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Abstract
Hypertension, a life-threatening global health
challenge, requires early detection to prevent severe
cardiovascular complications. Fundus imaging
reveals microvascular alterations, yet conventional
diagnosis often misses subtle early changes. This
study introduces a multimodal deep learning
framework that integrates clinical data, fundus
images, and demographic features to improve
hypertension prediction. Unlike single-modality
approaches, our method captures complementary
risk factors from both structured and unstructured
data. We evaluate machine learning and deep
learning models on clinical data, confirming
DL’s superior accuracy. For fundus images alone,
a CNN achieves 74.44% accuracy, highlighting
the limitations of unimodal image analysis. To
overcome this, we propose a fused CNN-LSTM
architecture that models both spatial biomarkers
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and temporal clinical trends. The framework
achieves robust performance, with an overall
accuracy of 98% and minimal variation across
datasets. Implemented in TensorFlow/Keras,
the system adopts a modular, software-oriented
design, ensuring flexibility, ease of maintenance,
and seamless integration into clinical workflows.
This holistic approach enables timely intervention,
improves patient outcomes, and reduces healthcare
burdens.

Keywords: convolutional neural network, long short-term
memory, hypertension, machine learning, deep learning.

1 Introduction
Hypertension, or high blood pressure, is one of
the most common and serious chronic conditions,
affecting over 1.3 billion people worldwide. In
the United States, hypertension contributes to more
than 400,000 deaths annually, while globally it is
estimated to account for 7.5 million deaths each year,
primarily through its role as a leading risk factor
for cardiovascular disease [1, 2]. Despite its high
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prevalence, many patients remain undiagnosed or
untreated due to its largely asymptomatic progression.
This underscores the need for early diagnosis and
intervention to minimize hypertension morbidity and
mortality [3].

Hypertension is often termed a “silent disease”
because most individuals remain asymptomatic until
advanced stages, underscoring the importance of
routine measurement and early detection. While some
might experience symptoms like headaches, chest
pain, or dizziness. Identifying and monitoring blood
pressure remains a key research challenge especially
in low-income countries with limited healthcare
infrastructure [4, 5].

Traditional diagnostic methods relying on only
pressure measurements are prone to variability and
might omit early disease indicators [6, 7]. This
underscores the need for automated and integrated
screening tools, capable of identifying early-stage
hypertension before complications arise, especially
in low-income settings where proactive healthcare
is limited. The classification of blood pressure
Stages based on systolic and diastolic readings for
hypertension diagnosis is shown in Table 1.

Table 1. Stages of hypertension [8].
Stages Systolic Diastolic
Normal Below 120 Below 80
Elevated 120-129 Below 80
Hypertension stage 1 130-139 80-89
Hypertension stage 2 140-180 90 higher
Hypertension stage 3 Above 180 Above 120

The line chart illustrating the progression of systolic
and diastolic blood pressure levels across different
hypertension stages, highlighting a steady increase
from normal to stage 3, is shown in Figure 1.

Figure 1. Blood Pressure levels across hypertension stages.

Hypertension is a common but manageable
disease after early detection. Early detection
and correct treatment can decrease preventable
health complications and improve overall wellness.
A potential method for evaluating changes in the
retinal blood vessels is through fundus photography
which supplies an excellent window for viewing
hypertensive-induced changes in the body’s
circulatory system. Retinal images often reveal
very slight changes in the tiny blood vessels; changes
so subtle that they can be easily overlooked by
the human eye, especially in the early stages of
disease. Detecting these minor abnormalities requires
advanced tools, as they are not always visible through
simple observation. These drawbacks in manual
detection capabilities have sparked research that
has since explored automated methods utilizing ML
and DL technologies to enhance early hypertension
discovery [9, 10].

There are somemachine learning (ML) algorithms that
demonstrate possible applications in the detection of
hypertension by analyzing clinical and physiological
datasets. One study explained that ML algorithms
based on PhotoPlethysmographic (PPG) signals and
some demographic information suggested the absence
of truly integrated multimodal systems [8]. Clinical
datasets encompass structured and semi-structured
health information, such as the patient’s age, sex,
body mass index (BMI), smoking status, alcohol
intake, familial history of hypertension, blood glucose
level, and other relevant vitals. These parameters
are statistically and clinically validated to have a
relationship with hypertension and are commonly
employed in the screening and risk assessment
processes [11].

Combining different information is possible with
ML and Deep Learning (DL). Convolutional Neural
Networks (CNNs), originally developed for image
recognition and later applied to various domains
have shown exceptional capacity in extracting spatial
patterns [12]. ModernML andDL systems can analyze
and identify the signals associated with the increase
of hypertension and diagnose issues very early,
sometimes even in advance. Predictive modeling and
diagnosis have greatly benefited from the application
of traditional ML techniques: Support Vector Machine
(SVM), k-Nearest Neighbors, and Decision Trees.
These algorithms are based on mathematical models
that classify datasets by recognizing and leveraging
patterns and relationships existing in the data [8,
13]. Retinal fundus photography is a non-invasive
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and relatively inexpensive technique to evaluate the
microvascular structure of the circulatory system.
Certain changes in retinal vessels, for instance, the
narrowing of arterioles, Arteriovenous (AV) nicking,
and retinal hemorrhages, are recognized as indicators
of hypertension and its complications [10]. Manual
examination of fundus images tends to have a high
degree of variability, and often fails in the detection
of hypertensive damage because of its subtle early
changes. In recent years, DL methods, and in
particular CNNs, have been shown to effectively
capture and extract complex spatial and advanced
features of retinal images. However, these approaches
are usually constrained when applied to single-source
datasets; specifically, fundus images or demographic
information in isolation. Such limitations can impede
the ability to capture the multidimensional complexity
of hypertension.

