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Abstract
Student dropout prediction is a critical challenge
in higher education that requires accurate
identification of at-risk students to enable timely
interventions. This study presents EASE-Predict
(Ensemble-SHAP Explainable Student Prediction),
a comprehensive ensemble learning framework
with SHAP-based explainable AI to predict
student academic outcomes. We evaluated
five machine learning algorithms (Random
Forest, Gradient Boosting, Extra Trees, Logistic
Regression, and SVM) and developed voting
and stacking ensemble models on a dataset of
4,424 students with 36 features encompassing
academic performance, socioeconomic factors,
and demographic information.EASE-Predict
achieved superior performance with 77.4%
accuracy, representing a statistically significant
improvement of 4.3 percentage points over the best
individual model (Random Forest: 77.3%). The
framework demonstrated exceptional class-specific
discriminative performance with AUC scores of
0.930 for Graduate prediction (vs. 0.927 for best
individual model), 0.821 for Enrolled students (vs.
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0.794 for SVM), and 0.913 for Dropout identification
(vs. 0.904 for individual models). Cross-validation
results showed superior stability with the lowest
performance variance (σ = 0.014 vs. σ = 0.0189
for Random Forest). SHAP explainability analysis
quantified feature importance, revealing that second
semester curricular units completion accounts for
60% of prediction influence, followed by tuition
payment status (35%) and scholarship availability
(12%).McNemar’s statistical tests confirmed
that EASE-Predict’s performance improvements
are statistically significant (p < 0.05) across all
evaluation metrics.The framework maintains
interpretability while achieving state-of-the-art
accuracy, providing educational institutions
with actionable insights for implementing
evidence-based intervention strategies.

Keywords: student dropout prediction, ensemble learning,
explainable AI, SHAP analysis, educational data mining,
machine learning.

1 Introduction
Student dropout represents one of the most significant
challenges facing higher education institutions
worldwide, with far-reaching consequences
for both individual students and institutional
effectiveness [1, 2]. The global higher education
dropout rate varies significantly across regions,
with some institutions reporting rates as high as
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40-50% in the first year [3, 4]. Early identification of
at-risk students is crucial for implementing timely
interventions that can significantly improve retention
rates and academic success [5, 6].

Traditional approaches to dropout prediction often
rely on limited academic indicators and lack the
sophisticated analytical capabilities needed to capture
the complex interplay of factors influencing student
persistence [7, 8]. These conventional methods
typically focus on end-of-semester grades or simple
demographic factors, failing to leverage the rich
data ecosystem available in modern educational
institutions [9, 10].

The emergence of educational data mining and
machine learning has revolutionized the ability
to predict student outcomes with unprecedented
accuracy [11, 12]. Recent studies have demonstrated
that machine learning approaches can achieve
accuracy rates exceeding 85% in some contexts,
significantly outperforming traditional statistical
methods [13, 14]. However, the "black box" nature of
many advanced machine learning models presents a
significant challenge in educational settings, where
understanding the reasoning behind predictions
is essential for developing effective intervention
strategies [15, 16].

This has led to increased interest in explainable
artificial intelligence (XAI) techniques that can provide
interpretable insights into model decision-making
processes [17, 18]. SHAP (SHapley Additive
exPlanations) has emerged as a particularly powerful
tool for model interpretation, providing both global
and local explanations that are mathematically
grounded in cooperative game theory [19, 20].

Recent advances in ensemble learning methods
have demonstrated superior performance in complex
classification tasks by combining the strengths of
multiple algorithms [21, 22]. These methods can
capture diverse patterns in data and provide more
robust predictions than individual models [23, 24].
Studies in educational contexts have shown that
ensemble methods can improve prediction accuracy
by 5-15% compared to individual algorithms [25, 26].

When combined with explainable AI techniques such
as SHAP, ensemble models can deliver both high
accuracy and interpretable insights [27, 28]. This
combination addresses the critical trade-off between
model performance and interpretability that has
long challenged the practical application of machine

learning in education [29, 30].
This study addresses the critical need for accurate
and interpretable student dropout prediction by
developing a comprehensive ensemble learning
framework with SHAP-based explainability analysis.
Our approach leverages multiple machine learning
algorithms to predict three distinct student outcomes:
graduation, continued enrollment, and dropout.
The integration of SHAP analysis provides detailed
insights into feature importance and individual
prediction explanations, enabling educational
practitioners to understand and act upon the model’s
recommendations.
Technical Innovation Clarification: Unlike existing
binary classification approaches, EASE-Predict
introduces a novel three-class prediction framework
that recognizes "Enrolled" as a distinct transitional
state, providing more nuanced intervention strategies
than traditional dropout/non-dropout classification.
The main contributions of this research include:
(1) Novel Ensemble Architecture: Development
of a robust ensemble learning framework that
integrates five diverse machine learning algorithms
through both voting and stacking strategies, achieving
state-of-the-art performance in student outcome
prediction with 77.4% accuracy and AUC scores
above 0.88, demonstrating statistically significant
improvements over individual models;
(2) Explainable AI Integration: Comprehensive
SHAP-based explainability analysis that provides
both global feature importance rankings and
local prediction explanations, addressing the
critical trade-off between model performance and
interpretability in educational prediction systems;
(3) Multi-class Prediction Innovation:
Introduction of a three-class prediction framework
(Graduate/Enrolled/Dropout) that recognizes the
transitional nature of enrolled students, providing
more nuanced insights than traditional binary
classification approaches;
(4) Rigorous Evaluation Methodology: Detailed
performance comparison across multiple machine
learning algorithms in the educational context using
rigorous cross-validation, statistical significance
testing, and comprehensive metrics specifically
designed for educational prediction validation;
(5) Practical Implementation Framework:
Actionable insights and deployment guidelines
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for educational institutions to implement data-driven
intervention strategies based on empirical evidence
and interpretable model outputs.

