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Abstract
Skin-disease classification has evolved from simple
image recognizers into software-driven pipelines
that demand reliability, reproducibility, and
ethical governance. While most AI reviews
focus on algorithmic accuracy, few examine
these systems through a software-engineering
(SE) lens—essential for assessing pipeline
modularity, version control, deployment readiness,
and long-term maintainability, all critical for
clinical integration. This review surveys literature
from 2015 to early 2025, curating about 180
papers that link skin-disease classification
with SE practices. It traces the shift from
handcrafted feature-based classifiers to end-to-end
convolutional, ensemble, and transformer
architectures, alongside the engineering processes
that support versioning, deployment, and
monitoring. Benchmark datasets (PH2, HAM10000,
ISIC, etc.) have established reproducible
evaluation protocols that underpin software
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verification. Emerging directions—self-supervised
pretraining, multimodal fusion, human-AI
collaboration—signal a move from model-centric
to system-level integration. The analysis
highlights not only accuracy and generalization
but also SE quality attributes: scalability,
maintainability, explainability, and fairness,
which are indispensable for trustworthy adoption
in diverse clinical workflows.

Keywords: software engineering, machine learning, deep
learning, dermatology, computer-aided diagnosis, MLOps,
fairness.

1 Introduction
This review has three parts. First examine
machine learning and deep learning approaches
for skin-disease classification through a
software-engineering perspective. Second,
analyze engineering principles such as modularity,
reproducibility, and deployment readiness. These
principles shape the development and reliability of
dermatology AI systems. Third, identify persistent

Citation
Nazir, M., Ahsan, A., Khadim, R., Abbas, S., Muhammad, A., &
Sohail, Z. (2026). Software-Engineering Perspectives on Machine
for Skin-Disease Classification. ICCK Journal of Software Engineering,
2(1), 52–70.

© 2026 by the Authors. Published by Institute of
Central Computation and Knowledge. This is an open
access article under the CC BY license (https://creati
vecommons.org/licenses/by/4.0/).

52

http://dx.doi.org/10.62762/JSE.2025.913699
http://crossmark.crossref.org/dialog/?doi=10.62762/JSE.2025.913699&domain=pdf
https://orcid.org/0009-0006-2903-4230
https://orcid.org/0009-0000-4198-821X
https://orcid.org/0009-0001-3249-3626
http://dx.doi.org/10.62762/JSE.2025.913699
mailto:moomnanazir@gmail.com
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


ICCK Journal of Software Engineering

engineering, ethical, and operational challenges
that must be addressed for safe and scalable clinical
adoption.

Skin diseases including melanoma, basal cell
carcinoma, and other chronic dermatological
disorders remain among the world’s most prevalent
health challenges, affecting millions annually [1, 2].
Melanoma, with its high metastatic potential, has been
recognized by the World Health Organization as one
of the most aggressive malignancies [3]. Early and
precise diagnosis is therefore critical for improving
patient survival and reducing the cost of long-term
care [4]. Traditional diagnosis depends on a clinician’s
visual inspection of dermoscopic or clinical images,
a process that is inherently subjective and varies
across observers. These limitations have motivated
the development of software-driven computer-aided
diagnostic systems that aim to standardize, scale, and
integrate dermatological assessment within clinical
workflows.

Dermatological disorders encompass a wide range
of benign and malignant skin lesions that differ in
morphology, pigmentation, and clinical presentation.
The most common diagnostic categories include
melanocytic nevi, vascular lesions, dermatofibroma,
keratoses, and skin carcinomas such as basal
cell carcinoma and squamous cell carcinoma.
Representative examples of these categories are shown
in Figure 1, illustrating the clinical diversity and
visual complexity that make automated classification
a challenging yet essential task in computer-aided
dermatology.

Early ML pipelines relied on handcrafted color,
texture, and shape features coupled to SVM/RF
classifiers; performance hinged on feature quality
and consistent segmentation [5, 6]. Although
promising, these pipelines were constrained by small
datasets, limited generalization, and an absence of
standardized software engineering practices such
as data-versioning or reproducible preprocessing.
The introduction of deep learning, particularly
convolutional neural networks (CNNs), marked a
decisive shift toward end-to-end trainable systems.
Seminal studies demonstrated dermatologist-level
accuracy in differentiating malignant from benign
lesions [8, 9]. Public datasets released through
the International Skin Imaging Collaboration
(ISIC) provided annotated images and reference
protocols that enabled replication, benchmarking,
and open-source collaboration [10, 11]. Subsequent

innovations—EfficientNet, Vision Transformers
(ViTs), self-supervised pre-training, and multimodal
fusion with patient metadata—further evolved
dermatology AI into a software ecosystem rather
than a collection of isolated models [12, 13]. These
traditional pipelines provided the foundational
structure upon which modern, software-centric
dermatology AI systems were built. Their limitations
directly motivated the development of more
modular, scalable, and reproducible deep-learning
architectures. Moreover, these early pipelines lacked
basic software-engineering practices such as version
control and modular component design. This makes it
difficult to update, debug, or maintain as new datasets
and diagnostic requirements emerge.

Despite impressive progress, significant engineering
and ethical challenges persist: severe class
imbalance, under-representation of darker skin
tones, domain-shift across imaging devices, and
limited transparency in model behavior [13].
Recent frameworks such as CLEAR Derm have
sought to codify reporting standards and promote
reproducibility, fairness, and auditability in
dermatology AI [14]. However, many studies
still lack complete documentation of training
environments, hyper-parameters, and validation
of pipelines—issues that directly impede software
reliability and regulatory compliance.

Applying a software-engineering lens in dermatology
AI involves both model architectures and the
entire pipeline as a software system. This
includes examining data versioning, modular
pipeline design, documentation quality, testing and
validation practices, deployment workflows, and
post-deployment monitoring. Such SE principles are
essential because clinical AI must be reliable, traceable,
maintainable, and safe qualities that arise from sound
engineering rather than from model accuracy alone.

Despite extensive progress in algorithmic performance,
existing reviews seldom address how these models
translate into reproducible, maintainable, and
ethically governed software systems. The intersection
of dermatology AI and software engineering
remains underexplored, particularly regarding
data versioning, deployment workflows, and
post-deployment monitoring. This paper bridges
that gap by systematically analyzing ML and DL
approaches through a software-engineering lens,
emphasizing scalability, fairness, and operational
reliability.

