages a culture of learning and knowledge
sharing. Teams continuously improve their skills and
processes while delivering meaningful results.

5 XP and Scrum - Hybrid Models
Many organizations today adopt hybrid approaches
that bring together the strengths of Extreme
Programming (XP) and Scrum. XP contributes
engineering discipline through practices such as
test-driven development and continuous integration.
Scrum, in contrast, provides well-defined roles
and ceremonies that improve project visibility
and stakeholder engagement. Using only one
framework often leaves gaps. Scrum without technical
practices may lead to technical debt. XP without
structured management may struggle to scale in
larger projects [47]. Hybrid models address these
limitations by combining XP’s technical rigor with
Scrum’s organizational structure. Figure 6 shows how
XP and Scrum overlap to form hybrid approaches that
balance engineering rigor with structured delivery.

This hybrid approach is becoming increasingly
important in modern contexts such as distributed
development, AI-driven automation, and
high-complexity projects. In such environments,

teams need both strong engineering quality and
predictable delivery. Core Hybrid Practices commonly
adopted by teams include:
• Scrum Sprints with XP Practices: Teams run

fixed-length Scrum sprints but apply XP
techniques like pair programming, refactoring,
and TDD during sprint execution.

• Defined Scrum Roles with Technical
Responsibilities: Scrum roles such as Scrum
Master, Product Owner, and Development Team
remain intact, while developers consistently use
XP engineering practices.

• Scrum Ceremonies Enhanced with XP Feedback:
Sprint planning, reviews, and retrospectives guide
delivery. These are complemented by XP’s
continuous collaboration with customers and
rapid feedback loops.

• Backlog Refinement with Technical Priorities: The
Product Backlog manages user stories but also
includes technical tasks such as automated testing
and code refactoring drawn from XP.

• Integration of CI/CD Pipelines: Continuous
integration and frequent releases, which are
central to XP, are combined with Scrum’s
incremental delivery framework to improve speed
and reliability.

By blending both methods, hybrid Scrum–XP models
create a balanced way of working. Teams benefit from
Scrum’s structure and visibility while also maintaining
the high code quality that XP promotes. The challenge
lies in managing overlaps and avoiding role confusion.

41



ICCK Journal of Software Engineering

Teams may also need additional training to handle
both frameworks effectively. When applied carefully,
however, hybrid models offer a strong pathway
for organizations that want both structured project
management and sustainable engineering excellence.
Table 3 highlights the key benefits and limitations of
hybrid models.

6 Comparative Analysis of XP, Scrum and
Hybrid Models

Extreme Programming (XP), Scrum, and their hybrid
combinations represent three of the most widely
applied approaches in agile software development.
Each offers distinct strengths and addresses different
challenges but they also share a foundation in agile
principles. XP emphasizes technical excellence and
disciplined engineering practices. Scrum focuses on
project management, structured roles, and iterative
delivery. Hybrid models aim to merge these two
dimensions by combining Scrum’s organizational
discipline with XP’s technical rigor. Understanding
how these approaches align, differ, and complement
each other is essential for practitioners seeking to
select or adapt frameworks for their projects. This
section therefore provides a comparative analysis
that highlights similarities, key differences and the
rationale for adopting hybrid approaches in modern
software development.

6.1 Similarities across XP, Scrum, and Hybrid
Models

XP, Scrum, and their hybrid combinations are all
rooted in the core principles of the Agile Manifesto.
Each approach emphasizes adaptability, collaboration,
and delivery of customer value through iterative
development. Table 4 presents similarities among
them.

6.2 Key Differences
Although XP, Scrum, and their hybrid models share
a foundation in agile principles, they differ in focus,
structure, and implementation. XP emphasizes
technical excellence through disciplined engineering
practices. Scrum prioritizes structured project
management with defined roles and ceremonies.
Hybrid models attempt to merge these strengths but
introduce new challenges of integration, role clarity,
and coordination overhead. Understanding these
differences helps practitioners select the most suitable
framework for their project environment. Table 5
presents the key differences between XP, Scrum and
their Hybrids.

7 Decision Framework for Practitioners
In this section, we proposed a practical decision
framework developed from the comparative analysis of
XP, Scrum, and hybrid models. While existing studies
often stop at describing similarities and differences,
our contribution goes further by translating these
insights into actionable guidance. The framework is
designed to help practitioners systematically decide
whether to adopt XP, Scrum, or a hybrid approach
based on their project context, team characteristics, and
stakeholder needs. It provides criteria for evaluation,
step-by-step guidance for selection and conceptual
use cases that demonstrate how the framework
can be applied in real-world scenarios. We also
validated our framework by providing some real world
previously published case studies from recent years.
By presenting this framework, we aim to bridge the
gap between theoretical comparisons and practical
adoption, giving teams a structured tool to make
informed and context-sensitive choices.

7.1 Core Evaluation Criteria
Our proposed decision framework is grounded in
a set of key criteria that determine the suitability
of XP, Scrum, or hybrid approaches. This criterion
is presented in Figure 7. These criteria capture the
most important project and team characteristics that
influence the effectiveness of an agile methodology.
By assessing these factors, practitioners can align
methodology choice with their actual context rather
than relying on generic recommendations. The
following points outline the core criteria that form the
foundation of our framework.

• Team Size and Composition – whether the team
is small and highly technical or larger and
distributed.