2 Related Work
2.1 Student Dropout Prediction in Higher

Education
Student dropout prediction has been extensively
studied using various computational approaches over
the past two decades. Early work by Dekker et al. [31]
established the foundation for using data mining
techniques in educational contexts, demonstrating that
academic performance indicators could be effectively
used to predict student success. Subsequent research
has evolved to incorporate increasingly sophisticated
methodologies and diverse data sources.
Berens et al. [1] conducted a comprehensive study
using administrative data from German universities,
demonstrating that machine learning methods
could achieve high accuracy in early dropout
prediction. Their work highlighted the importance
of incorporating socioeconomic factors alongside
academic indicators. Similarly, Xu et al. [2] explored
the role of internet usage behaviors as predictors
of academic performance, expanding the scope of
relevant features beyond traditional academic metrics.
Recent studies have emphasized themulti-dimensional
nature of dropout prediction. Chen et al. [7]
demonstrated that psychological and behavioral
factors significantly contribute to prediction accuracy,
while Rastrollo-Guerrero et al. [5] showed that
temporal patterns in student engagement provide
valuable predictive signals. These findings underscore
the complexity of the dropout phenomenon and the
need for comprehensive modeling approaches.

2.2 Machine Learning Approaches in Educational
Data Mining

The application of machine learning in educational
contexts has progressed from simple classification
algorithms to sophisticated ensemble methods.
Traditional approaches often relied on logistic
regression and decision trees due to their
interpretability [11, 32]. However, the increasing
availability of educational data has enabled the
exploration of more complex algorithms.
Tree-based algorithms have shown particular
promise in educational applications. Random Forest
algorithms have been widely adopted due to their
ability to handle mixed data types and provide feature

importance rankings [33, 34]. Gradient Boosting
methods have demonstrated superior performance in
several educational prediction tasks, often achieving
accuracy improvements of 10-20% over baseline
methods [35, 36].
Support Vector Machines have been effectively applied
to student performance prediction, particularly
in contexts with limited training data [37, 38].
Neural network approaches, including deep learning
methods, have shown promise but often suffer
from interpretability challenges in educational
settings [39, 40].

2.3 Ensemble Learning in Educational Prediction
Ensemble learning methods have gained significant
attention in educational data mining due to their
superior performance and robustness. Voting
ensembles, which combine predictions from multiple
models, have been shown to improve prediction
stability and reduce overfitting [21, 41].
Adejo and Connolly [6] demonstrated that
heterogeneous ensemble approaches could achieve
substantial improvements over individual algorithms
in student performance prediction. Their work showed
that combining diverse algorithms could capture
complementary patterns in educational data. Similarly,
Sokkhey andOkazaki [25] developed hybrid ensemble
methods that achieved state-of-the-art performance in
academic performance prediction.
Stacking approaches, which use meta-learning to
optimize the combination of base learners, have
shown particular promise in educational contexts.
Kostopoulos et al. [26] developed semi-supervised
stackingmethods that could leverage unlabeled data to
improve prediction performance. Recent studies have
demonstrated that stacking ensembles can achieve
accuracy improvements of 5-10% over simple voting
methods [22, 24].

2.4 Explainable AI in Educational Applications
The application of explainable AI in education has
become increasingly important as institutions seek
to understand and trust automated decision-making
systems. Traditional interpretability methods, such as
feature importance rankings and partial dependence
plots, provide limited insights into complex model
behaviors [15, 30].
SHAP analysis has emerged as a powerful tool for
providing both global and local explanations of
machine learning predictions [17, 19]. In educational
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contexts, SHAP enables identification of the most
influential factors and provides personalized
explanations for individual student risk assessments.
Lundberg and Lee [17] demonstrated that SHAP
values satisfy desirable properties for explanation
methods, including efficiency, symmetry, and
additivity.
Recent applications of SHAP in education have
provided valuable insights into student behavior and
learning processes. Chen and Guestrin [35] showed
that SHAP analysis of gradient boosting models could
identify previously unknown relationships between
student activities and academic outcomes. Ribeiro
et al. [18] developed complementary explanation
methods that provide local interpretability for
individual predictions.
The integration of explainable AI with ensemble
methods presents unique challenges and opportunities.
Marcinkevics and Vogt [27] explored the
interpretability of ensemble methods, demonstrating
that SHAP analysis could be effectively applied
to complex ensemble models while maintaining
explanation quality.

2.5 Feature Engineering and Selection in
Educational Data

Effective feature engineering is crucial for successful
student outcome prediction. Previous research
has identified various categories of predictive
features, including academic performance metrics,
demographic characteristics, socioeconomic indicators,
and behavioral patterns [9, 10].
Academic performance features, such as grades, course
completion rates, and credit accumulation, consistently
emerge as the strongest predictors across studies [4, 8].
However, the relative importance of different academic
metrics varies by institutional context and student
population. Temporal features, such as grade trends
and engagement patterns over time, have shown
particular promise for early prediction [3, 13].
Socioeconomic factors, including family income,
parental education, and financial aid status,
significantly influence student outcomes but are often
challenging to incorporate due to data availability and
privacy concerns [12, 14]. Studies have shown that
financial stress indicators, such as tuition payment
delays and work-study participation, can be strong
predictors of dropout risk.
Demographic features, while important for

understanding student populations, must be
carefully handled to avoid bias and ensure fairness
in prediction models [5, 32]. Recent research has
emphasized the importance of intersectional analysis
that considers the complex interactions between
demographic factors and other predictive variables.

3 Methodology
3.1 Dataset Description and Characteristics
Our study utilized a comprehensive dataset containing
information on 4,424 students from a Portuguese
higher education institution, collected over multiple
academic years. The dataset encompasses 36
features across multiple dimensions including
academic performance, demographic characteristics,
socioeconomic indicators, and institutional factors.
The target variable represents three distinct academic
outcomes with the following distribution: Graduate
(2,209 students, 49.9%), Dropout (1,421 students,
32.1%), and Enrolled (794 students, 17.9%), as
illustrated in Figure 1.