53



ICCK Journal of Software Engineering

Figure 1. Representative categories of skin diseases commonly analyzed in dermatological image-classification research,
illustrating the diversity of lesion types and diagnostic complexity encountered in automated analysis.

This review focuses on machine- and
deep-learning–based skin-disease classification
from 2015 to 2025 through a software engineering lens.
This decade is particularly important because
it captures the transition from handcrafted,
non-standardized pipelines to modern deep-learning
and transformer-based systems. This emergence of
reproducibility standards, version control practices,
dataset governance, and deployment-focused
engineering in clinical AI. It traces the evolution
from feature-engineered classifiers to modern deep
architectures—CNNs, Transformers, multimodal,
and self-supervised frameworks—while examining
how reproducibility, maintainability, and fairness
have been addressed. The scope includes common
dermatologic conditions (melanoma, basal-cell, and
squamous-cell carcinomas) as well as emerging
efforts to model rare diseases and diverse skin

tones. By connecting algorithmic progress with
software-system considerations such as architecture
design, version control, testing, and deployment,
the paper highlights both scientific and engineering
maturity in dermatology AI.

Overall, this work bridges medical AI research and
software-engineering practice. Its main contributions
are:

1. Combined Classical & Modern Analysis: Revisits
traditional feature-based methods and compares
them with modern deep-learning approaches to
show how early pipelines shaped today’s modular
and reproducible dermatology AI systems.

2. Comprehensive Survey (2015–2025): Summarize
advances in machine and deep learning for
dermatology across data, models, and evaluation

54



ICCK Journal of Software Engineering

practices.
3. Benchmark Resources: Review public datasets

(ISIC, HAM10000, PH2, BCN20000) and analyze
how open benchmarks foster verification and
reuse.

4. Architectural Innovations: Discuss EfficientNet,
ViTs, and multimodal frameworks in terms of
their software architecture patterns (scalability,
portability, and resource profiling).

5. Challenges and Quality Attributes: Identify
ongoing issues—dataset imbalance, algorithmic
bias, limited interpretability—and relate them to
software quality factors such as reliability and
explainability.

6. Future Outlook: Outline directions for federated,
fairness-aware, and explainable systems
grounded in robust MLOps and governance
practices.

2 Review Methodology
We adopted a systematic review methodology to
ensure to ensure comprehensive and balanced
reporting of machine-learning and deep-learning
research in skin-disease classification. The search
strategy targeted reviewed literature published
between 2015 and early 2025. This period reflects
the transition from traditional pipelines to modern
deep-learning and transformer-based dermatology of
AI systems.
Search Sources: Relevant studies were searched
through major scientific databases, including IEEE
Xplore, PubMed, Scopus, ScienceDirect, and Google
Scholar. These databases were selected to find
publications spanning computer vision, medical
imaging, software engineering, and clinical research.
Search Strategy: Search queries combined
domain-specific and software-engineering-related
terms, including “skin disease classification,”
“dermoscopy,” “computer-aided diagnosis,” “machine
learning,” “deep learning,” “CNN,” “Vision
Transformer,” “multimodal dermatology AI,”
“pipeline reproducibility,” “software engineering,”
“MLOps,” and “model deployment.”

2.1 Inclusion Criteria
Studieswere included if theymet the following criteria:
1. Published between 2015 and early 2025 in

peer-reviewed venues.

2. Proposed or evaluatedML/DL-based skin disease
classification methods.

3. Reported methodological details, datasets,
performance metrics, or software engineering
considerations.

4. Used dermoscopic, clinical, or multimodal
dermatology imaging data.

5. Demonstrated relevance to system design,
reproducibility, deployment, or engineering
practices.

2.2 Exclusion Criteria
The following were excluded:
1. Clinical papers without computational or

system-relevant methods.
2. Articles lacking methodological transparency or

reproducibility details.
3. Review papers that did not present a new analysis.
4. Non-English publications and preprints lacking

peer review.

2.3 Study Selection Workflow
In the first search, almost 420 studies are derived.
After removing duplicates, 358 articles remained for
screening. Title and abstract review reduced this set to
226 full-text articles. Out of which approximately 180
met all inclusion criteria and were included in the final
synthesis. A simplified selectionworkflow is presented
in Figure 2.

3 Traditional approaches for skin disease
detection

Before the deep learning revolution, classical
computer-aided diagnosis (CAD) systems formed the
foundation of automated skin disease analysis. These
early pipelines followed a deterministic software
architecture consisting of four sequential modules
preprocessing, segmentation, feature extraction, and
classification. In the preprocessing phase, image
quality was enhanced and artifacts such as hair
and noise were removed using algorithms like
DullRazor, Gaussian filtering, and color normalization.
Segmentation techniques including thresholding,
region growing, watershed, and active contours were
then applied to delineate lesions from surrounding
tissue [5, 15].
A crucial component of these systems was handcrafted
feature engineering, where domain knowledge guided
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Figure 2. Overview of the study selection process used in
the review, summarizing identification, screening,
eligibility assessment, and final inclusion of articles.

the design of descriptors that captured clinically
relevant lesion properties. Commonly used features
included color histograms across RGB, HSV, and
CIELab models; texture operators such as the
Gray-Level Co-occurrence Matrix (GLCM) and Local
Binary Patterns (LBP); and shape metrics aligned with
the ABCD dermatological rule asymmetry, border
irregularity, color variation, and diameter. In addition,
multi-scale representations derived from wavelet and
Gabor filters were employed to model fine-grained
lesion characteristics [16].

Following feature extraction, classification was
performed using conventional machine-learning
algorithms such as Support Vector Machines (SVM),
k-Nearest Neighbours (k-NN), Random Forests,
Decision Trees, Logistic Regression, and Naïve
Bayes. Among these, SVMs gained popularity in
early melanoma studies because of their robustness

on small datasets and relatively low overfitting
tendency. However, their performance was highly
sensitive to feature quality and segmentation
accuracy, leading to brittle generalization across
imaging devices, illumination conditions, and patient
demographics [17].