• Project Complexity and Domain – the level of
technical challenges and management needs.

• Customer Involvement – how frequently
stakeholders are available for collaboration.

• Requirement Stability – whether requirements
change frequently or remain relatively stable.

• Technical Quality Priorities – the importance
of practices such as TDD, refactoring, and
continuous integration.

• Risk Tolerance – how much uncertainty and
experimentation the project can accommodate.

42



ICCK Journal of Software Engineering

Table 4. Key similarities of Extreme Programming (XP), Scrum and Hybrid models.
Similarity Aspect Description
Iterative Development All models rely on short cycles (XP iterations, Scrum sprints, Hybrid

combines both).
Customer Collaboration Each framework emphasizes active customer or stakeholder involvement

throughout the project.
Adaptability to Change All are designed to respond effectively to evolving requirements and

shifting priorities.
Team Collaboration Cross-functional teamwork, knowledge sharing, and shared ownership

are central to all approaches.
Focus on Quality Every model prioritizes high-quality, functional software delivered at

each cycle.
Transparency & Visibility Progress, blockers, and priorities are made visible through ceremonies,

artifacts, or frequent releases.
Feedback Loops Regular reviews, retrospectives, and testing cycles ensure fast learning

and adjustments.
Continuous Learning Teams are encouraged to reflect, experiment, and refine practices to

improve performance.
Incremental Value Delivery Each iteration produces working software that provides measurable

value to customers.
Sustainable Pace All promote a balanced workload that avoids burnout and supports

steady delivery.
Empowered Teams Teams are self-organizing and trusted to make decisions about

implementation and delivery.
Risk Reduction Short cycles, regular testing, and early feedback help reduce risks and

detect issues quickly.
Alignment with Agile
Values

All approaches reflect the Agile Manifesto values of collaboration,
adaptability, and customer focus.

Applicability Beyond
Software

Each model has influenced practices outside IT, showing flexibility in
broader organizational contexts.

Figure 7. Evaluation Criteria of our Framework.

• Delivery Expectations – the need for predictable
timelines versus flexible adaptation.

• Collaboration Style – whether the team thrives
on structured ceremonies or intensive peer
collaboration.

Together, these criteria provide the foundation for

applying the framework in practice and serve as the
basis for the step-by-step selection process discussed
in the next subsection.

7.2 Steps for Applying the Decision Framework
The evaluation criteria formed the foundation of our
decision framework. To make these criteria actionable,

43



ICCK Journal of Software Engineering

Table 5. Key Differences between Extreme Programming (XP), Scrum and Hybrid models.
Aspect Extreme Programming (XP) Scrum Hybrid (Scrum–XP)
Primary Focus Engineering excellence and

code quality
Project management, roles,
and iterative delivery

Balance of structured
management and disciplined
engineering

Roles Minimal roles (team and
customer)

Defined roles: Product Owner,
Scrum Master, Development
Team

Scrum roles retained, with
added emphasis on XP
technical practices

Iteration Style Flexible iterations based on
user stories

Fixed-length sprints (2–4
weeks)

Scrum sprints enriched with
XP’s technical activities

Ceremonies /
Events

Informal meetings and
reviews

Structured ceremonies:
planning, stand-ups, reviews,
retrospectives

Scrum ceremonies with
additional XP collaboration
and feedback

Technical
Practices

Strong focus: TDD, pair
programming, CI, refactoring

Minimal guidance; technical
practices chosen by the team

XP’s practices integrated into
Scrum’s sprint cycle

Documentation Minimal; working software is
primary measure

Artifacts such as Product and
Sprint Backlogs

Scrum artifacts plus explicit
inclusion of technical backlog
items

Customer
Involvement

Continuous, hands-on
involvement

Engagement mainly during
refinement, planning, and
reviews

Combines Scrum’s structured
touchpoints with XP’s
frequent collaboration

Feedback
Frequency

Continuous (tests, reviews,
pair programming)

At the end of each sprint via
reviews/retrospectives

Continuous feedback from XP
plus sprint-based feedback
loops

Scalability Best for small, highly technical
teams

Scales more easily with
frameworks like SAFe or LeSS

More complex to scale due to
blending roles and practices

Risk
Management

Managed through continuous
testing and iteration

Managed through sprint
reviews and artifacts

Combines both but may add
overhead if integration is
weak

Flexibility Highly adaptable to changing
technical requirements

Adaptable but constrained
within sprint boundaries

Balanced flexibility with
structure, though integration
challenges may limit agility

Suitability High-risk, technically
complex, small to medium
teams

Larger teams and projects
needing structure and
visibility

Distributed, complex,
or high-stakes projects
requiring both quality and
predictability

we propose a step-by-step process that guides
practitioners from evaluation to final methodology
selection. These steps translate abstract considerations
into practical actions ensuring that the choice of XP,
Scrum, or a hybrid model is systematic, transparent
and alignedwith project needs. Figure 8 sums up these
steps.

Step 1: Assess Team Characteristics.
Evaluate the team’s size, skills and distribution.
XP is more suitable for small to medium-sized
teams with strong technical expertise and close
collaboration. Scrum accommodates larger or
distributed teams through its structured roles and
ceremonies. When teams are cross-functional but
also highly technical, a hybrid approach ensures
both coordination and quality. This step ensures

that the selected framework matches the team’s
natural strengths and avoids overburdening them
with practices they cannot sustain.