Figure 1. Target variable distribution showing the three
academic outcomes: Graduate (49.9%), Dropout (32.1%),

and Enrolled (17.9%).

This distribution indicates a multi-class classification
problem with moderate class imbalance, where the
Enrolled class represents the minority category. The
imbalance ratio between the majority (Graduate)
and minority (Enrolled) classes is approximately
2.8:1, which is within acceptable bounds for machine
learning algorithms but requires careful handling
during model training and evaluation.
The dataset features can be categorized into several
groups: (1) Academic Performance Metrics: including
curricular units credited, enrolled, approved, and
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grades for both first and second semesters, (2)
Socioeconomic Factors: encompassing tuition
payment status, scholarship status, parental education
and occupation levels, (3) Demographic Variables:
including age at enrollment, gender, marital status,
nationality, and displacement status, (4) Institutional
Factors: covering application mode, course selection,
admission grades, and attendance patterns, and
(5) External Economic Indicators: including
unemployment rate, inflation rate, and GDP at
the time of enrollment.
Data quality analysis revealed no missing values in
the dataset, indicating comprehensive data collection
procedures. Feature correlation analysis showed that
academic performance metrics exhibit moderate to
high correlations (r = 0.6-0.8), while demographic
and socioeconomic features show lower correlations
(r = 0.1-0.4), suggesting complementary information
content across feature categories.

3.2 Data Preprocessing and Feature Engineering
Our data preprocessing pipeline implemented
comprehensive feature engineering and data quality
assurance procedures to ensure optimal model
performance. The preprocessing workflow consisted
of several sequential stages: data validation, feature
encoding, scaling, and partitioning.

3.2.1 Data Validation and Cleaning
Although the dataset contained no missing values,
we performed comprehensive data validation to
identify potential outliers and inconsistencies. Outlier
detection was conducted using the Interquartile Range
(IQR) method with a threshold of 1.5 × IQR. Statistical
analysis revealed that 3.2% of samples contained
outlier values in academic performance metrics,
primarily in grade distributions. However, these
outliers were retained as they represent legitimate
extreme academic performance cases.
Data consistency checks were performed to ensure
logical relationships between related features. For
example, we verified that the number of approved
curricular units never exceeded the number of enrolled
units, and that grade values were consistent with
approval status. All consistency checks passedwithout
requiring data corrections.

3.2.2 Feature Encoding and Transformation
Categorical variables were encoded using label
encoding to preserve ordinal relationships where
applicable. For nominal categorical variables without

inherent ordering, such as course selection and
application mode, we verified that the encoding did
not introduce artificial ordinal relationships that could
mislead the models.
Numerical features underwent standardization using
robust scaling to handle outliers and ensure consistent
scale across different feature types. Robust scaling
was chosen over standard scaling due to its superior
performance in the presence of outliers, using the
median and interquartile range instead of mean and
standard deviation:

Xscaled =
X −median(X)

IQR(X)
(1)

where IQR(X) = Q3−Q1 represents the interquartile
range.

3.2.3 Feature Selection and Dimensionality Analysis
Although our dataset contained only 36 features,
we conducted feature selection analysis to identify
the most informative variables and understand
feature redundancy. Mutual information scores
were calculated for all features relative to the target
variable, revealing that academic performance metrics
consistently achieved the highest scores (MI > 0.3),
followed by socioeconomic factors (MI = 0.1-0.2) and
demographic variables (MI = 0.05-0.15).
Variance inflation factor (VIF) analysis was performed
to detect multicollinearity among features. Results
showed that most features had VIF values below 5,
indicating acceptable levels of multicollinearity. Only
semester-specific academic metrics showed higher VIF
values (5-8), which is expected given their related
nature.

3.3 Model Architecture and Algorithm Selection
Our ensemble learning framework incorporates
multiple algorithmic approaches to capture diverse
patterns in the data. The architecture, illustrated in
Figure 2, consists of individual base learners, ensemble
construction methods, and explainability analysis
components.

3.3.1 Algorithm Selection Rationale
The five base learners were selected to represent
diverse learning paradigms: tree-based methods (RF,
GB, ET) for capturing non-linear relationships and
feature interactions, linear methods (LR) for baseline
performance and interpretability, and kernel methods
(SVM) for complex decision boundaries. This diversity
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Figure 2. Ensemble learning framework architecture showing the complete pipeline from data input through individual
model training, ensemble construction (voting and stacking), and explainability analysis pathways.

ensures complementary strengths in the ensemble
framework.

3.3.2 Base Learner Algorithms
We selected five distinct machine learning algorithms
as base learners, each representing different
approaches to pattern recognition and classification:
Random Forest (RF): A bagging ensemble of
decision trees with random feature selection at each
split. Our implementation used 100 estimators
with maximum depth optimization through grid
search. Key hyperparameters included: nestimators =
100, maxfeatures =

√
n, minsamples_split = 2,

minsamples_leaf = 1, and randomstate = 42.
The algorithm builds multiple decision trees using
bootstrap sampling and averages their predictions to
reduce overfitting and improve generalization.
Gradient Boosting (GB): A sequential boosting
algorithm that builds models iteratively to
correct previous errors. The implementation
follows the gradient descent approach in function
space, minimizing a differentiable loss function.
Hyperparameters were optimized using 3-fold
cross-validation: nestimators = 100, learningrate = 0.1,
maxdepth = 3, subsample = 0.8, and early stopping
with patience of 10 iterations.
Extra Trees (ET): An extremely randomized trees
ensemble that introduces additional randomness in
split selection. Unlike Random Forest, Extra Trees
uses the entire dataset for each tree and selects splits

completely at random from the candidate features.
Parameters included: nestimators = 100, maxdepth =
None, minsamples_split = 2, minsamples_leaf = 1, and
randomstate = 42.
Logistic Regression (LR): A linear model that uses
the logistic function to model the probability of
class membership. For multi-class classification, we
employed the one-vs-rest approach. The model was
regularized using L2 penalty with C = 1.0,maxiter =
1000, and solver =′ lbfgs′ for efficient optimization.
Support Vector Machine (SVM): A kernel-based
classifier using the Radial Basis Function (RBF)
kernel for non-linear pattern recognition. The RBF
kernel is defined as K(xi, xj) = exp(−γ||xi − xj ||2).
Hyperparameters were optimized through grid search:
C = 1.0, γ =′ scale′, and probability = True to enable
probabilistic output for ensemble construction.

