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Abstract

The rise of Al tools such as GitHub Copilot and
ChatGPT has reshaped software development
by providing substantial support for coding
and debugging tasks. Although these tools
enhance productivity and reduce routine workload,
existing research has largely emphasized short-term
efficiency gains, leaving their long-term cognitive
and pedagogical effects insufficiently explored.
This study investigates the cognitive trade-offs
associated with sustained reliance on generative
Al, with particular attention to students and junior
developers. Recent empirical findings indicate
that excessive dependence on Al assistance may
weaken deep debugging skills, impede conceptual
understanding, and challenge established
educational practices in software engineering.
To address these concerns, we synthesize empirical
studies published since 2020 and draw on
contemporary pedagogical theories to propose
a structured framework for balanced Al integration.
The proposed hybrid model shifts emphasis
from full automation to a learning-oriented
process that foregrounds exploration, human
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reasoning, and critical evaluation. It comprises
three iterative phases—Detect (Al-assisted
exploration), Engage (manual problem-solving and
algorithmic reasoning), and Verify (Al-supported
refinement)—designed to preserve core cognitive
competencies  while effectively leveraging
automation. The study underscores the importance
of aligning AI tool usage with pedagogical
objectives, ensuring that system design promotes
understanding rather than output generation alone.
These findings have implications for curriculum
design in computer science education and for
industrial strategies aimed at sustaining developer
expertise in increasingly automated environments.

Keywords: AI code generation, developer cognition,
gitHub copilot, code automation, programming pedagogy.

1 Introduction

The recent introduction of tools like GitHub Copilot,
ChatGPT, and StarCoder has changed how software
development is practiced and approached. These
tools are expected to save coding time, help reduce
developer workload, and help untangle sophisticated
libraries or APIs, which enhances productivity and
satisfaction [1].
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These assumptions have been validated with more
research. In one study, Peng et al. [2] ran a randomized
experiment, and in a group with access to GitHub
Copilot, GitHub users completed an HTTP server
programming task in an average of 55.8% less time
compared to the group without access to Copilot.
More interestingly, the rate of success on the given
project did not vary significantly between the groups.
In another study, Microsoft’s enterprise data, which
also comprised user surveys, showed that 73% of
Copilot enterprise users reported agreement with the
statement that the tool assists them in task acceleration,
with 68% asserting improved task quality, often
coupled with less effort [3].

Despite the undeniable productivity gains, an
unresolved concern persists: Does reliance
on Al-generated code compromise developers’
problem-solving  skills? Programming is
fundamentally about logical reasoning, debugging,
and deep understanding, not merely generating
outputs. When Al assumes too many cognitive
routines, particularly for less experienced developers,
it risks eroding essential abilities such as debugging,
logical reasoning, and algorithmic design [4]. This
tension between efficiency and skill preservation
constitutes the key problem addressed in this study.

The scope of this study is deliberately focused on
early-career developers and students, as this group
is most vulnerable to overreliance on Al tools. The
discussion emphasizes widely adopted tools such
as GitHub Copilot, ChatGPT, and StarCoder, which
represent the leading edge of generative Al in software
development.

The contributions of this paper are threefold, as given
below:

1. It synthesizes recent empirical evidence
(2020 onwards) to critically evaluate the
cognitive trade-offs of Al-assisted programming,
particularly for junior developers.

2. It integrates insights from pedagogical
frameworks to highlight how AI tools can
be aligned with skill development in software
engineering education.

3. It proposes a structured three-phase framework
Detect, Engage, Verify that balances automation
with human reasoning, offering practical
guidance for both educational curricula and
industrial practice.

Emerging educational research supports this concern.
For example, an investigation into student users
of Al-based coding applications like ChatGPT and
StarCoder revealed that, although they were more
likely to complete tasks, users exhibited surface
reasoning, a lack of deeper understanding, and
creativity relative to manually coding peers [5].
Synthesizing across such studies reveals a consistent
pattern: while AI accelerates task completion,
it simultaneously risks undermining the deeper
cognitive processes that are essential for long-term skill
development. This synthesis strengthens the rationale
for the current study.