Step 2: Evaluate Project Complexity.
Analyze the level of technical challenges and
the project domain. Projects involving complex
algorithms, high-quality standards, or innovation
often require XP’s strong engineering practices.
Scrum works better when projects demand
predictable delivery cycles. It also supports
coordination across multiple stakeholders and
clear accountability. Hybrid approaches can
serve projects that combine technical innovation
with organizational complexity which allow both
structured delivery and technical rigor.

Step 3: Determine Customer Involvement Needs.

44



ICCK Journal of Software Engineering

Figure 8. Steps for the Proposed Decision Framework.

Consider how often stakeholders or end users
can realistically engage. XP assumes continuous
customer presence which may not always be
feasible in corporate environments. Scrum
provides defined opportunities for involvement
during backlog refinement, sprint planning,
reviews and retrospectives. Hybrids allow
flexibility by maintaining Scrum’s structured
ceremonies while encouraging more frequent
feedback loops inspired by XP. This step ensures
expectations for stakeholder collaboration are
realistic and achievable.

Step 4: Analyze Requirement Volatility.
Examine how stable the project requirements
are. XP adapts quickly to changing requirements
with practices such as refactoring and continuous
feedback. Scrum allows for controlled adaptation
within sprint boundaries but avoids major
changes mid-sprint. Hybrid models can offer

balance and enable teams to stay flexible without
losing focus on sprint goals. Correctly gauging
volatility ensures that the methodology provides
responsiveness without sacrificing delivery
stability.

Step 5: Prioritize Technical Quality vs. Delivery
Management
Clarify whether the primary concern is software
craftsmanship or structured delivery. XP enforces
technical excellence through practices like TDD,
pair programming, and continuous integration.
Scrum emphasizes transparency, planning, and
predictable delivery but leaves technical practices
up to the team. Hybrids combine both by
embedding XP’s engineering discipline within
Scrum’s delivery cycles. This step aligns
the chosen framework with the organization’s
definition of “success,” whether that means code
quality, stakeholder satisfaction, or both.

45



ICCK Journal of Software Engineering

Step 6: Consider Hybrid Opportunities
Identify situations where blending practices
may provide additional value. For example,
Scrum’s sprint reviews can ensure visibility to
stakeholders while XP’s pair programming and
automated testing maintain quality throughout
development. In distributed teams, Scrum’s
structured coordination can be combined
with XP’s technical practices to overcome
distance-related challenges. This step prevents
teams from treating XP and Scrum as mutually
exclusive and encourages a tailored approach.

Step 7: Make Framework Selection
Synthesize the insights from the previous steps to
make a deliberate choice. If technical excellence
and adaptability are critical, XP may be best.
If structured coordination and scalability are
priorities, Scrum is more suitable. When both
dimensions are equally important, a hybrid
approach ensures balance. This step formalizes
the decision and provides clarity to the team. It
ensures that the methodology is not chosen by
habit or trend but by alignment with actual needs.

7.3 Conceptual Use Cases
To illustrate how the proposed decision framework can
be applied in practice, we present conceptual use cases.
These are hypothetical but realistic scenarios that
demonstrate how different project contexts map to XP,
Scrum, or hybrid approaches. Each use case highlights
the relevant criteria, the framework’s recommendation.
It also explains the reasoning behind the selection.

7.3.1 Use Case 1: Startup with Rapidly Changing
Requirements (XP)

Context: A small startup team of six developers is
building an innovative product where customer
requirements evolve weekly. The team is
technically strong and works closely with end
users.

Framework Recommendation: Extreme
Programming (XP).

Rationale: The small team size, high technical skill
and rapidly changing requirements favor XP’s
practices such as TDD, pair programming, and
continuous feedback.

7.3.2 Use Case 2: Large Enterprise Project with Multiple
Stakeholders (Scrum)

Context: A financial services company is developing
a compliance reporting tool with 40 developers

spread across three locations. The project requires
coordination with multiple departments and
predictable delivery cycles.

Framework Recommendation: Scrum.
Rationale: Scrum provides defined roles, ceremonies

and artifacts. It helps manage complexity and
ensure visibility, and align multiple stakeholders
on priorities.

7.3.3 Use Case 3: Distributed Product Development
with both Technical and Organizational Demands
(Hybrid)

Context: A multinational company is developing
an AI-based healthcare application. The team is
distributed across two countries combining data
scientists and software engineers. Stakeholders
demand both technical quality and reliable
progress updates.

Framework Recommendation: Hybrid (Scrum-XP).
Rationale: The hybrid approach allows the team

to maintain technical rigor (TDD, continuous
integration, refactoring) while benefiting from
Scrum’s structured ceremonies, sprint planning
and stakeholder visibility.

7.4 Real-world Case Studies
To validate our decision framework, we examined
published case studies from recent years that report
on the use of XP, Scrum, or hybrid models in practice.
These case studies provide evidence that the criteria
and steps we propose map effectively onto real-world
project contexts. Each case demonstrates how
methodology choices reflected the same considerations
outlined in our framework.