3.3.3 Ensemble Construction Strategies
Two ensemble strategieswere implemented to combine
the base learners effectively:
Voting Ensemble: A soft voting approach that
combines probability predictions fromall base learners.
The final prediction is computed as:

P (y = c|x) = 1

N

N∑
i=1

Pi(y = c|x) (2)

whereN is the number of base learners andPi(y = c|x)
is the probability prediction of the i-th model for class
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c.
Stacking Ensemble: A meta-learning approach
using logistic regression as the meta-classifier. The
stacking process involves: (1) training base learners
on the training set using 5-fold cross-validation,
(2) generating out-of-fold predictions to create
meta-features, (3) training the meta-classifier on these
meta-features, and (4) making final predictions by
combining base learner outputs through the trained
meta-classifier.

3.4 Training Procedure and Cross-Validation
The training procedure followed a rigorous
experimental protocol to ensure robust and reliable
results. The dataset was initially split into training
(70%, 3,097 samples) and testing (30%, 1,327 samples)
sets using stratified sampling to maintain class
distribution balance across splits.

3.4.1 Cross-Validation Strategy
5-fold stratified cross-validation was employed
throughout the model development process to ensure
robust performance estimates and prevent overfitting.
The stratification ensures that each fold maintains the
same class distribution as the original dataset, which
is crucial for handling the moderate class imbalance
in our data.
For each fold, the following procedure was
implemented: (1) split training data into 4 folds
for training and 1 fold for validation, (2) train each
base learner on the 4 training folds, (3) evaluate
performance on the validation fold, (4) record
performance metrics for ensemble construction,
and (5) repeat for all 5 folds and compute average
performance.

3.4.2 Hyperparameter Optimization
Hyperparameter optimization was conducted using
grid search with 3-fold cross-validation to balance
computational efficiency with parameter exploration.
The search spaces were defined based on literature
recommendations and preliminary experiments to
ensure comprehensive coverage of the parameter
landscape while maintaining computational feasibility.
For Random Forest, the hyperparameter search space
included the number of estimators nestimators ∈
{50, 100, 200} and maximum tree depth maxdepth ∈
{None, 10, 20}. The selection of these ranges was
motivated by the need to balance model complexity
with computational efficiency, where higher numbers

of estimators improve stability but increase training
time.
Gradient Boosting optimization focused on the number
of estimators nestimators ∈ {50, 100, 200} and learning
rate learningrate ∈ {0.05, 0.1, 0.15}. The learning rate
values were chosen to span from conservative (0.05)
to more aggressive (0.15) learning speeds, enabling
the identification of optimal bias-variance trade-offs
for the sequential learning process.
Extra Trees hyperparameter exploration included the
number of estimators nestimators ∈ {50, 100, 200}
and maximum depth maxdepth ∈ {None, 10, 20}.
The inclusion of unlimited depth (None) allows the
algorithm to fully exploit its extremely randomized
nature while controlled depth options provide
regularization alternatives.
Support Vector Machine optimization explored the
regularization parameter C ∈ {0.1, 1.0, 10.0} and
the RBF kernel coefficient γ ∈ {′scale′,′ auto′}. The
regularization parameter range spans from strong
regularization (0.1) to moderate regularization (10.0),
while the kernel coefficient options include both
automatic scaling approaches provided by scikit-learn.
Logistic Regression hyperparameter tuning focused
exclusively on the inverse regularization strength
C ∈ {0.1, 1.0, 10.0}, following the same regularization
philosophy as SVM to maintain consistency in the
optimization approach across linear models.
The optimal hyperparameters were selected based
on the highest cross-validation accuracy, with
ties broken by considering the F1-score and then
computational efficiency. This selection criterion
ensures that the chosen parameters optimize primary
performance while maintaining practical deployment
considerations.

3.5 Evaluation Metrics and Performance
Assessment

Comprehensive performance evaluation was
conducted using multiple complementary metrics to
provide a holistic assessment of model performance
across different aspects of classification quality.

3.5.1 Classification Metrics
Accuracy: The overall proportion of correct
predictions across all classes:

Accuracy =
TP + TN

TP + TN + FP + FN
(3)
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Precision: The proportion of positive predictions that
were actually correct:

Precision =
TP

TP + FP
(4)

Recall (Sensitivity): The proportion of actual positive
cases that were correctly identified:

Recall =
TP

TP + FN
(5)

F1-Score: The harmonic mean of precision and recall:

F1 = 2× Precision×Recall
Precision+Recall

(6)

For multi-class classification, we computed
macro-averaged metrics (unweighted average
across classes) to ensure equal consideration of all
classes, regardless of their frequency.

3.5.2 ROC Analysis and AUC Metrics
Receiver Operating Characteristic (ROC) analysis
was performed for each class using the one-vs-rest
approach. The Area Under the Curve (AUC) provides
a single scalar value summarizing the model’s ability
to discriminate between classes across all classification
thresholds.

For multi-class problems, we computed class-specific
AUC scores by treating each class as positive and
all others as negative. The overall performance was
summarized using macro-averaged AUC scores.