This article critically explores the dual nature
of Al code generation: its tangible productivity
benefits and its subtle risks to essential cognitive
capabilities. Drawing exclusively from empirical
evidence dated 2020 onward, the study examines
the interaction of developers with Al-generated
code, the nature of cognitive trade-offs involved,
and the broader implications for education and
professional development. The study aims to evaluate
whether Al assistance complements or undercuts
the problem-solving mindset at the core of software
engineering.

The remainder of this paper is organized as follows.
Section 2 reviews the evolution of Al tools in software
development. Section 3 analyzes the impact of these
tools on developers” problem-solving skills. Section
4 examines the cognitive trade-offs between skill
acquisition and tool dependence. Section 5 discusses
pedagogical implications in software engineering
education, while Section 6 outlines pedagogical
foundations for structured Al use. Section 7 presents
the proposed three-phase framework for balanced Al
adoption. Section 8 explores industrial perspectives
and developer responsibilities. Finally, Section 9
concludes the paper and highlights future research
directions.

Al in Software

2 Evolution of Tools

Development

The landscape of software development has undergone
a profound shift with the progressive integration of
artificial intelligence. What started as Al-assisted
coding capabilities in integrated development
environments (IDEs) has evolved to fully automated
systems that can generate entire code segments with
little human input. One of the more prominent
milestones was Microsoft’s IntelliSense, which came
out in the late 90s. It provided function and parameter
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hints as well as real-time syntax suggestions. While
IntelliSense was not driven by machine learning, its
interface opened the doors to Al-assisted coding.

With the advent of Al, there was a paradigm
shift in automation. By the early 2020s, new
models like TabNine integrated deep learning and
GPT-style transformers, improving code prediction
across numerous languages. Unlike older systems that
relied on keyword-triggered autocompletion, TabNine
utilized immense code libraries to make contextual
suggestions. This signified the move from static
code completion to more dynamic probabilistic code
suggestion.

The release of GitHub Copilot in 2021, powered by
OpenAl’s Codex model, represented a major turning
point. Copilot not only completed lines of code but
could also generate entire functions or classes based on
plain-language comments. Its integration with editors
like VS Code blurred the line between code suggestion
and code generation. Developers were now engaging
with Al as a pair programming partner, one that could
offer real-time solutions informed by billions of lines
of training data.
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Figure 1. Capabilities of an Al pair programmer.

With the arrival of large-scale language models like
ChatGPT and, later, StarCoder, the capacity for full
code generation expanded further. These models
can interpret complex queries, generate boilerplate,
optimize algorithms, and even explain code behavior,
all through conversational interaction. However,
early user studies indicate a gap between developer
expectations and the actual experience with such tools,
highlighting the importance of optimizing human-AI

interaction in real-world development contexts [7].
Unlike Copilot, which operates contextually within the
editor, models like ChatGPT exist outside the IDE but
offer broader, multi-turn interactions that support not
just coding but reasoning and debugging assistance.
Figure 1 shows the working of an Al Pair Programmer,
including code suggestions, test case generation, bug
detection, refactoring support, and implementation
guidance.

Al tools today can be broadly categorized along
a continuum. Code completion tools, such as
IntelliSense and early versions of TabNine, offer
syntactic assistance. = Code suggestion systems,
including Copilot, recommend multi-line logic within
a developer’s context. Full code generation systems,
such as ChatGPT or StarCoder, can autonomously
produce functioning code from natural language
specifications, often with minimal human editing
required. Figure 2 categorizes various Al coding tools
based on their capabilities, such as full code generation,
code suggestion, and code completion.

Gm:n —[ChatG PHGeminl)—E‘»tarCoder]—(DeepSeeg
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Figure 2. Categorization of Al code generation tools.