Traditional computer-aided diagnosis (CAD) systems
for skin disease detection are followed by a sequential
workflow comprising dataset selection, preprocessing,
segmentation, feature extraction, and classification.
Each stage required careful manual design and
optimization—preprocessing to remove artifacts such
as hair and lighting variations, segmentation to
delineate lesion boundaries, and handcrafted feature
extraction based on color, texture, and shape
descriptors. The overall pipeline is illustrated in
Figure 3, summarizing the conventional stages that
underpinned early systems and highlighting the need
for more modular, automated deep-learning pipelines.

From a software-engineering perspective, these
CAD pipelines resemble loosely coupled procedural
programs rather than reusable systems. Each
module—often written in isolation—required manual
parameter tuning and lacked standardized interfaces
for data exchange. Reproducing results across
laboratories was therefore difficult, as preprocessing
scripts, segmentation thresholds, and classifier
parameters were rarely version-controlled or
documented. Despite these shortcomings, traditional
methods provided an architectural blueprint that
later influenced the modular data pipelines seen in
contemporary deep-learning frameworks.

Traditional CAD pipelines lacked the fundamental
engineering practices required for scalable and
reproducible systems. Each stage, i.e., preprocessing,
segmentation, feature extraction, and classification,
was implemented as a tightly coupled script with
minimal modularity, making updates difficult and
error-prone. Documentation was often incomplete;
preprocessing steps were not version-controlled, and
parameter settings were rarely archived, preventing
exact replication across research groups. The absence
of automated testing, standardized data interfaces, and
pipeline orchestrationmeant thatminor changes in one
module frequently broke downstream components.
These engineering limitations contributed to the shift
toward deep learning, where end-to-end architectures
reduce manual coupling and improve reproducibility
through training pipelines.
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Figure 3. Traditional computer-aided diagnosis (CAD) workflow for skin disease detection, illustrating the sequential
stages of dataset selection, data preprocessing, lesion segmentation, handcrafted feature extraction, and classical

machine-learning-based classification.

Table 1. Traditional ML pipeline for skin disease classification and its limitations leading to deep learning.
Stage Techniques / Features Algorithms / Methods
Preprocessing Hair removal (DullRazor), Gaussian filtering,

color normalization
Image enhancement and
artifact removal

Segmentation Thresholding, region growing, watershed
transformation, active contours

Delineating lesion boundaries

Feature
Extraction
(Handcrafted)

- Color histograms (RGB, HSV, CIELab) -
Texture features: GLCM, LBP - Shape metrics
(ABCD rule) - multi-scale features: Wavelet
transforms, Gabor filters

Hand-designed descriptors to
capture lesion characteristics

Classification SVM, k-NN, Random Forests, Decision Trees,
Logistic Regression, Naïve Bayes

Traditional ML classifiers for
lesion categorization

Performance
Examples

- SVM-based dermatofluoroscopy model: 95.8%
sensitivity, 80.9% specificity on 214 lesions -
HOG (~80%) outperformed Gabor (79%), SIFT
(78%), and LBP (76%) on dermoscopy dataset

CAD accuracy limited by
dataset size, handcrafted
features, and segmentation
errors

Limitations - Dependency on handcrafted features - Poor
generalization to diverse datasets - Segmentation
errors propagated to classifiers - Dataset bias
& spurious correlations- Absence of a unified,
automated, and reproducible pipeline (key
software-engineering limitation)

Motivated transition to deep
learning

3.1 Performance & Limitations of Traditional
Approaches

Before deep learning became mainstream,
handcrafted feature–based CAD systems reported
respectable but inconsistent results. For example, a
dermatofluoroscopy study achieved 95.8 % sensitivity
and 80.9 % specificity for melanoma detection using
an SVM classifier on 214 pigmented lesions [18].
Another comparative study using a public dermoscopy
dataset found that Histogram-of-Oriented-Gradients
(HOG) features produced the highest single-classifier
accuracy (˜80 %), outperforming Gabor (79 %), SIFT
(78 %), and LBP (76 %) descriptors [19].

The comparative performance of classical handcrafted

feature descriptors demonstrates the variability in their
discriminative capacity for skin lesion classification.
As shown in Figure 4, Histogram of Oriented
Gradients (HOG) achieved the highest accuracy
(˜80%), outperforming Gabor filters (79%), SIFT
(78%), and Local Binary Patterns (LBP, 76%). These
results underscore that while traditional methods
could provide reasonable accuracy, their success
was highly dependent on the quality of handcrafted
features and the homogeneity of the dataset—factors
that later motivated the transition toward deep
learning–based approaches.

Yet these pipelines faced several engineering and
methodological limitations. Most were trained on
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Figure 4. Comparative accuracy of traditional handcrafted
feature descriptors used in early skin-disease classification
systems, highlighting the performance variability across

texture-, color-, and shape-based methods.

small, homogeneous datasets with minimal external
validation, limiting scalability and cross-domain
reliability. Handcrafted features were inherently
shallow and often failed to capture the complex
morphology of lesions, while segmentation errors
propagated through the pipeline and degraded
classification performance [20–22].
Moreover, recent analyses have revealed dataset bias
and spurious correlations, where classical algorithms
unintentionally learned background artifacts
rather than true pathological features—raising
questions about robustness and fairness in clinical
deployment [4, 23]. While these methods achieved
reasonable accuracy, their reliance on handcrafted
features, segmentation quality, and limited datasets
often restricted performance, paving the way for the
shift toward deep learning are shown in Table 1.
In summary, classical CAD approaches laid the
groundwork for data processing and feature
standardization but lacked the engineering
rigor—version control, modularity, automated testing,
and deployment readiness—expected of contemporary
AI systems. Their dependence on manual design and
inability to self-adapt to unseen data underscored
the need for end-to-end learnable and maintainable
architectures, catalyzing the transition to deep
learning and modern MLOps-oriented dermatology
AI.
These limitations were not only algorithmic but also
fundamentally software-engineering bottlenecks.
Traditional pipelines required extensive manual
parameter tuning for each stage, making them difficult
to maintain. The lack of modularity meant that
segmentation, feature extraction, and classification

could not be updated or replaced independently,
reducing extensibility and slowing development.
Reproducing results was often impossible because
preprocessing scripts, thresholds, and feature
definitions were not standardized. Combined with
poor cross-domain generalization arising from
handcrafted features, these constraints created an
unsustainable engineering model. Deep learning
emerged as a response to these bottlenecks by
offering end-to-end architectures that reduced manual
dependencies, improved robustness, and supported
more reproducible software workflows.