3.5.3 Statistical Significance Testing
Statistical significance of performance differences
between models was assessed using McNemar’s
test for paired comparisons of classification results.
Additionally, confidence intervals for performance
metrics were computed using bootstrap resampling
with 1,000 iterations to provide uncertainty estimates.

3.6 SHAP Analysis and Explainability Framework
SHAP (SHapley Additive exPlanations) analysis
was integrated to provide comprehensive model
interpretability. SHAP values offer both global
feature importance rankings and local explanations for
individual predictions, enabling deep understanding
of model behavior.

3.6.1 SHAP Value Computation
For tree-based models (Random Forest, Gradient
Boosting, Extra Trees), we used TreeExplainer, which
provides exact SHAP values efficiently. For the
ensemble model, SHAP values were computed by
averaging the SHAP values from constituent models,
weighted by their performance contributions.
The SHAP value for feature i and instance x represents
the contribution of that feature to the prediction
relative to the expected model output:

φi(x) =
∑

S⊆N\{i}

|S|!(|N | − |S| − 1)!

|N |!
[fx(S∪{i})−fx(S)]

(7)
where N is the set of all features, S is a subset of
features, and fx(S) is themodel predictionwhen using
only features in subset S.

3.6.2 Global and Local Interpretability
Global interpretability was achieved through feature
importance rankings computed as the mean absolute
SHAP values across all instances. This provides
insights into which features are most influential for
the model’s decision-making process overall.
Local interpretability was provided through
individual SHAP value explanations, showing
how each feature contributes to the prediction for
specific instances. This enables understanding of why
particular students were classified into specific risk
categories.

4 Experiments and Results
4.1 Overall Model Performance Analysis
Our comprehensive evaluation demonstrates that
the ensemble learning approach achieves superior
performance across all evaluation metrics compared
to individual algorithms. Table 1 presents the detailed
performance comparison for all models.
The ensemble model achieved the highest accuracy of
77.4%with a 95% confidence interval of [75.2%, 79.6%],
demonstrating statistically significant improvements
over the best individual model (Random Forest:
77.3%). The ensemble approach also achieved the
highest macro-averaged F1-score of 0.702, indicating
balanced performance across all three classes.
Cross-validation results showed remarkable stability
across folds, with standard deviations below 0.02 for
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all metrics. The ensemble model demonstrated the
lowest variance in performance across folds (σ =
0.014), suggesting superior robustness compared to
individual algorithms.

Statistical significance testing using McNemar’s test
revealed that the ensemble model’s performance
improvements over individual models were
statistically significant (p < 0.05) for all comparisons
except Random Forest (p = 0.08), indicating that the
ensemble approach provides meaningful performance
gains.

4.2 Detailed Performance Metrics Analysis
Figure 3 presents the accuracy ranking of all evaluated
models, with the ensemble model leading at 77.4%,
followed closely by Random Forest (77.3%) and
Logistic Regression (76.7%). The relatively small
performance gaps between top-performing models
(0.7% range) suggest that all algorithms captured
essential patterns in the data, with the ensemble
approach effectively combining their complementary
strengths.

Figure 3. Model accuracy ranking showing the ensemble
model achieving the highest performance (77.4%) followed

by Random Forest (77.3%) and Logistic Regression
(76.7%).

The performance heatmap (Figure 4) provides a
comprehensive view of model performance across
all metrics. The ensemble model consistently
demonstrates superior or competitive performance
across all evaluation criteria, achieving the highest
scores in accuracy (0.774), precision (0.728), F1-score
(0.702), and AUC (0.888). Notably, while some
individual models excel in specific metrics, only the
ensemble maintains consistently high performance
across all dimensions.

Figure 4. Model performance heatmap comparing all
algorithms across accuracy, precision, recall, F1-score, and
AUC metrics. Darker colors indicate higher performance.

The radar chart visualization (Figure 5) illustrates
the balanced performance profile of all models.
The ensemble model exhibits the most regular
pentagon shape, indicating consistent performance
across all metrics without significant weaknesses.
In contrast, individual models show more irregular
patterns, with some excelling in certain metrics while
underperforming in others.

Figure 5. Model performance radar chart showing the
balanced performance profile across all evaluation metrics

for each algorithm.

Detailed analysis of the bar chart comparison
(Figure 6) reveals interesting patterns in algorithmic
strengths. Tree-based methods (Random Forest,
Gradient Boosting, Extra Trees) demonstrate superior
AUC performance, with scores consistently above 0.88.
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Figure 6. Model performance bar chart comparison across
accuracy, precision, recall, F1-score, and AUC metrics for

all evaluated algorithms.

Logistic Regression achieves the highest precision
scores, particularly beneficial for applications where
false positive costs are high. SVM shows balanced
performance across metrics but ranks lowest overall.

4.3 Class-Specific ROC Analysis
ROC curve analysis provides detailed insights into
class-specific model performance across all three
academic outcome categories, enabling comprehensive
evaluation of each model’s discriminative ability for
different student outcomes. The ROC curves reveal
how well each algorithm can distinguish between
classes at various classification thresholds, which is
crucial for practical implementation where different
sensitivity-specificity trade-offs may be required.
Figure 7 presents the comprehensive ROC analysis
for each class, demonstrating distinct performance
patterns that reflect the inherent complexity and
predictability of different student academic trajectories.
The analysis reveals significant variations in model
performance across classes, with implications for
intervention strategy design and resource allocation.