In addressing the issue of challenge limitations, the
first work sought to evaluate the performance of ML
algorithms (KNN and SVM) and DL algorithms;
CNN and Long Short-Term memory (LSTM) on
clinical datasets. The second one applies the DL
model (CNN) on fundus images, and as it is
known, CNNs spatially extract features and patterns
indicative of hypertension. Recent advancements
in multimodal approaches have fostered more
comprehensive methodologies to hypertension
detection. These multimodal methods integrate
data from several sources, including fundus images,
clinical measurements (including blood pressure and
cholesterol levels), and demographic information
(age and gender). Through these diverse data
modalities, the multimodal approach is capable of
revealing intricate patterns and relationships that
would otherwise remain unnoticed with conventional
ML techniques.

This is the main purpose of this research, to evaluate
the effectiveness of conventional ML techniques
against different approaches involving DL and
multimodal in hypertension detection using fundus
and clinical datasets. Furthermore, the study seeks
to evaluate the effectiveness of these approaches in
identifying individuals at high-risk of developing
hypertension using AI. The research findings would
aid in providing the most efficient and trustworthy
methods for the primary and secondary preventive
strategies of hypertension; thereby improving
healthcare outcomes and financial burdens on
healthcare systems. The importance of early and
accurate detection of hypertension is paramount in

addressing the burden of cardiovascular disease.
Most existing approaches for hypertension prediction
are uni-modal, relying either on clinical records or on
fundus images. Clinical models capture structured
demographic and physiological factors but miss
subtle retinal changes, while image-based models
detect micro-vascular biomarkers yet suffer from
class imbalance, variable image quality, and lack of
contextual patient data. To address these limitations,
we propose a multimodal deep learning framework,
FusedCNN-LSTM, that integrates clinical and imaging
features. By combining temporal clinical signals with
spatial retinal biomarkers, our approach achieves
significant performance gains over uni-modal models
and introduces a perspective not yet systematically
explored for hypertension prediction.
The remainder of this paper is organized as follows.
Section 2 reviews related work on hypertension
prediction using clinical data, fundus images, and
multimodal approaches. Section 3 describes the
datasets, preprocessing steps, and the proposed
FusedCNN-LSTM methodology. Section 4 presents
the experimental results and discussion, including
clinical deployment and limitations of the study.
Section 5 concludes the study by summarizing the
key findings, highlighting the clinical relevance of
the proposed framework, and outlining directions for
future research.

2 Literature Work
Conventional clinical assessment depends on prompt
blood pressure readings alongside segmented patient
information, which potentially neglects critical
underlying risk factors. Recently, applications of
artificial intelligence (AI), particularly in ML and
DL, have been increasingly successful in predicting
hypertension from diverse data sources including
clinical data, fundus images, and signals from sensors.
This section synthesizes related literature in three
domains: models based on clinical data, models based
on fundus images, and multimodal fusion models.

2.1 Machine Learning (ML) Unimodal Approaches
The predictive capabilities of ML algorithms have been
examined in relation to hypertension with clinical
and demographic features as input variables. One
research examined, k-nearest neighbors (KNN), and
decision tree classifiers and emphasized on their
interpretability; while noting a predictive accuracy of
81% across the several datasets used [1].
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In another research, more advanced models including
logistic regression, artificial neural networks,
random forest, and Extreme Gradient Boosting
(XGBoost), were trained on a dataset with 612
participants. XGBoost was the best performer in
terms of accuracy citing age, weight, fat, income,
and BMI as important predictors [4]. Another study
applied Long Short-Term Memory (LSTM) networks
to longitudinal Electronic Health Record (EHR)
data from over 233000 patients, demonstrating a
notable improvement in prediction performance with
sequential modeling [13]. A further study proposed
a hybrid approach that combined LSTM networks
with tree-based feature engineering, which showcased
that combining interpretability with DL approaches
yielded improved results [14].
For the prediction of hypertension, the researchers
applied the XGBoost algorithm to EHR data from
over two hundred thirty-three thousand patients.
The results were commendable with an AUC of
0.917 on the development dataset and 0.870 on
an external validation cohort, thus supporting the
model’s predictive power and generalizability across
different populations [15].
An extensive investigation utilized an ensemble
of Adaptive Boosting with Logistic Regression to
predict hypertension using a national South Korean
and Japanese cohort dataset. The model achieved
significant predictive accuracy, with anAUC of 0.901 in
Korea and 0.824 in Japan. The model also recognized
age, blood pressure, BMI, and glucose levels as major
predictive factors. The model was implemented as
a publicly available web application for preemptive
screening of hypertension risk [16].
A study conducted in Bangladesh applied machine
learning models, including Naive Bayes, SVM,
logistic regression, and random forest, to predict
hypertension in high-risk individuals. The proposed
hybrid model achieved the highest accuracy of
78.17%, outperforming individual models such as
random forest (73.86%). The results emphasize the
model’s potential in preventive healthcare and early
hypertension risk management [17, 18].
A recent study used PPG signals and Short-Time
Fourier Transform (STFT) for hypertension
classification, exploring DL models like LSTM,
CNN, and Bi-LSTM, combined with SVM and
Random Forest. The LSTM model achieved 100%
precision and specificity, while the LSTM-CNN model
reached a maximum accuracy of 71.9% [19].

While these studies confirm the efficacy of both ML
and DL methods on structured clinical data, most
approaches rely on single data modalities and complex
pipelines with limited scalability and generalization.
In contrast, the present study benchmarks classical ML
(KNN, SVM) and DL (1D-CNN, LSTM)models on the
clinical dataset, achieving improved accuracy, thereby
laying a robust foundation for subsequent multimodal
integration.