7.4.1 Case Study 1: Hybrid Scrum-XP Model in Software
Companies

Bose et al. [49] proposed a Hybrid Scrum-XP model
to enhance the effectiveness of agile methodologies in
Bangladeshi software companies. The study combined
the strengths of Scrum’s structured management
practices with XP’s focus on engineering techniques
to address the limitations of both methods. A survey
conducted among leading software companies
in Bangladesh revealed a preference for agile
methodologies with a significant inclination towards
customizing models to suit project-specific needs. The
proposed hybrid model received positive feedback
indicating its potential to improve time and cost
efficiency in software development. The study

46



ICCK Journal of Software Engineering

suggests that integrating Scrum and XP can overcome
their individual drawbacks and lead to more effective
agile practices in the Bangladeshi context. The
positive reception and preference for customization
directly validate our framework’s emphasis on
hybrid opportunities when both technical quality and
structured delivery are critical.

7.4.2 Case Study 2: Agile Scrum for Web-based School
Information System

Wandri et al. [50] applied Scrum to develop a
web-based school information system that improved
administrative efficiency in vocational high schools.
The study addressed inefficiencies caused by
semi-manual processes using Word and Excel which
were prone to errors. By employing Scrum, the project
established clear roles (Scrum Master, Product Owner,
and Team) and structured rituals (Sprint Planning,
Daily Standups, Reviews, and Retrospectives). These
ensured iterative progress and continuous stakeholder
feedback. The system integrated features for student,
teacher, staff, and financial management, along
with interactive dashboards and real-time analytics.
Evaluation showed a 95% user satisfaction rate and
notable improvements in efficiency. This validates our
framework’s recommendation of Scrum for projects
requiring clear accountability, predictable delivery
and coordination across multiple stakeholders.

7.4.3 Case Study 3: Enhancing XP Adoption through
SAMM

Abrar et al. [51] addressed the challenges
organizations face in adopting Extreme Programming
(XP) by developing a Scalable Agile Maturity
Assessment Model (SAMAM). The model is based on
14 critical barriers to XP adoption identified through
a Systematic Literature Review (SLR) and validated
via an industry survey. SAMAM structures maturity
into five levels, replacing traditional Key Process
Areas (KPAs) with practices aimed at overcoming
these barriers. Its effectiveness was evaluated through
industrial case studies using the Motorola Assessment
Tool. The results demonstrate that SAMAM provides
a practical, scalable, and comprehensive approach for
organizations to assess and improve their XP adoption
maturity. This study created a maturity model to
address barriers in adopting XP. It confirms our
framework’s view that XP works best with technically
strong, smaller teams, but needs adaptation in larger
or complex settings.

7.4.4 Case Study 4: Scrum-XP Hybrid Methodology in
Distributed Web Development

Mustafa et al. [52] explored the application of
a Scrum-XP hybrid methodology in developing a
Clinic Appointment Booking Application (CABA)
by distributed teams. The study demonstrates how
combining Scrum’s project management practices with
XP’s engineering practices improves communication,
project coordination along with software quality.
The hybrid approach resulted in enhanced resource
management, product stability and higher customer
satisfaction. Additionally, the study highlights how
iterative feedback loops and collaborative coding
practices from XP complement Scrum’s structured
sprintsmaking the hybrid approach highly effective for
geographically distributed teams. The study validates
our framework’s recommendation to adopt hybrid
approaches when both technical rigor and structured
delivery are needed.

7.4.5 Case Study 5: Hybrid Scrum and Six Sigma in
Software Development

Alam et al. [48] explored the integration of Scrum and
Six Sigma methodologies in software development
through a practical case study. The hybrid approach
aimed to leverage Scrum’s agile project management
with Six Sigma’s focus on process improvement and
quality control. The results indicated that while the
combined model enhanced team performance and
customer satisfaction, it also led to increased rework
and a higher number of defects discovered. These
outcomes were deemed acceptable as they aligned
with the objectives of both Scrum and Six Sigma
emphasizing continuous improvement and quality
enhancement in the development process. Although
not centered on XP, it validates our framework’s
broader claim that hybridization is an effective strategy
when teams need to integrate agile flexibility with
additional quality or process disciplines.

8 Future Direction in Agile Frameworks
As agile methodologies continue to evolve, there
is a growing need to explore new directions that
enhance their effectiveness and adaptability. Emerging
technologies, changing team dynamics and increasing
project complexity are shaping the way XP, Scrum
and hybrid agile frameworks are applied in practice.
Future research and industry initiatives focus on
improving automation, scalability and collaboration
while ensuring high-quality software delivery. The
following points highlight the key trends and areas
of innovation that are likely to influence the next

47



ICCK Journal of Software Engineering

generation of agile practices.
AI and Automation in Agile: Incorporating artificial

intelligence and machine learning for predictive
sprint planning, automated code reviews, bug
detection and quality assurance to enhance
productivity and decision-making.

Hybrid and Scaled Agile Models: Further
development of hybrid models (e.g., Scrum-XP,
Scrum-Kanban, SAFe) to address scalability
challenges in large, distributed, or complex
projects.

Remote and Distributed Team Optimization:
Researching tools, processes, and communication
strategies tomaximize collaboration and efficiency
in geographically dispersed teams.

Continuous Integration of DevOps Practices:
Deepening the integration of DevOps principles
with agile frameworks to ensure faster delivery,
higher reliability, and seamless alignment
between development and operations.