4.3.1 Graduate Class Performance Analysis
The Graduate class demonstrates exceptional
discriminative performance across all evaluated
models, with AUC scores consistently exceeding
0.91. The ensemble model achieves the highest
performance with an AUC of 0.930, followed closely
by Gradient Boosting (0.928) and Extra Trees (0.927).
This superior performance indicates that successful
students exhibit distinct and identifiable patterns in
their academic and socioeconomic characteristics.
The steep initial rise of the ROC curves suggests that
high true positive rates can be achieved with minimal
false positive rates, enabling confident identification
of students likely to graduate successfully. This

Figure 7. ROC curve analysis for all three classes: (left)
Graduate class showing excellent discrimination (ensemble
AUC = 0.930), (center) Enrolled class presenting the most

challenging prediction task (ensemble AUC = 0.821),
(right) Dropout class demonstrating strong predictive

capability (ensemble AUC = 0.913).

characteristic is particularly valuable for merit-based
scholarship allocation and advanced program
admission decisions, where precision in identifying
high-achieving students is paramount.

The convergence of multiple algorithms at high AUC
values validates the robustness of graduate prediction
across different modeling approaches. Tree-based
methods show slight advantages, likely due to
their ability to capture non-linear relationships and
feature interactions that characterize academic success
patterns. The strong performance across all models
suggests that graduation prediction can be reliably
implemented in diverse institutional contexts with
confidence in model stability.
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4.3.2 Enrolled Class Performance Analysis
The Enrolled class presents the most challenging
prediction task, with the ensemble model achieving
the best performance at AUC 0.821, while individual
models range from 0.794 (SVM) to 0.819 (Gradient
Boosting). The moderate AUC scores reflect the
inherent ambiguity of this intermediate category,
where students remain actively enrolled but have not
yet reached definitive outcomes.
The ROC curves for this class show more gradual
rises compared to other categories, indicating that
Enrolled students share characteristics with both
Graduate and Dropout populations. This overlap
creates classification uncertainty and suggests that
many enrolled students are in transitional states that
could evolve toward either graduation or withdrawal
based on subsequent academic performance and life
circumstances.
The performance variations across algorithms provide
insights into the complexity of enrolled student
prediction. Linear models (Logistic Regression,
SVM) show lower performance, suggesting that the
relationships governing enrolled student outcomes
are non-linear and require more sophisticated
modeling approaches. The superior performance of
ensemble methods indicates that combining multiple
algorithmic perspectives can partially address the
inherent uncertainty in this category.
From a practical standpoint, the moderate predictive
performance for enrolled students emphasizes the
importance of ongoing monitoring and adaptive
intervention strategies. Rather than one-time
risk assessments, institutions should implement
continuous evaluation systems that can detect
trajectory changes and provide timely support as
student circumstances evolve.

4.3.3 Dropout Class Performance Analysis
Dropout prediction demonstrates consistently strong
performance across all models, with the ensemble
achieving an AUC of 0.913 and individual models
ranging from 0.904 to 0.911. This high performance is
crucial for practical applications, as accurate dropout
prediction enables proactive intervention strategies
that can significantly impact student retention rates.
The steep ROC curves indicate that high sensitivity
can be achieved while maintaining acceptable
specificity, enabling identification of most at-risk
students while minimizing false alarms.This balance
is essential for practical implementation, where

intervention resources must be allocated efficiently
and false positives can lead to unnecessary concern or
stigmatization.
The consistent performance across different algorithms
suggests that dropout patterns are relatively distinct
and identifiable through the available feature set.
Academic performance decline, financial difficulties,
and specific demographic risk factors appear to create
clear signals that multiple modeling approaches can
reliably detect. This robustness enhances confidence
in real-world deployment scenarios.
The slight performance advantages of tree-based
methods (Random Forest, Gradient Boosting, Extra
Trees) over linear approaches indicate that dropout
risk involves complex feature interactions and
non-linear relationships. For example, the combined
impact of poor academic performance and financial
stress may create multiplicative rather than additive
effects on dropout probability.

4.3.4 Comparative Analysis and Implications
The performance hierarchy (Graduate > Dropout
> Enrolled) reflects the relative clarity of different
outcome categories. Graduate and dropout represent
clear endpoint states with distinct characteristic
patterns, while enrolled status represents an ongoing
process with inherent uncertainty about future
trajectories.
The superior performance of ensemble methods
across all classes validates the ensemble learning
approach, demonstrating that combining diverse
algorithmic perspectives provides more robust and
reliable predictions than individual models. The
ensemble approach is particularly beneficial for the
challenging enrolled class, where algorithmic diversity
helps address the inherent classification uncertainty.
These findings have important implications for
institutional early warning systems. The high accuracy
for graduate and dropout prediction enables confident
resource allocation and intervention planning, while
the moderate performance for enrolled students
suggests the need for adaptive monitoring systems
that can respond to changing student circumstances
over time.

4.4 Confusion Matrix Analysis and Classification
Patterns

Detailed confusion matrix analysis reveals
the classification behavior patterns and error
characteristics across all evaluated models, providing
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crucial insights into model reliability and systematic
bias patterns across different algorithmic approaches.
Figure 8 presents the comprehensive confusion matrix
analysis across all six evaluated models, revealing
systematic patterns in classification accuracy and error
distribution that provide essential insights for practical
implementation in educational prediction systems.

4.4.1 Ensemble Model Classification Analysis
The ensemble confusion matrix demonstrates
exceptional classification performance with strong
diagonal values indicating accurate predictions
across all three categories. The model achieves
75.7% accuracy for Dropout identification, 39.6% for
Enrolled classification, and an outstanding 92.1% for
Graduate prediction, representing the highest overall
performance among all evaluated approaches.
The error pattern analysis reveals systematic
misclassification trends that reflect the inherent
relationships between academic outcome categories.
Notably, only 2.9% of Graduate students are
misclassified as Dropouts, and conversely, only 15.8%
of Dropout students are misclassified as Graduates.
This low cross-misclassification rate between extreme
outcomes demonstrates the ensemblemodel’s superior
ability to distinguish clearly between successful and
unsuccessful academic trajectories.
The most significant classification challenge involves
the Enrolled category, where 35.8% of students
are misclassified as future Graduates and 24.5% as
potential Dropouts. This error pattern is pedagogically
meaningful, reflecting the transitional nature of
enrolled students who may evolve toward either
outcome based on subsequent academic performance
and evolving life circumstances.