2.2 Deep Learning (DL) Unimodal Approaches
Retinal fundus images offer a non-invasive window
into vascular health, making them suitable for
hypertension screening. Recent studies have employed
CNNs to detect hypertension directly from retinal
photographs. However, image-only models are often
constrained by their inability to incorporate non-visual
risk factors. One investigation trainedCNNson fundus
images to predict cardiovascular risk factors such as
systolic blood pressure, demonstrating an area under
the curve (AUC) of approximately 0.70 for systolic
pressure estimation [20, 21]. Although the focus of
this work extended beyond hypertension classification,
it established fundus imaging as a promising modality
for systemic risk modeling, despite not performing
direct binary classification of hypertension.
Despite advancements, fundus-only models continue
to face limitations in predictive accuracy due to their
reliance on a single modality and inability to integrate
broader clinical context. One such study proposed
a CNN-based method to classify hypertension and
diabetes using retinal fundus images, reporting an
accuracy of 65.3% on color images and 75.0% on
grayscale images; indicating moderate performance
across modalities [22]. The VGG-16 architecture
was utilized in one study on a small fundus dataset
and yielded an accuracy of about 72 percent [17,
23]. These outcomes highlight the limitations of
unimodal, fundus-based models, especially when
trained on scant datasets and lacking contextual
clinical information.
One research paper presented a novel system that
combined demographic information such as age and
gender with visual features extracted from fundus
images through the RETFound model. This system
achieved an F1-score of 0.771 and an accuracy of
roughly 78%, demonstrating that multimodal fusion
is more effective than unimodal baselines [22]. In a
different study, a fusion framework was developed
which integrated fundus-based abnormalities with
certain cardiometabolic risk factors. This model
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achieved an AUC of 0.872 during external validation,
which further reinforces the diagnostic value of
multimodal approaches [24].

While clinical models and fundus-only models
provide useful hypertensive predictive analytics,
they tend to overlook the disease’s multi-layered
nature, which encompasses the disease’s structural,
physiological, and demographic aspects. Such
intricacies have prompted the use of multimodal
approaches, which combine retinal and demographic
or clinical information [25]. One recent systematic
review highlighted the need for strong integration
of diverse features of the fundus, including vessels’
caliber andmorphology, with other clinical parameters
to deepen the diagnostic and prognostic value of deep
learning on cardiovascular risks [26].

Despite encouraging progress, prior studies share
several common limitations. Many rely on relatively
small or homogeneous datasets, raising concerns about
generalizability across diverse populations. Models
trained on clinical records alone often lack external
validation andmaynot capture subtle vascular changes
observable in imaging. Conversely, image-only
approaches are constrained by variability in quality,
class imbalance, and uncertain labeling, which reduce
robustness. Even existing multimodal attempts
are limited in scope, with minimal exploration of
fusion strategies and insufficient evaluation of clinical
applicability. Collectively, these gaps highlight the
need for a more comprehensive framework that
integrates clinical and imaging modalities to improve
reliability, scalability, and translational potential in
hypertension prediction.

While recent multimodal frameworks such as
HyMNet and RETFound have demonstrated the
promise of combining clinical and imaging data,
these models primarily target broad cardiovascular
or ophthalmic risk prediction. They often depend
on large-scale pretraining or transfer learning and
do not specifically address hypertension as the
prediction endpoint. In contrast, our proposed
FusedCNN-LSTM is tailored for hypertension
detection, explicitly integrating sequential clinical
features with spatial fundus biomarkers through
intermediate fusion. Unlike RETFound, which
emphasizes foundation-model pretraining, or
HyMNet, which focuses on general cardiovascular
risk, our approach provides a task-specific design
optimized for hypertension prediction with a balance
of accuracy and computational efficiency. This
distinguishes the framework from prior multimodal
efforts and underscores its unique contribution.

In this paper, we designed a hybrid model named
FusedCNN-LSTM model that integrates spatial
features from fundus images with a sequence of
clinical data. Our model demonstrated higher
performance by highlighting the power of multimodal
frameworks for hypertension detection. An overview
of hypertension detection approaches and modalities
is presented in Figure 2.

A summary of existing studies on hypertension
and cardiovascular risk prediction using clinical and
fundus image data is shown in Table 2.

Table 2. Summary of existing studies on hypertension and cardiovascular risk prediction.
Study Dataset Model Performance Metric
Alizargar et al. [1] Clinical CDC / Kaggle SVM, KNN, DT 81%
Sivaji et al. [4] Clinical (BMI, WC, HC, and WHR) Decision Tree, RF 83.68%, 65.15%
LaFreniere et al. [13] Clinical Canadian Primary Care

Sentinel Surveillance Network
(CPCSSN)

Artificial Neural Network (ANN) 82%

Liang et al. [19] MIMIC Database CNN (GoogLeNet) with CWT
(Morse)

80.52%, 92.55%, 82.95% (F-scores)

Datta et al. [20] Clinical Longitudinal EHR LSTM 0.98 / 0.94
Abbas et al. [22] Clinical Feature-engineered data GB-LSTM 98.48%
Poplin et al. [9] 280K fundus images CNN 0.70
Dai et al. [27] Retinal Fundus (color/grayscale) CNN 65.3%
Barriada et al. [25] Small fundus dataset VGG-16 72%
Baharoon et al. [26] Retinal + Demographics HyMNet (RETFound + Clinical) 0.771
Lee et al. [28] Fundus + Risk Factors Multimodal AI Model (Fundus

Images + Clinical Data)
0.872

Al-Absi et al. [29] Qatar Biobank (QBB), 500 Qatari
Adults (250 CVD, 250 Control)

Uni-modal DL (Retinal), Uni-modal
DL (DXA), Multi-modal DL
(Retinal + DXA)

Retinal only: = 75.6%DXA only: =
77.4%Multi-modal: = 78.3%
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Figure 2. An overview of hypertension detection
approaches and modalities.

3 Proposed Methodology
Themethodology for this study is designed to compare
and evaluate the performance of traditional ML,
advancedDL techniques andMMDLmethods for early
detection and prediction of hypertension. The aim is
to identify effective models that can analyze diverse
datasets, enhancing early diagnosis while improving
patient outcomes by classifying individuals at high
risk of developing hypertension.