4 Machine and deep learning approaches
The transition from traditional computer-aided
diagnosis (CAD) systems to deep learning–based
architectures marked a decisive shift in
how dermatological image analysis is
conceived, implemented, and maintained. In
software-engineering terms, this transformation
represents a move from procedural, handcrafted
pipelines toward end-to-end, data-driven systems
with reusable components, defined interfaces, and
automated learning of representations.

4.1 Evolution of Model Architectures
Early deep models adopted convolutional neural
networks (CNNs) as the dominant architecture for
learning hierarchical image features without explicit
feature engineering. Networks such as AlexNet,
VGGNet, and ResNet were retrained or fine-tuned on
dermatology datasets to classify melanoma, basal-cell
carcinoma, and other lesions [24]. These systems
eliminated most manual preprocessing, achieving
dermatologist-level accuracy on curated image sets.
As datasets expanded—through initiatives such
as the International Skin Imaging Collaboration
(ISIC) and HAM10000—researchers began integrating
transfer learning and data-augmentation pipelines
to address class imbalance and overfitting. These
practices introduced software-engineering discipline
into experimental design, enabling reproducible
training and evaluation across laboratories.

Subsequent work explored lightweight CNNs such as
MobileNet, ShuffleNet, and SqueezeNet to facilitate
deployment on mobile or embedded devices. These
architectures emphasized computational efficiency,
parameter sharing, and modularization, aligning
naturally with SE goals of portability, scalability, and
energy-aware design.
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Figure 5. Representative deep-learning architectures for skin-disease classification, showing how model design has
evolved toward more modular, maintainable, and deployment-ready software systems.

4.2 Advancements Beyond CNNs
Recent years (2021–2025) have witnessed a paradigm
shift toward hybrid and transformer-based
architectures that integrate image and metadata
streams. Models such as EfficientNet, Vision
Transformers (ViT), and Swin-Transformer
introduced mechanisms for global context modeling
and improved explainability through attention
maps [24, 25]. Moreover, multimodal frameworks
now combine dermoscopic images with structured
clinical information—age, sex, lesion site, or skin
tone—through dual-branch encoders that fuse
visual and tabular data at the feature or decision
level. From an SE perspective, these architectures
behave as micro-services with defined APIs: each
branch processes a specific modality and exposes
standardized embeddings for downstream fusion.
This modularity supports independent development,
testing, and scaling—key properties of robust
software systems. This means each module functions
independently with a clear input and output, making
the system easier to update, test, and maintain.

The Figure 5 contrasts early convolutional models
(CNNs and EfficientNet) with transformer-based
and multimodal architectures that integrate patient
metadata through dual-branch pipelines. Each

block reflects the increasing engineering maturity
of dermatology AI—from static models to modular,
API-driven components designed for reproducibility,
scalability, and clinical deployment.

4.3 Learning Paradigms and Training Strategies
To overcome data scarcity and improve generalization,
several studies introduced self-supervised learning
and federated learning frameworks. Self-supervised
pretraining exploits unlabeled images to learn
domain-specific representations that transfer
effectively to limited annotated datasets [27].
Federated learning extends this concept across
institutions, enabling model training without
centralizing patient data—thereby enhancing privacy,
security, and compliance with regulations such as
HIPAA and GDPR.

From an SE standpoint, these developments
correspond to the DevOps to MLOps evolution:
continuous integration and deployment of models,
configuration management (e.g., Docker, Conda, or
MLflow environments), andmonitoring of model drift
during clinical use. Tools such as TensorFlowExtended
(TFX), Kubeflow, and MLflow have formalized
reproducibility and traceability—dimensions now
essential for medical-software certification.
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4.4 Evaluation and Benchmarking Practices
Deep-learning studies typically evaluate model
performance using metrics such as accuracy, precision,
recall, F1-score, and area under the ROC curve (AUC).
However, modern SE-aligned evaluations also include
non-functional attributes:
• Latency and throughput for on-device inference
• Memory footprint and parameter count for

deployment feasibility
• Calibration error (ECE or Brier score) for

reliability
• Fairness and subgroup analysis across skin tones

or imaging devices
Benchmark datasets such as ISIC, PH2, Derm7pt,
and BCN20000 have provided standardized test
splits that promote comparability and regression
testing across algorithm versions. Yet, inconsistencies
remain in version control, seed initialization, and
documentation—highlighting the ongoing need for
reproducibility engineering within the dermatology
AI community.

4.5 Interpretability and Human-AI Collaboration
Explainability has become integral to trustworthy AI.
Approaches such as Grad-CAM, Layer-wise Relevance
Propagation (LRP), and attention heatmaps visually
link network activations to lesion regions, enabling
clinicians to validate model reasoning. Embedding
these interpretability modules as callable components
in the inference pipeline enhances transparency,
debuggability, and clinical acceptance.
Beyond interpretation, human-AI collaboration
frameworks treat models as decision-support agents
rather than replacements for dermatologists. Studies
show that combining algorithmic predictions with
expert review improves diagnostic accuracy and
reduces inter-observer variability—aligning with SE
principles of human-in-the-loop validation and safe
system design.

4.6 Comparison of Machine Learning and Deep
Learning Approaches

Between 2015 and 2025, dermatological image
analysis witnessed a clear paradigm shift from
classical machine learning (ML) to deep learning
(DL)–based systems. Classical ML pipelines such as
Support Vector Machines (SVMs), Random Forests
(RF), and k-Nearest Neighbors (k-NN) relied on
hand-engineered features—color histograms, texture