Code
Suggestion

These tools are now also embedded within broader
development workflows. In modern CI/CD pipelines,
Al assists in test case generation, log analysis, and
even code review. In collaborative environments,
Al serves as a surrogate pair programmer available
constantly, scalable across teams, and fluent in multiple
programming paradigms. However, as this integration
deepens, it becomes increasingly important to reflect
on these capabilities reshaping not only coding tasks,
but the skills developers are expected to cultivate.
Figure 3 presents a timeline of key advancements in Al
coding tools, from IntelliSense in 1998 to the emergence
of automated agents in 2025.
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Figure 3. Timeline of key advancements in Al for code generation.

3 Impact on developers’ problem-solving skills

Al-powered code generation tools such as GitHub
Copilot and ChatGPT have yielded measurable
productivity benefits. A peerreviewed study
published in 2024 surveyed developers using Copilot
and matched subjective productivity reports to
usage data. The findings indicated that developers
accepting Copilot suggestions demonstrated improved
satisfaction, performance, and reduced cognitive load,
especially among junior developers, with these gains
triangulated across multiple metrics [6]. In other
software engineering domains, such as software defect
prediction, machine learning models have achieved
impressive accuracy [8].

Field observations within enterprise environments
further supported these findings. The utilization of
GitHub Copilot in the workplace has resulted in a
tangible productivity boost, evidenced by the increase
in the rate of acceptance of the suggested code edits in
conjunction with the rise in the number of pull requests
and overall developer happiness, indicating tangible
efficiency improvements [9].

Despite the persuasive nature of productivity gains,
educational research paints a different picture,
especially regarding more profound cognitive
engagement. Consider the 2025 article published
in the International Journal of Artificial Intelligence
in Education, which examined undergraduate
programming students in the context of GenAl tools.
The authors noted enhanced tool-driven efficiency
and creativity perception, but students found Al code
correction during assessments much more challenging
than solving problems they had written themselves.
This gap suggests reduced debugging and reasoning
skills when relying on generated output [10].

Together, Al tools boost developer productivity and
satisfaction, particularly for routine or boilerplate
tasks.  Similarly, in software defect prediction
research, ensuring developer interpretability of model

4

outputs has been emphasized to preserve engineering
judgment. But foundational problem-solving skills,
such as debugging, reconstructing logic, or verifying
edge case behavior, appear to weaken if reliance on Al
becomes normative [13]. Novice developers are most
at risk, as they may accept Al-generated code without
sufficient comprehension or critical scrutiny.

In summary, while there are benefits of Al-assisted
development, it also cautions that unchecked
dependence may undermine the cognitive practices
essential to robust software engineering. Figure 4
presents a comparative overview of the positive and
negative effects of Al coding tools on developers,
highlighting benefits such as increased speed and
exposure to new techniques, alongside drawbacks like
reduced debugging depth and over-reliance on AL

N— Negative Effects

Reduced Debugging
Depth

] )
===
o )

)

Speed and Efficiency

Exposure to New
Techniques & Libraries
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Figure 4. Positive and negative effects of Al on
programming and solving skills.

4 Cognitive TradeOff: Skill Acquisition vs
Tool Dependence

As Al-powered code generation becomes more
prevalent in programming workflows, it is vital to
understand the underlying cognitive trade-offs. On
the one hand, developers benefit from the automation
of routine tasks. On the other hand, reliance on Al may
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reduce opportunities to cultivate essential reasoning
and analytical skills.

A comprehensive meta-analysis published in 2025
evaluated 35 controlled studies between 2020 and
2024, comparing learning outcomes in programming
courses with and without Al tools like ChatGPT or
Copilot. The results showed significant improvements
in task completion time and performance scores (SMD
~ +0.86) for Al-assisted learners. Notably, there was
no statistically significant advantage in conceptual
understanding or ease of comprehension (SMD ~
+0.16, p ~ 0.41) [14].