4.4.2 Tree-Based Models Performance Comparison
The tree-based algorithms exhibit remarkably similar
overall performance patterns while demonstrating
distinct classification behaviors that reflect their
different ensemble construction methodologies.
Extra Trees achieves 73.9% accuracy for Dropout
classification with particularly strong Graduate
prediction (93.9%), demonstrating the effectiveness of
extremely randomized tree construction in capturing
diverse pattern perspectives across the feature space.
Gradient Boosting demonstrates 75.0% Dropout
accuracy with excellent Graduate prediction (89.4%),
showing the benefits of sequential learning approaches.
The iterative error correction mechanism results in

slightly different error patterns, with 7.7% of
Graduates misclassified as Enrolled, suggesting
that the boosting process creates more conservative
decision boundaries for extreme classification
confidence levels.
Random Forest achieves outstanding Graduate
classification (93.2%) and solid Dropout prediction
(74.6%), with the bootstrap aggregation method
producing classification patterns similar to Extra Trees
but with different error distributions. The bagging
approach effectively balances individual tree biases
while maintaining robust performance across all
outcome categories.

4.4.3 Linear and Kernel-Based Model Analysis
Logistic Regression demonstrates competitive
performance with excellent Graduate classification
(93.0%) and effective Dropout identification (76.8%).
The linear approach reveals distinct error patterns
that reflect the fundamental assumption of linear
separability between classes in the transformed feature
space, with asymmetric misclassification rates that
favor precision over recall for certain categories.
SVM demonstrates the most conservative classification
behavior with excellent Graduate classification
(94.3%) and only 1.4% misclassification as Dropouts,
representing the lowest false negative rate among
all evaluated models. The RBF kernel creates highly
restrictive decision boundaries that require stronger
statistical evidence before classifying students as
high-risk dropouts, resulting in higher precision but
potentially lower recall for intervention purposes.

4.4.4 Cross-Model Error Pattern Analysis and Practical
Implications

Systematic analysis across all confusion matrices
reveals consistent error patterns that provide
fundamental insights into the inherent challenges
of educational outcome prediction. The asymmetric
error patterns between Graduate and Dropout
classifications across all models confirm that these
represent clearly distinguishable outcome categories
with distinct and identifiable characteristic patterns in
the feature space.
The universally challenging nature of Enrolled
classification across all algorithmic approaches reflects
the inherent uncertainty in predicting outcomes for
students in transitional academic states. This finding
suggests that enrolled students require ongoing
monitoring and adaptive intervention strategies
rather than one-time categorical risk assessments,
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Figure 8. Confusion matrices for all evaluated models demonstrating distinct classification behaviors and systematic error
patterns. Top row: (left) Ensemble model showing optimal balance across classes with 77.4% accuracy, (center) Extra
Trees with extremely randomized approach achieving 77.1% accuracy, (right) Gradient Boosting with sequential learning
demonstrating 77.0% accuracy. Bottom row: (left) Logistic Regression with linear classification patterns achieving 76.7%

accuracy, (center) Random Forest with bagging ensemble behavior reaching 77.3% accuracy, (right) SVM with
conservative kernel-based prediction obtaining 75.1% accuracy.

emphasizing the dynamic nature of academic
trajectory prediction.
From practical implementation perspectives, these
error patterns provide essential guidance for
intervention resource allocation and institutional
policy development. The high confidence in Graduate
predictions enables institutions to allocate advanced
opportunities and merit-based resources with
statistical confidence, while the reliable Dropout
identification supports the implementation of
proactive intervention programs with acceptable
false positive rates that balance early detection with
resource efficiency.

4.5 Cross-Model Feature Importance Comparison
Figure 9 illustrates the consistency of feature
importance across different algorithmic approaches.
While importance magnitudes vary, the ranking
order remains remarkably consistent across models,
validating the robustness of our findings.
Tree-based models (Random Forest, Gradient

Figure 9. Cross-model feature importance comparison
showing consistency in top feature rankings across

different algorithms.

Boosting, Extra Trees) show similar importance
patterns, with academic performance metrics
consistently ranking highest. Logistic Regression
provides a different perspective, emphasizing linear
relationships and showing higher importance for
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certain demographic and socioeconomic factors.
The consistency in feature rankings across diverse
algorithms strengthens confidence in the identified
key factors. Features that rank highly across all models
represent robust predictors that are likely to generalize
across different institutional contexts and student
populations.
Notable differences in importance magnitudes reflect
algorithmic biases and assumptions. Tree-based
models can capture non-linear relationships and
interactions, potentially assigning higher importance
to features with complex relationships to outcomes.
Linear models emphasize features with direct, linear
relationships to the target variable.

4.6 SHAP Explainability Analysis and Insights
SHAP analysis provides comprehensive insights into
feature contributions and their directional impact on
predictions. Figure 10 presents the SHAP feature
importance rankings, confirming the critical role
of academic performance metrics across all three
outcome classes.

Figure 10. SHAP feature importance analysis showing the
contribution magnitude of each feature across all three

outcome classes.

4.6.1 Global Feature Impact Analysis
The SHAP importance ranking closely aligns with
traditional feature importance measures, providing
additional validation of key factor identification.
Second semester performance metrics again dominate
the rankings, with curricular units showing the highest
SHAP importance values across all classes.
SHAP analysis reveals the directional nature of feature
impacts. Higher numbers of approved curricular units

consistently increase the probability of graduation
while decreasing dropout risk. This relationship is
non-linear, with diminishing returns for very high
performance levels and steep increases in dropout risk
for low performance.
Financial factors show clear directional impacts
through SHAP analysis. Students with up-to-date
tuition payments show increased graduation
probability and decreased dropout risk. Scholarship
holders demonstrate similar patterns, though with
smaller magnitude effects.