Adaptive Learning and Agile Training: Developing
AI-driven training programs and adaptive
learning platforms to upskill teams rapidly for
effective adoption of XP, Scrum, and hybrid
methodologies.

Sustainability and Ethical Software Development:
Promoting sustainable, socially responsible, and
ethically aligned software development practices
within agile frameworks.

9 Conclusion
Agile software development frameworks such
as XP, Scrum and hybrid combinations remain
central to modern software engineering, yet
organizations often struggle to select or adapt the
right approach. This study addressed that challenge
through a dual contribution. First, we conducted a
comparative analysis of XP, Scrum and hybrid models,
highlighting their similarities, differences, strengths,
and limitations. This analysis provided a clearer
understanding of how each framework operates and
where they are best applied. Second, building on
this analysis, we proposed a decision framework
that translates theoretical insights into actionable
guidance. The framework identifies key criteria,
outlines a step-by-step process for methodology
selection and demonstrates practical application
through conceptual use cases. To further validate
its relevance, we examined published real-world

case studies which showed strong alignment
between our framework’s recommendations and
actual project practices. Together, the comparative
analysis and decision framework contribute both
to research and practice. The analysis sharpens
understanding of agile methodologies while the
framework offers practitioners a structured tool for
context-sensitive adoption. For researchers, this
work highlights opportunities for deeper empirical
studies of hybrid models, large-scale applications,
and integration with emerging practices such as
DevOps and AI. For practitioners, it provides clarity
and structure in navigating agile choices. Ultimately,
the paper underscores the importance of both
rigorous comparison and practical decision support
in advancing the effectiveness of agile software
development.

Data Availability Statement
Data will be made available on request.

Funding
This work was supported without any funding.

Conflicts of Interest
The authors declare no conflicts of interest.

AI Use Statement
The authors declare that no generative AI was used in
the preparation of this manuscript.

Ethical Approval and Consent to Participate
Not applicable.

References
[1] Herdika, H. R., & Budiardjo, E. K. (2020,

September). Variability and commonality requirement
specification on agile software development: Scrum,
xp, lean, and kanban. In 2020 3rd International
Conference on Computer and Informatics Engineering
(IC2IE) (pp. 323–329). IEEE. [CrossRef]

[2] Akhtar, A., Bakhtawar, B., & Akhtar, S. (2022).
Extreme programming vs scrum: A comparison
of agile models. International Journal of Technology
Innovation and Management (IJTIM), 2(2), 80-96.
[CrossRef]

[3] Cohn, M. (2021). User stories: For agile software
development with Scrum, XP, and others. BoD–Books on
Demand.

48

https://doi.org/10.1109/IC2IE50715.2020.9274564
https://doi.org/10.54489/ijtim.v2i2.77


ICCK Journal of Software Engineering

[4] Salazar-Salazar, G., Mora, M., Duran-Limon, H.,
Alvarez-Rodriguez, F., & Munoz-Zavala, A. (2024).
Review of Agile SDLC for Big Data Analytics Systems
in the Context of Small Organizations Using Scrum-XP.
International Arab Journal of Information Technology
(IAJIT), 21(6). [CrossRef]

[5] Hosseini, S. (2023). Xcrum: A Synergistic Approach
Integrating Extreme Programming with Scrum. arXiv
preprint arXiv:2310.03248.

[6] Fitzgerald, B., Stol, K. J., O’Sullivan, R., & O’Brien,
D. (2013, May). Scaling agile methods to regulated
environments: An industry case study. In 2013 35th
International Conference on Software Engineering (ICSE)
(pp. 863-872). IEEE. [CrossRef]

[7] Soukaina, M., Badr, E., Abdelaziz, M., & Nawal,
S. (2021). Towards a new metamodel approach of
Scrum, XP and Ignite methods. International Journal
of Advanced Computer Science and Applications, 12(12),
192–202. [CrossRef]

[8] Mamun, M. N. H. (2024). Integration Of Artificial
Intelligence And DevOps In Scalable And Agile
Product Development: A Systematic Literature
Review On Frameworks. ASRC Procedia: Global
Perspectives in Science and Scholarship, 4(1), 01-32.
[CrossRef]

[9] Reiter, M. (2025). Comparative Analysis of Agile
Frameworks: Scrum, Kanban, Extreme Programming.
In Data-Centric Business and Applications: Advancing
Success Through Operational Excellence, Financial
Innovation, Digital Transformation, and Data-Driven
Human Resource Management (pp. 335-348). Cham:
Springer Nature Switzerland. [CrossRef]

[10] Mora, M., Adelakun, O., Galvan-Cruz, S., & Wang,
F. (2022). Impacts of IDEF0-based models on the
usefulness, learning, and value metrics of Scrum
and XP project management guides. Engineering
Management Journal, 34(4), 574-590. [CrossRef]

[11] Magistretti, S., & Trabucchi, D. (2025). Agile-as-a-tool
and agile-as-a-culture: a comprehensive review
of agile approaches adopting contingency and
configuration theories. Review of Managerial Science,
19(1), 223-253. [CrossRef]

[12] Whiteley, A., Pollack, J., & Matous, P. (2021). The
origins of agile and iterative methods. The Journal of
Modern Project Management, 8(3). [CrossRef]

[13] Owen, H., & Dunham, N. (2015). Reflections on the
use of iterative, agile and collaborative approaches
for blended flipped learning development. Education
Sciences, 5(2), 85-103. [CrossRef]