In another study published in 2024, researchers
compared undergraduate programming students
using ChatGPT versus those coding manually.
While both groups achieved similar task completion
levels, the Al-assisted group exhibited fewer
self-initiated debugging strategies and tended to
accept Al suggestions uncritically, pointing to reduced
engagement with deeper problem-solving processes.

These findings can be interpreted through established
cognitive models like Bloom’s Taxonomy and the
Dreyfus model of skill acquisition. Novice developers
who perform tasks at the “remember” or “understand”
level; may become overly dependent on Al for code
generation, thereby bypassing progression toward the
“apply” and “analyze” stages where logic formulation
and debugging skills are honed [15]. Consequently,
developers may excel at producing output but lack
the scaffolding to independently reason about system
behavior or design decisions.

software

5 Pedagogical implications in

engineering education

Integrating Al code-generation tools like Copilot
and ChatGPT into programming education offers
both opportunities and significant challenges.
Educators must balance leveraging these tools’
benefits with safeguarding students’” development of
core computational thinking and problem-solving
skills.

A recent quasi-experimental study of 2025
evaluated Al-assisted pair programming using
GPT-3.5 and Claude 3 Opus among 234 Java
undergraduates. Compared with human-human
pairing and individual programming, Al-assisted
groups experienced increased intrinsic motivation,
decreased programming anxiety, and improved task
performance (p < .001) [16]. However, despite these
affective benefits, interaction quality like perceived

collaboration remained highest in traditional peer
programming.

Complementing these findings, a systematic review
and meta-analysis in 2025 synthesized 35 controlled
studies on Al tools in programming education. While
results showed improved task completion time and
performance (e.g.,, SMD ~ +0.86), there was no
significant gain in conceptual understanding or deeper
problem-solving ability (SMD ~ +0.16, p ~ 0.41) [14].
This suggests Al tools assist with execution but may not
promote cognitive development unless intentionally
integrated.

Another peer-reviewed investigation in 2024 compared
undergraduate students using ChatGPT-assisted
coding to a control group coding independently.
Although assignments were completed successfully,
the Al group exhibited fewer self-initiated debugging
strategies and showed more passive acceptance of
Al-generated solutions [17].

Together, these sources point to critical pedagogical
implications, such that using Al to boost motivation
and reduce anxiety, but avoid presenting it as a
replacement for human guidance and discussion.
Moreover, introduce fundamental programming
concepts and problem-solving exercises before
permitting Al tools. Additionally, require students
to test, explain, and critique Al-generated code to
foster analytical engagement. Similarly, encourage
peer collaboration and human feedback, as Al alone
cannot substitute for the social and affective benefits
of human-human interaction [16].

6 Pedagogical Foundations of Structured Al
Use

The rapid integration of Al code generation tools into
software engineering has raised important questions
about the preservation of developers’ problem-solving
skills while benefiting from automation. Drawing on
recent peer-reviewed scholarship, it is increasingly
evident that a structured, intentional approach to
using Al tools is necessary. Rather than allowing
unregulated usage that could erode critical reasoning,
several researchers advocate phased, cognitively
aligned frameworks that retain the learner’s active role
in the development process. Figure 5illustrates various
Al coding tools categorized according to their primary
functions in the software development lifecycle, such
as understanding the problem, generating code, fixing
bugs, and optimizing performance.

In a 2025 study, authors proposed the GROW-AI
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Figure 5. Al tools supporting the software development
lifecycle.

framework, developed through thematic analysis
of ICT students’” use of generative Al tools in
coursework. This framework emphasizes the
importance of scaffolding AI adoption within
educational environments. It encourages learners
to engage with Al tools in ways that promote
conceptual understanding rather than mechanical
code reproduction. Specifically, the study warns
that passive code consumption without reflective
practice may inhibit the development of transferable
problem-solving skills over time. This evidence
reinforces the gradually evolving approach concerning
student engagement, in which scholars are first
instructed on how basic prompting of the Al is done,
and progressively sophisticated verification and
critical thinking tasks are incorporated in alignment
with the scholar’s evolving competencies [18].