descriptors, and shape metrics—to encode low-level
lesion information. For instance, the work in [5]
combined color and texture descriptors using SVMs
and achieved 91.4 % accuracy on the PH2 dataset,
while [28] reported 85.7 % accuracy for handcrafted
Gabor-based features with RF classifiers. Although
these systems performed well on small curated
datasets, theywere constrained by their dependence on
feature engineering and showed weak generalization
across imaging devices, institutions, and populations.
The emergence of deep learning, particularly
Convolutional Neural Networks (CNNs), introduced
a data-driven alternative: hierarchical feature
extraction learned directly from raw images. A
landmark study employing Inception-v3 trained
on over 129 450 dermoscopic images achieved
dermatologist-level performance (AUC = 0.96) [7].
Subsequent architectures such as ResNet and
EfficientNet further improved accuracy to 93–95 % on
benchmark datasets including HAM10000 and ISIC
2019 [8]. These advances eliminated manual feature
design, improved robustness to domain shifts, and
enabled end-to-end optimization of the diagnostic
pipeline.
In the later phase of this evolution, Transformer-based
architectures began to redefine dermatology AI.
Vision Transformers (ViTs), introduced around
2021, achieved 94.6 % accuracy on HAM10000 [29],
offering improved global context modeling through
self-attention. The first self-supervised and federated
ViTs pushed performance to 96.1 % while preserving
patient privacy [30]. These models embody a
critical step toward software-engineered systems
that integrate data privacy, model governance,
and distributed learning within a unified MLOps
framework.
From a software-engineering perspective, this
evolution illustrates the shift from static pipelines to
adaptive, maintainable systems characterized by:
• Automation: Feature extraction, training, and

deployment orchestrated through reproducible
pipelines.

• Scalability: Transfer-learning and lightweight
models supporting mobile and edge deployment.

• Governance: Federated and privacy-aware
learning ensuring regulatory compliance.

• Observability: Continuous monitoring of model
drift, calibration, and fairness of metrics.
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Table 2. Summary of ML and DL models for skin disease classification.
Study / Model Dataset Technique Performance

(Accuracy /
AUC)

Key Findings / Limitations

SVM + Color & Texture [5] PH2 Handcrafted
features + SVM

91.4 % accuracy Good on small datasets; poor
cross-domain generalization.

RF + Gabor [28] Dermoscopic
images

Handcrafted
features + RF

85.7 % accuracy Feature engineering required;
scalability issues.

k-NN + Custom Features [24] Private
dataset

Handcrafted +
k-NN

~84 % accuracy High variance; dataset
dependency.

Inception-v3 CNN [7] 129 450
images

Deep CNN AUC = 0.96 Dermatologist-level
performance.

CNN Ensemble (ISIC) [25] ISIC CNN Ensemble AUC = 0.91 Surpassed dermatologists in
certain tasks.

ResNet [25] HAM10000 Deep Residual
Network

95 % accuracy Strong benchmark; large data
requirement.

ResNet-50 [8] ISIC 2019 Deep CNN 95 % sens., 82 %
spec.

Excellent melanoma detection;
imbalanced data.

Inception-v4 [7] Dermoscopic
images

Deep CNN AUC = 0.96 Reinforced
dermatologist-level
performance.

EfficientNet [26] HAM10000 EfficientNet CNN 93.5 % accuracy Better accuracy + efficiency
balance.

Hybrid CNN+Metadata [10] HAM10000
+ metadata

Multimodal CNN 92.3 % accuracy More robust via multimodal
fusion.

Vision Transformer (ViT) [28,
29]

HAM10000 ViT 94.6 % accuracy Global context modeling; high
interpretability.

Self-Supervised ViT +
Federated Learning [29, 31]

HAM10000
ISIC

ViT (SSL + FL) 96.1 % accuracy Accuracy + privacy
preservation; high compute
cost.

A comparative summary of representative ML and
DL models—including datasets, methods, and
performance—is presented in Table 2, demonstrating
how modern architectures outperform traditional
systems not only in accuracy but also in engineering
maturity and readiness for real-world clinical
deployment.

In summary, the evolution of machine and
deep-learning approaches for dermatology reflects a
progressive software-engineering maturity curve:

• From monolithic scripts to modular, reusable
architectures

• From static experiments to continuous, monitored
pipelines (MLOps)

• From accuracy-only evaluation to multi-objective
quality assessment encompassing performance,
fairness, and reliability

These developments set the stage for the next section,
which examines benchmark datasets and SE-grade
evaluation protocols that support reproducibility and

trustworthy deployment.

From a software-engineering standpoint, modern
deep-learning approaches in dermatology increasingly
depend on mature engineering workflows that ensure
reliability and reproducibility. Continuous Integration
and Continuous Deployment (CI/CD) pipelines
support automated testing of preprocessing scripts,
model updates, and evaluation of metrics, reducing
the risk of silent failures between model versions.
Containerization tools such as Docker and Singularity
standardize training and inference environments,
improving portability across institutions and hardware
platforms. Model governance frameworks include
MLflow tracking, version control for datasets and
models, and audit logs that enable traceability and
regulatory compliance, both essential for clinical AI.
Moreover, SE quality attributes such as scalability,
maintainability, and deployment readiness now
directly affect model design choices, pushing
researchers toward lightweight architectures, modular
fusion pipelines, and robust MLOps ecosystems.
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Table 3. Key public datasets for skin disease classification.
Dataset Year Images / Patients Data Type Notable Features / Use Case
PH2 [5] 2013 200 dermoscopic

images
Dermoscopy Small, curated set; early benchmark for

handcrafted-feature ML models.
ISIC Archive /
Challenges [33]

2016–2020 1 million images Dermoscopic + clinical Standardized splits, public leaderboard,
and reproducible evaluation scripts.

HAM10000 [34] 2018 10 015 images Dermoscopy Seven lesion classes; widely used for CNN
benchmarking and model calibration.

Derm7pt [35] 2019 2 000 images Dermoscopy + 7-point
checklist

Supports explainable-AI and
interpretability studies.

PAD-UFES-20 [36] 2020 1 379 patients /
smartphone images

Clinical + mobile Promotes domain-generalization and
real-world evaluation.

SD-198 [37] 2021 6 584 images / 198
classes

Clinical photographs Large-scale multi-class dataset; diverse
lesion representation.

Multimodal HAM10000
+ Metadata [10]

2022 10 015 + structured
attributes

Dermoscopy + clinical
data

Enables multimodal fusion and hybrid AI
pipelines.

5 Datasets and Benchmarks for Skin Disease
Classification

The creation of publicly accessible dermatology
datasets and benchmark challenges between 2015
– 2025 has profoundly shaped how machine- and
deep-learning systems are evaluated, reproduced, and
compared. From a software-engineering standpoint,
these datasets function as shared testbeds, enforcing
standardized input–output specifications, metadata
schemas, and versioned evaluation protocols. Together,
they have transformed skin-disease classification from
an isolated research activity into a reproducible
software discipline.