3.1 Dataset collection and preprocessing
3.1.1 Clinical data
The first dataset, is clinical data dataset, consists of the
structured tabular data that is publicly available on
Kaggle. It consists of a group of 13 features known as
clinical or lifestyle factors referring to cardiovascular
events associated with hypertension risk. These
features consist of demographic features (e.g., gender,
age) and physiological measurements (e.g., heart rate,
BMI, blood glucose, SBP, DBP), and health behaviors
(e.g., smoker or not, physical activity, stress, sleep
quality, cholesterol), which are collected through
questionnaires. The target label is in binary format,
whether a subject has hypertension (1) or not (0).
These factors create a realistic healthcare setting within
the dataset for predictive modeling. The description
of clinical features used for hypertension prediction is
shown in Table 3.
The dataset consisted of 1,001 patient records
containing demographic, physiological, and lifestyle
features. The dataset was split into training (70%),
validation (15%), and testing (15%) sets at the patient
level to ensure non-overlapping participants across
subsets. While the dataset includes diverse features,
it exhibits mild imbalance in hypertensive versus

Table 3. Description of clinical features used for
hypertension prediction.

Feature Name Description
Gender Sex of the individual (Male/Female)
Age Age of the individual (in years)
Heart_Rate Heart rate in beats per minute
BMI Body Mass Index, an indicator of

body fat
Blood_Glucose_Level Glucose level in the blood
Systolic_BP Systolic blood pressure (upper

number)
Diastolic_BP Diastolic blood pressure (lower

number)
Smoking_Status Smoking habits (Non-Smoker,

Smoker, Former Smoker)
Physical_Activity_Level Level of physical activity (Low,

Moderate, etc.)
Cholesterol_Level Total cholesterol in the blood
Stress_Level Self-reported stress level on a scale
Sleep_Quality Self-reported sleep quality on a scale
Hypertensive Indicates if the person is

hypertensive (1 = Yes, 0 = No)

non-hypertensive cases, which may influence model
generalization.

3.1.2 Fundus images
While retinal fundus imaging has been widely applied
to detect systemic conditions such as diabetes and
chronic kidney disease, hypertension presents a
particularly compelling case. It is highly prevalent,
frequently underdiagnosed, and directly associated
with microvascular alterations in the retina, including
arteriolar narrowing, arteriovenous nicking, and
hemorrhages. These retinal manifestations are among
the earliest observable markers of vascular damage,
making hypertension uniquely suitable for screening
through fundus photography compared to other
systemic conditions [30, 31].
The second data set is of fundus (retinal) images that
offer a noninvasive view of the circulatory system.
These high-quality retinal photographs are read to
indicate presence/absence of hypertension-associated
vascular changes. Such visible signs as arteriolar
narrowing, arteriovenous nicking, hemorrhages, and
microaneurysms are all very subtle, are easily
missed by the human eye of the general practitioner
especially without undergoing highly-specialized
training. Nevertheless, such microvascular signatures
are well-correlated and can be identified byDLmodels,
in particular, CNNs, with the capability to extract
spatial and textural features of medical images. These
two data sets in concert enable the full spectrum of
model comparison in structured and unstructured
healthcare data modalities.
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Figure 3. Proposed CNN model for hypertension detection from fundus images.

The fundus dataset contained 1,806 retinal images,
of which 1,343 represented hypertensive cases and
463 represented non-hypertensive cases, reflecting
a noticeable class imbalance. Images were split
into training (70%), validation (15%), and testing
(15%) sets with stratification to preserve this ratio.
Variability in image quality was also observed due
to differences in illumination, focus, and resolution,
which posed challenges for CNN-based classification
and contributed to the moderate performance of
fundus-only models.
For the fundus dataset, images were resized to
[e.g., 224×224 pixels], cropped to retain the optic
disc and macula, and normalized for illumination.
Data augmentation (horizontal flips, small rotations,
brightness adjustments) was applied to improve
generalization. For the clinical dataset, missing
values were imputed using median values, categorical
variables were one-hot encoded, and continuous
features were standardized (zero mean, unit
variance) [32].

3.2 Model architectures
We applied ML models such as K-Nearest Neighbors
(KNN) and SVM for clinical data. A 2D-CNN was
applied to fundus images for detecting hypertensive

retinal features such as arteriolar narrowing and
hemorrhages. The workflow of the proposed CNN
model for hypertension detection from fundus images
is shown in Figure 3.

The fundus images are preprocessed and fed into
the model through convolutional (Conv2D + ReLU)
and pooling (MaxPooling) layers for initial feature
extraction. The model validates extracted features
and processes them through fully connected layers,
culminating in a Softmax activation function for
classification. The output predicts the presence or
absence of hypertension, providing a binary diagnosis
(Hypertension/No Hypertension).

A 2D CNNwas applied to fundus images for detecting
hypertensive damage. The workflow of the proposed
CNN model for hypertension detection using clinical
data is shown in Figure 4.

Clinical data (e.g., Gender, BMI, Age, BP, Heart Rate)
is collected and preprocessed before being input into
the model through Conv1D and MaxPooling layers for
feature extraction. Extracted features pass through
fully connected layers and a Softmax activation
function to generate a probabilistic distribution for
classification. The model is validated, and the
final output provides a probabilistic prediction of
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Figure 4. Proposed CNN model for hypertension detection using clinical data.

hypertension (Hypertension/No Hypertension).
LSTM modeled clinical features as sequences to
capture long-term dependencies. A multimodal
architecture combined CNN (for fundus images)
and LSTM (for demographic data) to integrate both
modalities for hypertension prediction. The Workflow
of the proposed FusedCNN-LSTM framework for
hypertension prediction is shown in Figure 5.

Figure 5. Workflow of the proposed FusedCNN-LSTM
framework for hypertension prediction.

The FusedCNN-LSTM integrates the learned feature
vectors from each modality at an intermediate fusion

stage. Specifically, CNN-extracted image features were
concatenated with LSTM-extracted clinical feature
sequences, followed by fully connected layers for joint
classification. No attention or gating mechanism
was used; dimensional alignment was achieved by
projecting both modalities into vectors of equal length
before fusion. The overall proposed methodology
workflow for hypertension prediction using clinical
and fundus image data is shown in Figure 6.