The Al-Lab framework is another model aligned with
constructivist pedagogy. This framework emphasizes
that beginner programmers should grapple with
mental workload to learn to code effectively. The
framework suggests that AI can be utilized as
a “learning assistant” during the initial stages of
ideation and exploration of new syntactic patterns;
however, Al should refrain from being used during the
implementation of core logic. This approach ensures
that learners remain actively involved with algorithmic
design and do not outsource all reasoning to the model.
The framework also suggests that learners should be
taught to prompt Al critically and Al in general so that
its codes are not blindly taken as authoritative [19].

Synthesis of these models, along with cognitive
psychology, shows that a practical approach to using
Al in development environments is shaping up. This
approach suggests working with Al in differentiative
phases to draw design inspirations or to know about
different coding methodologies in the initial phases. In
later phases, a shift to manual coding of the key logic
Al to ensure independent reasoning is encouraged.
After that step, Al tools can be reintroduced to the
process to assist in optimizing, refactoring, or finding
errors in the code. This circular process mirrors a
human-in-the-loop approach that seeks to avoid or
balance complete automation dependence, which is
educational in nature, on the principle that mastery is
developed through adversity.

These frameworks are beginning to shift instructional
design in top computer science departments. These
frameworks are also gaining traction in the corporate
world, where development teams are looking to
balance the speed of delivery with deep, ongoing
expertise. These frameworks highlight that Al can
be embedded at different stages along a defined
progression that balances cognitive development with
the deep, critical thinking necessary to develop flexible
skills. Figure 6 shows a layered model of Al coding
assistance, from basic syntax support to advanced code
generation and summarization.

7 Proposed Framework for Balanced AI Use

Al code generation tools integrated into software
development environments necessitate a systematic
policy framework to mitigate cognitive skill erosion.
This challenge calls for an appropriate solution
in a model that balances Al use with the natural
progression of solving software-related tasks. This
model calls for a balanced cadence—rhythmic
shifts between thought and automation—where the
developer retains control of critical thinking and
employs automation in the most appropriate areas. It
is divided into three primary iterative phases, which
are: Detect, Engage, and Verify.

The rationale for this three-phase design is grounded
in cognitive theory and programming pedagogy.
Models such as Bloom’s Taxonomy and the Dreyfus
model of skill acquisition emphasize the progression
from basic comprehension to advanced reasoning,
making it critical to align Al use with developmental
stages of problem-solving. Accordingly, the
Detect-Engage—Verify framework is structured
to ensure that Al supports learning without replacing
essential analytical processes.
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Figure 6. Layered architecture of Al-powered coding assistance.
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Figure 7. Phases of Al-assisted software development.

With Al tools in the market, the Detect phase can now
be optimized. This phase utilizes Al tools for library

search, function comprehension, and brainstorming.

The objective is now aimed solely towards aiding the
developer in grasping the spatial dimensions of the
problem and not towards writing code. In the Engage
phase, the developer now takes charge by executing
the manual writing of the application and its core
logic. This phase helps in enhancing the application
of design, algorithmic, and testing skills, which are
very crucial for the long term. Resisting Al code
suggestions in this phase strengthens the developer’s

cognitive engagement and helps in long-term learning.
The criterion for moving beyond this stage is the
achievement of a minimally functional program that
executes, even if not optimized.

The last Verify phase brings back Al tools, but this time
for refinement tasks. These tasks can be optimizing
performance, improving readability, finding edge
cases, or recommending better ways to do things. Here,
Al helps as a teammate, verifying quality, as opposed
to a replacement for human thought. Transition
into this stage occurs once the solution achieves
basic correctness and the focus shifts to improvement
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and robustness. Validation of the framework draws
on a systematic synthesis of empirical studies from
2020-2025 and a comparative analysis with existing
pedagogical models, including GROW-AI [18] and
Al-Lab [19]. The approach also aligns with established
practices in Al-assisted software engineering, where
machine learning models are routinely validated
for reliability before integration into development
workflows [11, 12].