Early studies relied on small, institution-specific
datasets, such as the PH2 dataset (200 dermoscopic
images), which restricted model generalization
and hindered external validation [5]. The
subsequent emergence of large-scale benchmark
repositories fundamentally changed the engineering
of dermatology AI. The International Skin Imaging
Collaboration (ISIC) Archive became the most
widely used open resource, hosting millions of
dermoscopic and clinical images. Through its annual
ISIC Challenges (2016–2020), the archive introduced
standardized train/validation/test splits, versioned
evaluation scripts, and public leaderboards, providing
the field with its first reproducible evaluation
framework [33].

Another milestone was the HAM10000 dataset,
released in 2018, comprising 10 015 dermoscopic
images covering seven lesion categories. This
dataset enabled training of deeper architectures such
as ResNet and EfficientNet, achieving accuracies
exceeding 93% on benchmark splits [34]. Similarly,

the Derm7pt dataset offered 2 000 dermoscopic
images annotated with 7-point melanoma checklist
labels, encouraging explainable-AI research and
clinical interpretability studies [35]. More recent
datasets—PAD-UFES-20 and SD-198—introduced
clinical and smartphone-acquired images, explicitly
targeting domain generalization and cross-device
robustness [35, 36].
Beyond pure image repositories, the field has
begun integrating multimodal datasets that combine
dermoscopic images with structured clinical metadata
such as patient age, lesion site, and diagnostic
history. Such datasets have driven the design of
hybrid AI frameworks, enabling late- or cross-modal
fusion of image and tabular streams [10]. These
multimodal resources embody a software-system
shift toward richer data models, supporting modular
architectures and facilitating interoperability between
image analysis engines and electronic health record
(EHR) systems.
From an SE perspective, these datasets collectively
serve three purposes:
1. Reproducibility — open access and versioned

splits support verification of published results.
2. Bias Assessment — dataset documentation

exposes over-representation of benign lesions and
limited diversity across Fitzpatrick skin types.

3. Engineering Benchmarking — standardized
protocols allow regression testing, cross-version
validation, and monitoring of fairness and
calibration in updated models.

A summary of the key public datasets—including their
scale, modalities, and distinguishing attributes—is
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presented in Table 3, which highlights their pivotal role
in reproducible software pipelines for dermatology AI.
In addition to the tabular summary, Figure 6 illustrates
the chronological growth and increasing complexity
of benchmark datasets used in dermatology AI.

6 Advanced Architectures in Skin Disease
Classification (2022–2025)

Between 2022 and early 2025, dermatological AI
has entered a phase characterized by architectural
diversification and software-system maturity.
The focus has shifted from single-modality
convolutional neural networks (CNNs) toward
efficient, interpretable, and multimodal deep learning
frameworks, designed not only for accuracy but also
for scalability, transparency, and deployability.

6.1 Lightweight and Efficient Transformers
One notable development is DermViT (2025)—a
lightweight Vision Transformer (ViT) variant
engineered for dermatology image analysis. DermViT
introduces hierarchical attention mechanisms that
suppress background noise and emphasize clinically
relevant features, yielding 85.3% accuracy and a
mean AUC (MAUC) of 96.3% on the ISIC-2018
and ISIC-2019 datasets. Its compact architecture
demonstrates that transformer-based systems can
achieve high diagnostic accuracy with minimal
computational overhead, aligning with the principles
of software efficiency and sustainability [38].
Similarly, SkinDistilViT (2023) represents a step

forward in model distillation and resource
optimization. Distilled from a large pre-trained
teacher model, this network preserves 98.33% of its
teacher’s balanced multi-class accuracy on ISIC 2019
while reducing model size by 49.6% and achieving
69% faster GPU and 98% faster CPU inference [39].
These improvements exemplify engineering-driven
design, where compression, latency reduction, and
energy efficiency are core optimization goals alongside
diagnostic accuracy.

6.2 Multimodal and Attention-Based Fusion
Models

Recent research has expanded beyond vision-only
architectures toward transformer-based multimodal
fusion frameworks, which integrate image and
metadata inputs for enhanced interpretability
and robustness. One study proposed a one-stage
attention-driven architecture capable of jointly
reasoning over dermoscopic images and patient
metadata [40]. This configuration is natively
interpretable and outperforms traditional late-fusion
pipelines by dynamically reweighting modalities
according to contextual importance.
A major advance is the SkinM2Former model
(2025)—a Tri-Modal Cross-Attention Transformer
(TMCT) designed for multi-modal and multi-label
classification. It jointly processes clinical images,
dermoscopic images, and patient metadata,
employing cross-attention layers to balance modality
contributions. Different fusion strategies—early
fusion, late fusion, and attention-based fusion—define

Figure 6. Growth of benchmark datasets for dermatology AI from 2013 to 2025, highlighting the expansion in dataset size,
modality diversity, and engineering maturity—from small single-institution collections to large multimodal and

mobile-acquired datasets.
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Table 4. Recent transformer-based and multimodal approaches.
Model / Study Technique / Key Innovation Dataset(s) Performance Shortcomings/Limitations Software-Engineering

Attributes
DermViT Hierarchical attention

Vision Transformer (ViT);
suppresses irrelevant
background

ISIC-2018,
ISIC-2019

85.3% accuracy, MAUC 96.3% Performance lower than
larger ViTs; not tested on
multimodal data

Good maintainability due
to modular attention blocks;
scalable to larger datasets;
reproducible architecture

SkinDistilViT Lightweight ViT distilled
from large teacher; efficient
deployment

ISIC-2019 Retains 98.33% of teacher
accuracy; 49.6% smaller; 69%
faster (GPU), 98% faster
(CPU)

Evaluated only on ISIC-2019;
generalization not validated

Highly portable; excellent
deployment readiness; ideal
for CI/CD and edge/mobile
environments

Cheslerean-Boghiu
et al. [40]

Multimodal fusion (images
+ metadata) with attention;
native interpretability

Private +
benchmark
datasets

Outperformed conventional
fusion baselines

Dataset size limited;
performance depends on
metadata quality

Strong extensibility; requires
structured data-governance;
well-suited formodular fusion
pipelines