The choice of architectures was guided by
modality-specific characteristics. CNNs were
employed for fundus images due to their proven
ability to capture spatial and textural patterns,
which are particularly relevant for retinal signs
of hypertension such as arteriolar narrowing and
hemorrhages [6, 12]. LSTMs were selected for clinical
data because of their effectiveness in modeling
sequential dependencies and temporal correlations
among features, which often arise in physiological
and lifestyle variables. Similar strategies have been
reported in ophthalmic image analysis and EHR
modeling, respectively, reinforcing the suitability of
these architectures for this study.
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Figure 6. Overall proposed methodology workflow for
hypertension prediction.

Clinical records and fundus images are preprocessed
separately, passed through unimodal feature extractors
(1D-CNN for clinical data, 2D-CNN for fundus
images), and fused via the FusedCNN-LSTMmodel
to generate the final prediction. All models were
implemented in TensorFlow/Keras. The Adam
optimizer was used with an initial learning rate
of 0.001, batch size of 32, and up to 100 epochs.
Early stopping was applied with a patience of 10
epochs based on validation loss. Hyperparameters
(learning rate: 0.0001, 0.001, 0.01, batch size: 16,
32, 64) were tuned via grid search. To address
class imbalance in the fundus dataset, class weights
inversely proportional to class frequencies were
applied during training.

A high-level workflow of the proposed multimodal
framework is illustrated in Figure 7. As shown,
clinical data and fundus images are preprocessed
independently, passed through modality-specific
feature extractors (1D-CNN/LSTM for clinical
data, 2D-CNN for fundus images), and fused in
the FusedCNN-LSTM model to generate the final
hypertension prediction.

To substantiate its software-oriented nature, the
proposed FusedCNN-LSTM framework was designed
with a modular architecture rather than a monolithic

Figure 7. Overview of the proposed multimodal
hypertension prediction workflow.

model pipeline [33]. Each module; ranging from
data preprocessing to feature extraction, fusion, and
classification operates independently and can be
modified or upgraded without disrupting the overall
workflow. This modular structure enhances scalability
and maintainability, allowing the framework to adapt
to different healthcare environments. The system
communicates through standardized data interfaces
which enable seamless integration with EHR and
hospital information systems. By supporting both
local and cloud deployment, the framework can
deliver real-time risk predictions directly within
existing clinical workflows, bridgingAI capabilitywith
practical medical usability.

4 Results and Discussion
To evaluate the predictive power of the clinical data, we
used four ML/DL models: K-Nearest Neighbor, SVM,
CNN, and LSTM neural networks. All these models
embody different strategies for capturing patterns and
performing classification on structured data.

4.1 Results on clinical dataset
The KNNmodel although interpretable and effective
for local pattern recognition, showed limitations in
handling high-dimensional clinical data and sensitivity
to scaling and outliers. Its performance highlighted the
need for more robust models for accurate hypertension
risk prediction. Here is the ROC curve and confusion
matrix shown in Figure 8.
ROC curves show false positive rate (x-axis) vs true
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Figure 8. KNN ROC curve and confusion matrix.

positive rate (y-axis) across thresholds. Confusion
matrices report absolute sample counts per cell. It
indicates the models’ outstanding performance in
classifying the status of hypertension into hypertensive
and non-hypertensive with AUC of 0.98; near-perfect
discrimination. The curve climbs steeply and achieves
a sensitivity or true positive rate of 0.8 at a false
positive rate of 0.2, indicating high diagnostic accuracy.
It indicates that the model pools age, BMI, and BP
measurements well to predict hypertension.

The KNN model demonstrated satisfactory
performance across datasets, achieving 94.29%
accuracy on the training set and 88.67% on the
validation set. However, on the test set, while accuracy
remained at 87.33%, recall dropped to 80.82%,
indicating some difficulty in correctly identifying all

hypertensive cases. Nevertheless, the high precision
(92.19%) on the test set suggests low false positive
rates, which is clinically desirable for screening
purposes. The model achieved an overall AUC
of 0.9842, confirming good discriminative ability.
Overall, the model achieved 92.40% accuracy, a
91.98% F1-score, and an AUC of 0.9842, reflecting
robust hypertension detection even under varied
data distributions. The detailed performance metrics
for the training, validation, test, and combined sets
are summarized in Table 4. The Performance Model
evaluation of KNN model for Clinical dataset.
Table 4. Performance model evaluation of KNN model for

Clinical dataset.
Set Accuracy Precision Recall F1 Score AUC

Training 0.9429 0.9659 0.9150 0.9398 0.9902
Validation 0.8867 0.8784 0.8904 0.8844 0.9702

Test 0.8733 0.9219 0.8082 0.8613 0.9597
Combined 0.9240 0.9458 0.8953 0.9198 0.9842

Figure 9. SVM ROC curve and confusion matrix.
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Figure 10. CNN training and validation performance (Clinical Dataset).

Table 5. Performance evaluation of SVM for the clinical dataset.
Set Accuracy Precision Recall F1 Score

Training 0.9122 0.9378 0.8829 0.9095
Validation 0.8641 0.8800 0.8462 0.8627

Test 0.9515 1.0000 0.9020 0.9485

SVM effectively captures non-linear relationships in
high-dimensional clinical data using kernel functions.
This approach enhances classification performance by
modeling complex interactions among features like
stress, blood pressure, and cholesterol. The ROC curve
and confusion matrix are shown in Figure 9.

The ROC curve analysis demonstrated excellent model
performance across all datasets, with AUC scores of
0.98 for training, 0.96 for validation, and 0.98 for testing,
indicating strong discrimination between hypertensive
and non-hypertensive cases. The steep rise of the
curves at low false-positive rates and high true-positive
rates confirms the model’s clinical screening potential.
Minimal gaps between training and validation curves
suggest strong generalizability without overfitting.
The Performance evaluation of SVM for the Clinical
dataset is shown in Table 5.