[14] Shrivastava, A., Jaggi, I., Katoch, N., Gupta, D.,
& Gupta, S. (2021, July). A systematic review on
extreme programming. In Journal of Physics: Conference
Series (Vol. 1969, No. 1, p. 012046). IOP Publishing.
[CrossRef]

[15] Pandit, D. P., Gajjam, N. S., Sangu, V. S., Chandra, S., &
Chandrasatheesh, C. (2025). Optimizing Efficiency

and Delivering Quality for Lean and Extreme
Programming (XP) in Agile Business Methodologies.
In Impact of Digital Transformation on Business Growth
and Performance (pp. 547-578). IGI Global Scientific
Publishing. [CrossRef]

[16] Wiratama, J., & Santoso, H. (2023). Developing a class
scheduling mobile application for private campus
in Tangerang with the Extreme Programming (XP)
model. G-Tech: Jurnal Teknologi Terapan, 7(2), 484–493.
[CrossRef]

[17] Beedle, M., Devos, M., Sharon, Y., Schwaber, K., &
Sutherland, J. (1999). SCRUM: An extension pattern
language for hyperproductive software development.
Pattern languages of program design, 4(1), 637-651.

[18] Sassa, A. C., de Almeida, I. A., Pereira, T. N. F., & de
Oliveira, M. S. (2023). Scrum: A systematic literature
review. International Journal of Advanced Computer
Science and Applications, 14(4). [CrossRef]

[19] Kalenda, M., Hyna, P., & Rossi, B. (2018). Scaling
agile in large organizations: Practices, challenges,
and success factors. Journal of Software: Evolution and
Process, 30(10), e1954. [CrossRef]

[20] Bhattacharya, S., Shukla, K., & Shukla, A. (2024).
Beyond Scrum: Anticipating the evolution of agile
project management practices. In Practical approaches
to agile project management (pp. 119–141). IGI Global.
[CrossRef]

[21] Søderberg, A. M., Krishna, S., & Bjørn, P. (2013).
Global software development: commitment, trust and
cultural sensitivity in strategic partnerships. Journal of
International Management, 19(4), 347-361. [CrossRef]

[22] Almashhadani, M., Mishra, A., & Yazici, A. (2024).
Software maintenance practices using agile methods
towards cloud environment: A systematic mapping.
Journal of Software: Evolution and Process, 36(11), e2698.
[CrossRef]

[23] Sarkar, T., Moharana, B., Rakhra, M., & Cheema, G.
S. (2024, March). Comparative Analysis of Empirical
Research on Agile Software Development Approaches.
In 2024 11th International Conference on Reliability,
Infocom Technologies and Optimization (Trends and Future
Directions)(ICRITO) (pp. 1-6). IEEE. [CrossRef]

[24] Tabassum, A., Manzoor, I., Bhatti, S. N., Asghar, A. R.,
& Alam, I. (2017). Optimized quality model for agile
development: extreme programming (XP) as a case
scenario. International Journal of Advanced Computer
Science and Applications, 8(4).

[25] Sami, M. A., Rasheed, Z., Waseem, M., Zhang, Z.,
Herda, T., & Abrahamsson, P. (2024). Prioritizing
software requirements using large language models.
arXiv preprint arXiv:2405.01564.

[26] Nayaka Sheetakallu Krishnaiah, P., Narayan, D. L., &
Sutradhar, K. (2024). A survey on secure metadata of
agile software development process using blockchain
technology. Security and Privacy, 7(2), e342. [CrossRef]

[27] Eldanasory, N. A., Idrees, A. M., & Yehia, E.

49

https://doi.org/10.34028/iajit/21/6/12
https://doi.org/10.1109/ICSE.2013.6606635
https://doi.org/10.14569/IJACSA.2021.0121225
https://doi.org/10.63125/exyqj773
https://doi.org/10.1007/978-3-031-89718-4_27
https://doi.org/10.1080/10429247.2021.1958631
https://doi.org/10.1007/s11846-024-00745-1
https://doi.org/10.1007/978-3-030-26766-7_53
https://doi.org/10.3390/educsci5020085
https://doi.org/10.1088/1742-6596/1969/1/012046
https://doi.org/10.4018/979-8-3693-9783-1.ch020
https://doi.org/10.33379/gtech.v7i2.2288
https://doi.org/10.14569/IJACSA.2023.0140420
https://doi.org/10.1002/smr.1954
https://doi.org/10.4018/979-8-3693-3318-1.ch007
https://doi.org/10.1016/j.intman.2013.04.004
https://doi.org/10.1002/smr.2698
https://doi.org/10.1109/ICRITO61523.2024.10522134
https://doi.org/10.1002/spy2.342


ICCK Journal of Software Engineering

(2024). EFSP: An enhanced full Scrum process
model. International Journal of Software Engineering and
Knowledge Engineering, 34(5), 729–749. [CrossRef]

[28] Zahedi, M. H., Kashanaki, A. R., & Farahani, E.
(2023). Riskmanagement framework inAgile software
development methodology. International Journal of
Electrical & Computer Engineering (2088-8708), 13(4).
[CrossRef]

[29] Ahmed, I., Munir, F., Nafees, F., Mahmood,
J., Chaudhry, S. A., Javaid, M., & Batool, K.
(2024, December). The influence of Kanban agile
methodology on software project management: A
survey method. In 2024 International Conference on
Engineering and Emerging Technologies (ICEET) (pp.
1–6). IEEE. [CrossRef]

[30] Madampe, K., Hoda, R., & Grundy, J. (2024).
Supporting emotional intelligence, productivity and
team goals while handling software requirements
changes. ACM Transactions on Software Engineering and
Methodology, 33(6), 1-38. [CrossRef]

[31] Granados, Y., Snoeck,M., Ruiz, J., & Ferreira, G. (2024).
Experiences from combining Merode and Scrum. In
Agil-ISE@CAiSE (pp. 27–35).