SkinM2Former Tri-Modal Cross-attention
Transformer (TMCT) for
multimodal, multilabel
classification

Derm7pt mAA 77.27%, Diagnostic
accuracy 77.85%

High computational cost;
tested only on Derm7pt

Supports modular
multimodal design; scalable
but requires high compute;
maintainable cross-attention
structure

PanDerm +
ViT/Swin V2
Fusion

Dermatology-specific
foundation model fused
with ViTs

HAM10000,
MSKCC

Fusion outperformed
standalone ViTs

Foundation model training
is resource-intensive; limited
cross-dataset validation

Strong generalization
potential; reusable
components;
foundation-model pipelines
alignwithMLOps governance

BASNet +
CCTM

Boundary-aware
segmentation + CCTM
classifier

PH2,
ISIC-2016/17/18,
MED-NODE,
HAM10000

IoU up to 0.98; Accuracy ~0.99 High complexity; limited
interpretability; may hinder
deployment

Robust but computationally
heavy; requires careful
optimization for deployment;
maintainable due to separated
segmentation/classifier
modules

DinoV2 +
Explainable
AI

Transformer +
GradCAM/SHAP
interpretability

31-class
dataset,
HAM10000,
Dermnet

Accuracy 96.48%; F1-score
0.9727

Explainability adds overhead;
dataset-specific; limited
clinical validation

High transparency; supports
debugging and trust;
integrates well with
monitoring pipelines

how information is integrated across branches. On
the Derm7pt dataset, SkinM2Former achieved a
mean average accuracy (mAA) of 77.27% and a mean
diagnostic accuracy (mDA) of 77.85%, outperforming
prior state-of-the-art systems [41].
From an SE perspective, these designs illustrate how
transformer architectures can be modularized into
microservice-like components, enabling independent
training, testing, and deployment of modality-specific
branches. This modularity improves maintainability
and supports continuous integration workflows
common in clinical AI pipelines.

6.3 Ensemble and Hybrid Systems
Further innovation is seen in ensemble architectures
that combine domain-specialized base models
(PanDerm) with Vision Transformer (ViT). Studies
from 2025 demonstrate that such ensembles
consistently outperform single-model systems
on datasets including HAM10000 and MSKCC,
reinforcing the value of ensemble learning as a
fault-tolerant software strategy [42].
Parallel work proposed a Boundary-Aware
Segmentation Network (BASNet) combined
with a Cross-Context Transformer Module
(CCTM), achieving IoU scores up to 0.98 and

classification accuracy approaching 0.99 across PH2,
ISIC (2016–2018), MED-NODE, and HAM10000
datasets [43]. These results underline the trend
toward multi-task networks that unify segmentation
and classification within a single, well-engineered
system, improving both accuracy and computational
reuse.

6.4 Explainable and Interpretable Transformers
The adoption of explainability frameworks such
as Grad-CAM and SHAP has become central to
enhancing clinical trust and system transparency.
Grad-CAM visualizes activation heatmaps, revealing
the lesion regions influencing each prediction,
while SHAP attributes prediction weights to
metadata features (e.g., patient age, lesion site).
Integrated into transformer architectures like DinoV2,
these methods enable both visual and semantic
interpretability, essential for clinical auditing and
human-AI collaboration.

Experiments conducted on a 31-class dataset, as well
as on HAM10000 and DermNet, achieved 96.48%
accuracy and an F1-score of 0.9727, confirming
that transformer-based models can maintain both
high accuracy and explainability in dermatology
applications [44].
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6.5 Summary and Emerging Trends
Taken together, these works signal a decisive shift
toward multi-task learning, foundation-model
distillation, multimodal fusion, and explainable
transformer architectures. This convergence marks a
new era in dermatology AI—where systems are not
only accurate but also interpretable, maintainable,
and resource-efficient. Collectively, they demonstrate
how software-engineering principles—modularity,
scalability, and transparency—are now embedded
in the very architecture of medical AI. Recent
transformer-based and multimodal approaches,
summarizing datasets, techniques, and performance,
are presented in Table 4.

Recent deep learning studies have advanced toward
multimodal architectures that integrate multiple data
streams for improved diagnostic performance. As
illustrated in Figure 7, modern transformer-based
systems combine clinical images, dermoscopic images,
and patient metadata as inputs. These modalities are
jointly processed through Vision Transformers (ViTs)
equipped with cross-attention mechanisms, enabling
the model to capture complementary information
and contextual relationships across inputs. The
resulting multi-label outputs enhance both diagnostic
precision and interpretability, reflecting the growing
convergence of computer vision and patient-centric
data modeling in dermatology AI.

Figure 7. Multimodal transformer architecture for
skin-disease classification, illustrating a modular design
that integrates imaging and metadata streams to support

scalable, maintainable clinical AI systems.

7 Challenges and Future Directions in
Dermatology AI

Despite remarkable advances in artificial intelligence
for dermatology, several engineering, ethical, and
practical challenges continue to limit dependable
clinical deployment. These challenges relate not
only to data quality and algorithmic bias but
also to software reliability, explainability, and
governance—key concerns for trustworthy AI
systems.

7.1 Class Imbalance and Data Bias
A persistent obstacle is class imbalance, where
benign lesions dominate dermatology datasets
while malignant cases, such as melanoma, remain
comparatively rare. This imbalance can inflate
overall accuracy while concealing poor sensitivity to
critical conditions. Analyses of the ISIC challenges
(2016–2020) demonstrate how uneven label
distributions and evolving annotation standards
make cross-year benchmarking difficult. Although
methods such as data reweighting, focal loss, and
balanced sampling partially mitigate these effects,
they remain in software-level workarounds rather
than systemic data solutions [45].
Bias across skin tones represents an equally
pressing issue for fairness and equity. Many
public datasets, including Fitzpatrick17k, contain
limited examples of darker skin tones, resulting in
models that underperform for under-represented
groups. Recent work emphasizes inclusive data
governance—moving beyond discrete skin-type labels
toward continuous measures of hue, brightness, and
texture diversity [45, 46]. Building balanced datasets
with transparent subgroup reporting is therefore a
software-engineering and ethical responsibility, not
merely a data-preprocessing step.