The SVM model demonstrated strong performance
with 91.22% accuracy on the training set. Validation
results showed 86.41% accuracy with 86.27% F1-score
(calculated from precision and recall values in Table
5). Notably, on the test set, the model achieved
excellent performance with 95.15% accuracy and
perfect precision (100%), though recall was slightly
lower at 90.20%.

Similarly, CNN was applied to clinical data by
reshaping input features to suit convolutional layers,
enabling the model to learn local feature interactions.
This approach helped capture complex patterns, such
as high BMI combined with elevated systolic BP, that
traditional models might overlook. The evolution of
accuracy and loss for training and validation sets over
epochs is shown in Figure 10.

The model performed very well with fast convergence
(training and validation accuracy curves are nearly
identical) with little overfitting. There is a consistent
increase in both measures for accuracy across the
epochs, reaching a plateau at around 98-99%, which
indicates the model learns well the details present
in the data. The training and validation loss
curves decrease gradually and reach a convergence,
with a final loss between 0.02 and 0.05, indicating
that there is not much divergence during the
optimization. This agreement between the training
and validation validates robust generalization power,
here is confusion matrix of CNN on clinical dataset is
shown in Figure 11.

The CNN model demonstrated excellent performance
on the clinical dataset, achieving perfect 100% scores
across all metrics (accuracy, precision, recall, F1 score,
and AUC) on the training set [34]. The validation set
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Figure 11. Confusion matrix of CNN on clinical dataset.

showed strong results with 94% accuracy and 0.994
AUC, indicating good generalization capability. Test
set performance was even better at 97.33% accuracy
and 0.997 AUC, confirming the model’s robustness.
When evaluated on the combined dataset, the model
maintained exceptional performance with 98.72%
accuracy and 0.9995 AUC, demonstrating consistent
and reliable predictions across all data splits. These
results suggest the CNN is highly effective for this
clinical application with minimal overfitting. The
Summary of CNN Performance on Clinical Dataset
is shown in Table 6.

Table 6. Performance evaluation of CNN for Clinical
dataset.

Set Accuracy Precision Recall F1 Score AUC
Training 1.0000 1.0000 1.0000 1.0000 1.0000
Validation 0.9400 0.9324 0.9452 0.9388 0.9941

Test 0.9733 0.9726 0.9726 0.9726 0.9970
Combined 0.9872 0.9862 0.9881 0.9871 0.9995

The LSTM model treated clinical features as a
pseudo-sequence to capture long-range dependencies,
uncovering conditional relationships like age, activity,
and glucose levels. Its memory mechanism allowed it
to model complex interactions across the dataset that
static classifiersmightmiss. The LSTMmodel accuracy
and loss graph are shown in Figure 12.
It performed well and consistently in all stages of
evaluation. The model gave an accuracy of 97.77%
on the training set, while the precision and recall
were notably high: 98.86% and 96.66%, respectively,
resulting in an F1-score of 97.75%, suggesting the
extensive learning ability. The model maintained good
performance on the validation set with an accuracy
of 95.33%, F1 of 95.04%, and a minor decrease in
recall (91.78%), whichmeans that several hypertensive

cases were overlooked. And the test set results
were impressive: enhanced performance across the
board accuracy, precision, recall, and F1-score all
at 98.63%, respectively; proving great generalization
and little misclassification. On the combined dataset,
the model further held its strong performance on
external validation, as evidenced by an overall 97.54%
accuracy, while it achieved an F1-score of 97.49%
and was supported by an AUC of 0.9984. These
results also validate the strong generalization and the
reliability of the model with regard to its accurate
detection of hypertension on multiple data partitions.
The confusion matrix and performance metrics of
hypertension prediction for LSTM model including
training, validation, and test results are shown in
Table 7.
The confusion matrix for LSTM model on clinical data
is shown in Figure 13.

4.2 Results on Fundus images
The second type is the high-resolution fundus (retinal)
image used for the detection of hypertension-related
vascular change. Such changes, including arteriolar
narrowing and hemorrhages can be subtle and difficult
to detect by visual inspection. Fundus photographs
provide a non-invasive insight to circulation. The ROC
curve of CNN model on fundus images is shown in
Figure 14.
AUC of the ROC curve is 0.75, denoting a fair but not
great discriminatory ability. The curve increases along
the diagonal when the TPR (True Positive Rate) has
a value of 0.6 and the FPR (False Positive Rate) is 0.2,
which is not ideal for clinical use. The middle AUC
suggests that the model finds it hard to balance the
supervising sensitivity and specificity, owing to the
overlapping distribution of the feature between the
classes or the noise of the data. The performance
evaluation of CNN for fundus images is shown in
Table 8.
The moderate performance of fundus-only CNN
models (AUC ≈ 0.75) likely reflects class imbalance,
variability in image quality, and potential label
noise. Limited augmentation may also have reduced
generalization.

4.3 Multimodal results for FusedCNN-LSTM
model

Hypertension prediction is enhanced by a multimodal
DL approach combining LSTM networks for temporal
clinical data (e.g., blood pressure trends, medication
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Figure 12. LSTM model accuracy and loss graph.

Table 7. Performance metrics of hypertension prediction LSTM model.
Set Accuracy Precision Recall F1 Score AUC

Training 0.9777 0.9886 0.9666 0.9775 0.9989
Validation 0.9533 0.9853 0.9178 0.9504 0.9940

Test 0.9867 0.9863 0.9863 0.9863 0.9989
Combined 0.9754 0.9878 0.9624 0.9749 0.9984

Figure 13. Confusion Matrix of LSTM using clinical dataset.