[32] Tetteh, S. G. (2024). Empirical study of agile software
development methodologies: A comparative analysis.
Asian Journal of Research in Computer Science, 17(5),
30-42. [CrossRef]

[33] Natarajan, T., & Pichai, S. (2024). Behaviour-driven
development and metrics framework for enhanced
agile practices in scrum teams. Information and Software
Technology, 170, 107435. [CrossRef]

[34] Ugwueze, V. U., & Chukwunweike, J. N. (2024).
Continuous integration and deployment strategies
for streamlined DevOps in software engineering and
application delivery. Int J Comput Appl Technol Res,
14(1), 1-24. [CrossRef]

[35] Suhartini, S., Suef, M., Ciptomulyono, U., & Widodo,
E. (2023). A conceptual framework to agile product
development for sustainable garment product. In E3S
Web of Conferences (Vol. 465, p. 02024). EDP Sciences.
[CrossRef]

[36] Rubin, K. S. (2012). Essential Scrum: A practical guide
to the most popular Agile process. Addison-Wesley.

[37] Wiratama, J., & Santoso, H. (2023). Developing a Class
Scheduling Mobile Application for Private Campus
in Tangerang with the Extreme Programming (XP)
Model. G-Tech: Jurnal Teknologi Terapan, 7(2), 484-493.
[CrossRef]

[38] Melnyk, K. V., Hlushko, V.N., & Borysova, N. V. (2020).
Decision support technology for sprint planning.
Radio electronics, computer science, control, (1), 135-145.
[CrossRef]

[39] Seniv, M. M. (2023). Method for Selecting a Software
Development Methodology Taking into Account
Project Characteristics. Radio Electronics, Computer
Science, Control, (2), 134-134. [CrossRef]

[40] Fageha, M. K., & Aibinu, A. A. (2013). Managing
project scope definition to improve stakeholders’
participation and enhance project outcome.
Procedia-Social and Behavioral Sciences, 74, 154-164.
[CrossRef]

[41] Nuti, V. (2023). Analysis of the effectiveness of the Scrum
approach in the management of an IT project (Doctoral
dissertation, Politecnico di Torino).

[42] Merzouk, S., Jabir, B., Marzak, A., & Sael, N. (2024).
Best agile method selection approach at workplace.
Bulletin of Electrical Engineering and Informatics, 13(3),
1868–1876. [CrossRef]

[43] Moyano, C. G., Pufahl, L., Weber, I., & Mendling,
J. (2022). Uses of business process modeling in
agile software development projects. Information and
Software Technology, 152, 107028. [CrossRef]

[44] Kalem, G., Vesek, M. C., & Yalim, H. K. (2023,
February). The Efficiency of Software Methodologies
Used in Artificial Intelligence-Based Biomedical
Projects. In International Congress on Information and
Communication Technology (pp. 615-625). Singapore:
Springer Nature Singapore. [CrossRef]

[45] Papadakis, E., & Tsironis, L. (2018). Hybrid methods
and practices associated with agile methods, method
tailoring and delivery of projects in a non-software
context. Procedia computer science, 138, 739-746.
[CrossRef]

[46] Herda, T., Pichler, V., Zhang, Z., Abrahamsson, P., &
Hanssen, G. K. (2025, June). AI and Agile Software
Development: From Frustration to Success XP2025
Workshop Summary. In International Conference on
Agile Software Development (pp. 3-13). Cham: Springer
Nature Switzerland. [CrossRef]

[47] Santos, E. P., Gomes, F., Freire, S., Mendonça, M.,
Mendes, T. S., & Spínola, R. (2022, November).
Technical debt on agile projects: Managers’ point
of view at stack exchange. In Proceedings of the XXI
Brazilian Symposium on Software Quality (pp. 1-9).
[CrossRef]

[48] Alam, M. M., & Priti, S. I. (2024). Adaptive Hybrid
Software Project Management in Bangladesh’s Software
Industry: Navigating the Cultural Transformation and
Ensuring On-Time Delivery (Doctoral dissertation,
IUB).

[49] Bose, B., Khan, N. T., Ashreen, S., Ahmed, F.,
Mazid-Ul-Haque, M., & Bhowmik, A. (2023). Hybrid
scrum-xp: A proposed model based on effectiveness
of agile model on varieties of software companies in
bangladesh.

[50] Wandri, R., Fadhilah, M. R., Setiawan, P. R., & Fadhilla,
M. (2025). Agile Scrum as a development approach:
A case study of web-based school information system
design. Sistemasi: Jurnal Sistem Informasi, 14(4),
1722–1735. [CrossRef]

[51] Abrar, M. F., Alferaidi, A., Almurayziq, T. S.,
Saqib, M., Khan, W., Khan, Z., & Alsaffar, M.