7.2 Generalization and Domain Adaptation
Deep models often fail to generalize across clinical
environments, imaging devices, and populations. A
system trained in one hospital may underperform
in another with different imaging protocols.
Cross-dataset evaluations consistently show accuracy
drops exceeding 10–15%, highlighting the fragility of
current AI pipelines [49].
Promising approaches such as domain adaptation,
active learning, and self-supervised pretraining have
improved robustness, yet consistent generalization
across sites remains elusive [47, 48]. Addressing
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this requires software-engineering principles such as
version-controlled retraining, continuous monitoring,
and automated calibration within MLOps frameworks.

7.3 Explainability and Clinical Trust
Explainability is central to responsible AI in
dermatology. Clinicians must not only see what
the model predicts but also understand why.
While frameworks like CLEAR Derm advocate
transparency, many visual explanation tools—such
as Grad-CAM or LIME—fail to align with clinicians’
cognitive reasoning. Recent studies show that when
explanations mirror diagnostic logic (e.g., lesion
border, texture, and asymmetry emphasis), they
significantly improve human-AI collaboration [50, 51].
However, standardized metrics to evaluate the quality
of explanations are still lacking. Future work should
treat explainability as a software component—testable,
auditable, and measurable—rather than an optional
visualization feature.

7.4 Privacy-Preserving and Collaborative Learning
Cross-institutional collaboration is crucial for
collecting large and diverse datasets while preserving
patient confidentiality. Federated learning and hybrid
model-sharing frameworks enable distributed training
without transferring sensitive data. Such systems have
achieved competitive results on ISIC and HAM10000,
demonstrating the promise of privacy-preserving
collaboration [32, 51–53].
Nonetheless, challenges like communication efficiency,
model drift, and governance of federated nodes
persist. These require coordinated efforts in software
architecture design, ensuring that distributed systems
are both secure and auditable.

7.5 Future Directions
Looking ahead, the transition from experimental
success to trustworthy clinical deploymentwill depend
on advances that integrate ethical awareness with
software-engineering discipline. Future dermatology
AI systems must be developed on intentionally diverse
datasets, built through transparent data governance
that documents subgroup composition and reporting
practices. Fairness should be embedded directly
into model design using reweighting, adversarial
debiasing, and calibrated decision thresholds, rather
than treated as a post hoc correction. Equally
important is robust evaluation across hospitals,
imaging devices, and populations, with external
validation and domain-shift testing serving as

default requirements before deployment. Beyond
performance metrics like AUC, reader studies and
prospective clinical trials should quantify how AI
affects clinician accuracy, confidence, and workflow
integration. The field also requires standardized
reporting and monitoring frameworks, such as
CLEAR Derm, to ensure model calibration, drift
detection, and fail-safe recovery are part of every
operational pipeline. Collectively, these steps will
transform dermatology AI from isolated algorithmic
achievements into reliable, fair, and reproducible
clinical software systems, capable of complementing
human expertise in real-world healthcare settings.

The challenges facing dermatology AI can be
conceptualized across three interconnected
levels—data, model, and deployment as shown
in Figure 8. At the foundation lie data challenges,
including class imbalance, underrepresentation
of darker skin tones, and limited cross-domain
generalization. These affect all subsequent stages
of model training and evaluation. The middle layer
consists of model challenges, where explainability
and robustness remain critical for building
clinician trust and ensuring resilience under varied
imaging conditions. At the apex are deployment
challenges, encompassing privacy preservation,
clinical validation, and regulatory compliance.
Addressing each tier requires a coordinated
software-engineering approach—standardized
data governance, reproducible model pipelines, and
secure, auditable deployment frameworks—that
together enable trustworthy, equitable, and clinically
viable AI systems.

Figure 8. Hierarchical challenges in dermatology AI. The
pyramid illustrates how data, model, and deployment
challenges collectively influence reliability—spanning
imbalance and bias at the data level, explainability and
robustness at the model level, and privacy and clinical

validation at deployment.
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7.6 End-to-End SE Workflow
An end-to-end dermatology AI workflow can be
understood as a software system composed of
modular, testable, and continuously monitored
components. The process begins with dataset
acquisition and versioning, where raw images and
metadata are tracked using tools such as DVC
or Git-LFS to ensure traceability. Preprocessing
pipelines—including resizing, normalization, and
augmentation—are implemented as reproducible
modules supported by automated validation tests.
Model development and training are orchestrated
through containerized environments (e.g., Docker),
ensuring consistent execution across machines and
institutions. During deployment, trained models
are exposed through optimized REST APIs or
containerized microservices and integrated into
a CI/CD pipeline for automated validation and
controlled rollout. After deployment, monitoring
systems track performance drift, latency, reliability,
and clinical feedback, enabling continuous updates
while preserving regulatory and safety requirements.
This workflow demonstrates how dermatology AI
aligns with a full software-engineering lifecycle rather
than an isolated machine-learning model.

8 Conclusion
The rapid integration of machine learning and
deep learning has significantly advanced skin
disease classification, with convolutional neural
networks (CNNs), vision transformers (ViTs),
and hybrid models consistently outperforming
traditional approaches such as SVMs, RF, and k-NN.
These advances demonstrate clear improvements
in diagnostic accuracy, robustness, and scalability,
highlighting a paradigm shift toward data-driven
dermatology. However, critical challenges remain
unresolved, including class imbalance, bias across
skin tones, limited domain generalization, and
the lack of reliable explainability frameworks.
Without addressing these issues, widespread
clinical adoption may risk reinforcing inequities
and reducing trust among practitioners. Looking
ahead, promising directions such as federated
learning, fairness-aware AI, robust domain adaptation,
and explainable frameworks offer pathways to
trustworthy and equitable deployment. Equally
important is the shift from retrospective benchmarks
to prospective validation through clinician AI
collaboration and rigorous reporting standards.
By combining technical innovation with fairness,

transparency, and clinical validation, skin disease
classification systems can evolve from research
prototypes into reliable, real-world diagnostic support
tools that improve healthcare outcomes across
diverse populations. Overall, the findings of this
review demonstrate that the clinical usefulness
of advanced dermatology AI models depends
fundamentally on strong software-engineering
practices, including reproducibility, maintainability,
and robust deployment workflows.
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