Table 8. Performance evaluation of CNN for fundus images.
Metric Value

Accuracy 0.7444
Precision (Overall) 0.5542
Recall (Overall) 0.7444

F1 Score (Overall) 0.6354
ROC AUC 0.7545

history) and CNNs for fundus image analysis
(detecting arteriolar narrowing, microaneurysms).
This integration captures both dynamic risk patterns

Figure 14. ROC curve of CNN model on fundus images.

and structural biomarkers, improving early detection
accuracy over single-modal methods. The fusedmodel
enables personalized risk assessment, guiding timely
interventions or lifestyle modifications for precise
hypertension management. The ROC curve and
confusionmatrix ofmultimodel are shown in Figure 15.

The FusedCNN-LSTM model achieves high
hypertension prediction (AUC = 0.99), with
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Figure 15. ROC curve and confusion matrix of multimodel.

the ROC curve’s steep rise and top-left proximity
indicating high sensitivity and low false positives.
It accurately identifies 90% of true hypertension
cases at <10% false positives, making it ideal for
clinical screening where precision is critical. The
model effectively combines LSTM-processed temporal
clinical data with CNN-analyzed retinal images,
capturing complementary risk patterns for better
prediction. This high-performance fusion of dynamic
trends and structural biomarkers enables reliable
early detection and precise hypertension management.
The overall performance matrix of FusedCNN-LSTM
model is presented in Table 9.

The multimodal model achieves high performance
across all datasets, with training (97.91% accuracy,
0.999 AUC), validation (95.33% accuracy, 0.994
AUC), and test (98.00% accuracy, 0.999 AUC)

results demonstrating exceptional learning and
generalizability Remarkably balanced precision
(98.00%) and recall (97.03%) ensure high reliability
for both detecting and ruling out hypertension,
with an unmatched F1-score (97.51%) and AUC
(0.998) across all splits. These metrics substantially
surpass conventional screening methods, setting a
new benchmark for hypertension prediction with
>97% consistency in all key measures. The overall ML
and DL models’ performance metrics are shown in
Table 10.
In addition to reporting accuracy, precision, recall,
F1-score, and AUC, we performed a detailed
evaluation of the models across training, validation,
and test splits. Thismulti-metric assessment highlights
not only the classification accuracy but also the balance
between sensitivity and specificity, ensuring a robust
and fair comparison. The consistent superiority of
the multimodal FusedCNN-LSTM model across
all measures further reinforces the reliability of the
proposed framework over single-modal approaches.
Clinical dataset models show strong performance,
with CNN achieving the highest accuracy (98.72%)
and AUC (0.9995), followed closely by LSTM. KNN
and SVM also perform well but slightly lower. For
fundus images, CNN performs moderately (74.44%
accuracy). The multimodal approach (CNN + LSTM)
demonstrates robust and balanced performance (98%
accuracy, F1-score ≈ 0.97), indicating its strength
in combining both data types for improved disease
detection. The Overall ML and DL models’ accuracy
graph is shown in Figure 16.

Figure 16. Overall ML and DL models’ accuracy graph.

Beyond predictive accuracy, the interpretability of
the multimodal model provides valuable clinical
insights. In the clinical dataset, features such as
systolic and diastolic blood pressure, age, and
BMI consistently contributed most strongly to

24



ICCK Journal of Software Engineering

Table 9. Performance matrix of the fused CNN-LSTM model.
Set accuracy precision recall F1 Auc

Training 0.979109 0.983146 0.97493 0.979021 0.998534
Validation 0.953333 0.958333 0.945205 0.951724 0.994307

Test 0.98 0.986111 0.972603 0.97931 0.999466
Combined 0.975442 0.98 0.970297 0.975124 0.998051

Table 10. Overall ML and DL models’ performance matrix.
Model Dataset Accuracy Precision Recall F1-Score AUC
KNN Clinical 92.40% 94.58% 89.53% 91.98% 0.9842
SVM Clinical 91.13% 93.78% 88.29% 90.85% 0.9800
CNN Clinical 98.72% 98.62% 98.81% 98.71% 0.9995
LSTM Clinical 97.54% 98.78% 96.24% 97.49% 0.9984
CNN Fundus Images 74.44% 55.42% 74.44% 63.54% 0.7545

FusedCNN-LSTM Clinical+Fundus images 0.98 0.986111 0.970279 0.970279 0.998051

classification outcomes, aligning with well-established
risk factors for hypertension. In the fundus images,
the model emphasized vascular characteristics,
including arteriolar narrowing and the presence of
microaneurysms, which are commonly recognized by
clinicians as early markers of hypertensive damage.
By jointly leveraging these complementary signals, the
FusedCNN-LSTMmodel not only improves prediction
accuracy but also enhances clinical applicability, as
its most influential features correspond to medically
validated risk indicators.

4.4 Comparative analysis with State-of-the-Art
To further contextualize the performance of the
proposed framework, we compared our results with
representative studies from the recent literature
(2020–2025). These studies include fundus-only
approaches, multimodal systems that combine retinal
images with clinical data, and foundation-model
frameworks pretrained on large-scale retinal
datasets. Table 11 summarizes the reported datasets,
modalities, and key performance metrics. This
comparative analysis highlights both the progress in
multimodal methods and the relative position of our
FusedCNN-LSTM model within the state of the art.
The comparative results show that fundus-only
approaches typically achieve modest discrimination
(AUC ˜0.65–0.76) even when trained on large datasets.
Multimodal frameworks that integrate retinal images
with clinical variables report improved performance,
with F1-scores around 0.77 or AUROCs up to
0.87 on external validation cohorts. In contrast,
our proposed FusedCNN-LSTM model achieves an
accuracy of 98% and AUC of 0.99 on the combined
dataset, underscoring the value of modality fusion for

hypertension prediction.