50

https://doi.org/10.1142/S0218194023500699
https://doi.org/10.11591/ijece.v13i4.pp4379-4387
https://doi.org/10.1109/ICEET65156.2024.10913653
https://doi.org/10.1145/3664600
https://doi.org/10.9734/AJRCOS/2024/v17i5436
https://doi.org/10.1016/j.infsof.2024.107435
https://doi.org/10.7753/IJCATR1401.1001
https://doi.org/10.1051/e3sconf/202346502024
https://doi.org/10.33379/gtech.v7i2.2288
https://doi.org/10.15588/1607-3274-2020-1-14
https://doi.org/10.15588/1607-3274-2023-2-14
https://doi.org/10.1016/j.sbspro.2013.03.038
https://doi.org/10.11591/eei.v13i3.5782
https://doi.org/10.1016/j.infsof.2022.107028
https://doi.org/10.1007/978-981-99-3043-2_49
https://doi.org/10.1016/j.procs.2018.10.097
https://doi.org/10.1007/978-3-032-05799-0_1
https://doi.org/10.1145/3571473.3571500
https://doi.org/10.32520/stmsi.v14i4.5273


ICCK Journal of Software Engineering

(2025). Enhancing Extreme Programming (XP)
adoption through SAMAM: A scalable agile maturity
assessment model based on industry best practices.
IEEE Access. [CrossRef]

[52] Mustafa, N., Saeed, S., Abdulhakeem, A., & Ibrahim,
M. A. M. (2023). The impact of Scrum-XP hybrid
methodology on quality in web development with
distributed teamwork. In Proceedings of the 3rd
International Conference on Emerging Smart Technologies
andApplications (eSmarTA) (pp. 1–8). IEEE. [CrossRef]

Samia Akhtar received her M.S. degree in
Computer Science from Virtual University
of Pakistan, Lahore. Her research interests
lie in the fields of Software Engineering,
Machine Learning and Deep Learning. (Email:
samiaakhtar9898@gmail.com)

Shabib Aftab completed his Ph.D. in
Computer Science from National College
of Business Administration and Economics,
Lahore. He previously received the M.S.
degree in Computer Science from Comsats
University, Islamabad, the M.Sc. degree in
Information Technology from the Punjab
University College of Information Technology,
Lahore, and the Bachelor’s degree from
Government College University, Lahore. He is

a dedicated academician and accomplished researcher with over
16 years of academic and research experience. Currently, he is
serving as an Assistant Professor in the Department of Computer
Science at the Virtual University of Pakistan. His research
interests include Software Process Improvement, Data Mining,
Predictive Analytics, Applied Machine Learning, and Applied
Data Science. Dr. Aftab has authored more than 60 research
publications in prestigious international journals and conferences.
His work focuses on developing innovative, data-driven solutions
to real-world challenges across domains such as healthcare,
finance, and software engineering. He is also a Senior Member of
IEEE, reflecting his ongoing commitment to advancing research
and contributing to the global scientific community. (Email:
shabib.aftab@gmail.com)

51

https://doi.org/10.1109/ACCESS.2025.3574147
https://doi.org/10.1109/eSmarTA59349.2023.10293401

	Introduction
	Scope and Objectives
	Paper Organization

	Context of Agile in the Modern Era
	The Origin of Agile Methodologies
	Emergence of Extreme Programming (XP)
	Emergence of Scrum
	Evolution of Agile and the Role of Artificial Intelligence

	Extreme Programming (XP)
	Phases of XP
	Exploration Phase
	Planning Phase
	Iteration Phase
	Production Phase
	Maintenance Phase
	Death Phase

	Core Philosophy of XP
	Key Practices in XP
	Advantages and Limitations
	Applications of Extreme Programming
	Modern Relevance of XP

	Scrum
	Scrum Framework and Phases
	Product Backlog Refinement
	Sprint Planning
	Sprint Execution
	Daily Scrum / Stand-ups
	Sprint Review
	Sprint Retrospective

	Core Philosophy of Scrum
	Practices in Scrum
	Advantages and Limitations
	Applications of Scrum
	Modern Relevance of Scrum

	XP and Scrum - Hybrid Models
	Comparative Analysis of XP, Scrum and Hybrid Models
	Similarities across XP, Scrum, and Hybrid Models
	Key Differences

	Decision Framework for Practitioners
	Core Evaluation Criteria
	Steps for Applying the Decision Framework
	Conceptual Use Cases
	Use Case 1: Startup with Rapidly Changing Requirements (XP)
	Use Case 2: Large Enterprise Project with Multiple Stakeholders (Scrum)
	Use Case 3: Distributed Product Development with both Technical and Organizational Demands (Hybrid)

	Real-world Case Studies
	Case Study 1: Hybrid Scrum-XP Model in Software Companies
	Case Study 2: Agile Scrum for Web-based School Information System
	Case Study 3: Enhancing XP Adoption through SAMM
	Case Study 4: Scrum-XP Hybrid Methodology in Distributed Web Development
	Case Study 5: Hybrid Scrum and Six Sigma in Software Development


	Future Direction in Agile Frameworks
	Conclusion
	Samia Akhtar
	Shabib Aftab