Nonetheless, limitations must be acknowledged. First,
the validation process incorporates self-reported
student feedback, which may introduce subjectivity.
Second, while promising in educational settings, the
framework’s applicability in large-scale industrial
environments remains to be confirmed. Third,
long-term cognitive outcomes have not yet been
empirically tested, underscoring the need for
longitudinal research. Figure 7 presents a three-phase
Al-assisted workflow combining detection, human
input, and Al-based optimization.

This framework provides steps to cut back on the
excessive reliance placed on Als while still maximizing
their advantages. Finding the right balance between
automation and active learning through a well-defined
process on when and how Al is utilized in the coding
process is feasible. This aligns with the productivity
goals in professional environments where team output
needs to balance with skill development, and in
educational settings where managing the learner’s
cognitive load is a central goal.

8 Industrial Perspectives
Responsibilities

and Developer

The impact of generative Al tools is being felt across
the software engineering domain and is leading to
a change in the responsibilities of developers, teams,
and even the toolmakers. One of the studies looked at
the incorporation of Al into the software development
life cycle and its consequential effects on productivity,
quality of code, and the structure of teams. The authors
point out that Al serves to automate a user’s mundane
or repetitive work, but human judgment is still vital in
the processes of validation concerning the correctness,
architecture, and security of the automaton code [20,
21].

Al coding assistants have also been studied for their
impact on an organization’s productivity. As noted in
this study, developers reported distinct productivity
improvements but also expressed concerns regarding
an over-dependence on automation within an

organization. As a matter of policy, the study
suggests that corporations set clear policies on Al use,
particularly in the evaluation of design and review
of the codes, where human intelligence is essential.
The study shows Al influences the responsibilities
of experienced developers and mentors who, as
team leaders, check Al-produced code against
team expectations and fundamental engineering
standards [22].

Also, an empirical study released in 2025 shows
that when developers think of Al as an “expert
assistant,” they tend to take its suggestions too
easily.  This especially leads to overconfidence
in Al's outputs, including when those outputs
contain minor logical errors or context misalignments.
Comparatively, developers who viewed Al as a partner
in collaboration instead of as a decision-maker took
a more critical approach and engaged in questioning
and interventional coding [23].

As a whole, the integration of Al in businesses
rests on upholding a notable difference: Al can
derive code, but human professionals need to verify,
assess, and provide the necessary context. Developer
duties include more than just coding; they involve
crafting prompts with intent, assessing results with
due diligence, and guiding their peers to view Al as a
tool, not a replacement for cognition.

9 Conclusion

Tools like GitHub Copilot and ChatGPT are
transforming software development by increasing
productivity and minimizing time spent on repetitive
coding tasks. On the flip side, there’s increasing
apprehension about the lack of essential skill
development for beginners and novices. Even
though beginners and learners are provided the
right tools, the risk of fostering a shallow grasp
of debugging, reasoning, and design skills due to
overreliance on automation is critical. There is a
pressing need for educational and industrial bodies
to respond by creating policies that balance the use
of automation and cognitive functions by the human
mind, and the uses of Al that require learners to
think, justify, and learn purposefully. Overall, this
paper contributes by synthesizing recent empirical
evidence on Al-assisted programming, integrating
pedagogical frameworks, and proposing a structured
three-phase model (Detect-Engage—Verify) that
balances automation with human reasoning. These
contributions underscore its significance for both
education and industry. Future research should focus
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on longitudinal assessments of cognitive impacts, the
development of pedagogically aligned explainable Al
systems, and curriculum reforms in bootcamps and
universities. Only through thoughtful integration can
Al serve not as a crutch, but as a catalyst for deeper
and more responsible software engineering practice.
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