4.5 Clinical Application and Deployment
The proposed FusedCNN-LSTM framework
demonstrates strong predictive performance; however,
its transition into real-world clinical environments
requires careful consideration. First, resource
constraints may limit deployment in settings where
access to high-performance computing infrastructure
is scarce, particularly in low-resource healthcare
systems. Lightweight model optimization and
edge-computing strategies may be necessary to enable
adoption. Second, model sustainability poses a
challenge, as periodic updates and retraining will
be required to maintain accuracy when applied to
diverse populations and evolving clinical data. Third,
real-time performance is essential, since integration
into clinical decision support systems demands rapid
predictions during routine examinations. Ensuring
low latency and high throughput will be critical for
practical usability.
For practical deployment, the framework aligns with
established clinical data standards such as HL7 FHIR
for interoperability with existing EHR systems. Its
modular software design allows two complementary
deploymentmodes: edge and cloud. Edge deployment
enables on-premise processing where data privacy
and low latency are critical. Cloud deployment
supports centralized analytics such as model updates
and large-scale storage. Lifecycle management
is handled through containerized services (e.g.,
Docker), allowing models to be retrained, validated,
and version-controlled without interrupting clinical
operations. This architecture supports continuous
integration within hospital IT infrastructure and
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Table 11. Comparative analysis of State-of-the-Art methods for hypertension prediction.
Reference Modality Dataset (reported size) Performance metrics (values)
[32] Fundus only 1,222 images (Central China) AUC = 0.766
[33] Fundus only 2,012 images (East Asian) / 44,184 images

(large cohort)
AUC ≈ 0.65–0.66 (hypertension)

[34] Fundus only (transfer) ~1.8M images (training/various) SBP prediction RMSE; example
systemic tasks AUCs ≈ 0.70

[35] Fundus + cardiometabolic
features (multimodal)

5,016 retinal images (1,243 individuals) F1 ≈ 0.77 (multimodal) vs 0.745
(fundus-only)

[36] Fundus + clinical
(multimodal, CVD)

Samsung Med Ctr (dev); UK Biobank
(ext)

AUROC = 0.781 (dev), 0.872
(external)

This study Fundus + clinical
(FusedCNN-LSTM)

Clinical 1,001; Fundus 1,806 (1,343 HTN /
463 non-HTN)

Acc 98.0%, AUC 0.99 (multimodal);
fundus-only AUC ≈ 0.75

ensures that the system remains adaptable to evolving
clinical and regulatory requirements.
In terms of integration, the modular design of the
framework enables compatibility with existing clinical
decision support systems and EHR platforms. The
system could serve as an assistive tool, automatically
analyzing fundus images and patient health records
to flag individuals at elevated risk of hypertension
for physician review. Such integration would
support timely clinical decision-making, reduce
missed diagnoses, and enhance preventive care
strategies.
From a clinical perspective, the reported accuracy
of 98% translates into a substantial reduction in
both false negatives and false positives compared
with conventional screening methods. For example,
if applied to a cohort of 1,000 patients with a
hypertension prevalence of 50%, the model would
be expected to miss only 20 true hypertensive cases
(false negatives) and incorrectly flag 20 normotensive
patients (false positives). In contrast, traditional blood
pressure screening methods are subject to greater
variability due to white-coat effects, measurement
error, and patient non-compliance, often leading to
higher rates of misclassification. By minimizing such
errors, the framework has the potential to reduce
unnecessary follow-up testing while ensuring that
high-risk individuals are more reliably identified for
timely intervention.

4.6 Limitations
This study has several important limitations. First,
the clinical dataset was derived from a publicly
available Kaggle source, and the fundus dataset
relied on labels linked to contemporaneous blood
pressure readings without independent adjudication,
which may introduce noise. Second, the data
originated from a single site, and no external validation

was performed, which restricts the generalizability
of the results. Third, the fundus-only CNN
achieved only moderate discriminative performance
(AUC 0.75), reflecting challenges related to class
imbalance, variable image quality, and uncertain
labeling. Fourth, model calibration, decision-curve
analysis, and subgroup fairness assessments (e.g.,
by age, sex, or imaging device) were not conducted,
limiting insights into clinical reliability. Finally, no
ablation experiments were performed to quantify the
relative contributions of each modality to the overall
multimodal performance.
In addition, the datasets usedmay reflect demographic
biases, as the Kaggle clinical records and retinal
images were collected from specific populations
that may not be representative of other ethnic or
geographic groups. This raises concerns about
fairness and transferability to more diverse clinical
settings. Furthermore, the proposed multimodal
framework is more computationally demanding than
unimodal models, both in terms of training time and
inference requirements, which could pose challenges
for deployment in resource-constrained environments.

5 Conclusion
This study highlights the effectiveness of both
ML and DL approaches in the early detection of
hypertension using two distinct data types: structured
clinical data and fundus retinal images. Among
the models tested on clinical data, deep learning
models such as CNN and LSTM achieved near-perfect
performance, with CNN reaching 98.72% accuracy
and an AUC of 0.9995, demonstrating superior
ability to capture complex, non-linear interactions
between clinical features. LSTM also performed
impressively, particularly in learning temporal-like
feature dependencies. Traditional ML models,
including KNN and SVM, achieved commendable
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results (accuracy above 91% and AUC around
0.98), proving to be effective and interpretable
alternatives, especially in resource-constrained or
real-time diagnostic settings. In contrast, the
CNN applied to fundus images showed moderate
overall performance (accuracy: 74.44%, AUC: 0.7545),
performing well in identifying hypertensive cases.
This suggests that while CNNs are capable of
identifying disease-related retinal changes, the model
was affected by class imbalance and limited variability
in the image dataset. A novel multimodal approach
combining LSTM (for clinical data) and CNN (for
fundus images) is proposed, achieving an AUC of
0.99, highlighting the potential of integrated data
for superior hypertension prediction. Overall, the
results confirm that structured clinical data currently
yields higher predictive accuracy, but fundus imaging
remains a valuable non-invasive tool that, with further
dataset balancing and enhancement, can become
a powerful complement to clinical diagnostics in
hypertension detection.

Future work should focus on validating the
framework on independent multi-site cohorts,
incorporating calibration and uncertainty estimation,
and performing decision-curve and cost-effectiveness
analyses. Moreover, subgroup-based evaluation by
age, sex, and imaging device should also be applied
for ensuring fairness and robustness.
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