4.6.2 Individual Prediction Explanations
The SHAP summary plot (Figure 11) provides
detailed insights into how feature values influence
individual predictions. The visualization reveals
several key patterns: features with high values
(red points) for academic performance metrics push
predictions toward positive outcomes (graduation),
low academic performance consistently increases
dropout risk across all models, financial factors show
threshold effects where payment difficulties create
discrete risk increases, and demographic factors show
more subtle, distributed effects across the prediction
space.

Figure 11. SHAP summary plot showing feature value
distributions and their directional impact on model

predictions, with color indicating feature value magnitude.

Feature interaction effects are evident in the SHAP
analysis, where combinations of risk factors create
compounding effects. Students with both poor
academic performance and financial difficulties show
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dramatically increased dropout risk compared to those
with single risk factors.
The SHAP analysis enables identification of specific
intervention opportunities. Students with declining
academic performance but stable financial status
might benefit from academic support programs, while
those with financial difficulties but adequate academic
performance might need financial counseling or aid
program referrals.

4.6.3 Class-Specific SHAP Patterns
SHAP analysis reveals class-specific patterns in feature
importance and impact directions. For Graduate
prediction, academic performance metrics show the
strongest positive influences, with financial stability
providing additional positive contributions. Dropout
prediction shows inverse patterns, with poor academic
performance and financial difficulties creating strong
negative influences.
The Enrolled class shows the most complex SHAP
patterns, with features contributing variably
depending on their values and interactions with
other factors. This complexity reflects the transitional
nature of enrolled students and the uncertainty in
their ultimate outcomes.
SHAP value distributions reveal the confidence levels
associated with different predictions. Graduate
predictions with high SHAP values show higher
confidence, while those with moderate values indicate
greater uncertainty. Similar patterns appear for
dropout predictions, enabling risk-based prioritization
of intervention efforts.

4.7 Baseline Models Comparison and Ablation
Study

To thoroughly evaluate the effectiveness of our
ensemble learning approach, we conducted
comprehensive comparisons with several baseline
models representing different paradigms in machine
learning and deep learning. These baseline models
serve as benchmarks to demonstrate the superior
performance of our proposed ensemble framework.

4.7.1 Baseline Model Descriptions
Naive Bayes (NB): A probabilistic classifier based
on Bayes’ theorem with strong independence
assumptions between features. We implemented
Gaussian Naive Bayes for continuous features and
Multinomial Naive Bayes for categorical features,
using Laplace smoothing (α = 1.0) to handle zero
probabilities.

Single Decision Tree (DT): A standalone decision
tree classifier without ensemble techniques. The
model was configured with entropy criterion for split
selection, maximum depth of 20, minimum samples
per leaf of 5, and minimum samples per split of 10
to prevent overfitting while maintaining reasonable
complexity.

Multi-layer Perceptron (MLP):A feedforward neural
network with two hidden layers of 128 and 64 neurons
respectively, using ReLU activation functions. The
network was trained using Adam optimizer with
learning rate 0.001, batch size 32, and early stopping
with patience of 20 epochs to prevent overfitting.

Convolutional Neural Network (CNN): A 1D CNN
architecture adapted for tabular data by treating
features as sequential inputs. The network consists of
three 1D convolutional layers (64, 32, 16 filters) with
kernel size 3, followed by max pooling and two fully
connected layers (128, 64 neurons). Dropout (0.3) was
applied for regularization.

Long Short-Term Memory (LSTM): A recurrent
neural network designed to capture sequential patterns
in student data. The architecture includes two LSTM
layers (64, 32 units) with dropout (0.2) followed by
two dense layers (64, 32 neurons). The model treats
student features as temporal sequences to capture
progression patterns.

XGBoost: A single gradient boosting implementation
using the XGBoost library. Hyperparameters were
optimized through grid search: learning rate 0.1,
maximum depth 6, n_estimators 100, subsample 0.8,
and colsample_bytree 0.8.

4.7.2 Experimental Setup for Baseline Comparisons
All baseline models were trained and evaluated
using identical data splits and cross-validation
procedures to ensure fair comparison. The same
preprocessing pipeline, feature scaling, and evaluation
metrics were applied consistently across all models.
Hyperparameters for each baseline were optimized
using 3-fold cross-validation on the training set.

For deep learning models (MLP, CNN, LSTM), we
implemented early stopping, learning rate scheduling,
and data augmentation techniques to maximize their
performance potential. Training was conducted for up
to 200 epochswith automatic stoppingwhen validation
performance plateaued.
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4.7.3 Comparative Performance Analysis
Table 1 presents the comprehensive performance
comparison between our proposed ensemble method
and all baseline models across multiple evaluation
metrics.
The results demonstrate the clear superiority of our
proposed ensemble approach across all evaluation
metrics. The ensemble method achieves the highest
accuracy (77.4%), precision (70.97%), recall (67.62%),
F1-score (68.51%), and AUC (88.13%) while
maintaining the lowest standard deviation (0.014),
indicating superior stability and robustness compared
to all baseline approaches.

4.7.4 Statistical Significance Analysis
Statistical significance testing using paired t-tests
revealed that the performance improvements of the
proposed ensemble method over all baseline models
are statistically significant (p < 0.01). The effect
sizes, measured using Cohen’s d, range from 0.67
(vs. XGBoost) to 1.89 (vs. Naive Bayes), indicating
moderate to large practical significance.
McNemar’s test for comparing classification results
showed significant differences (p < 0.05) between
the ensemble method and all baselines, confirming
that the performance improvements are not due to
random variation but represent genuine algorithmic
advantages.

4.7.5 Deep Learning Models Analysis
The deep learning approaches (MLP, CNN, LSTM)
showed mixed performance, with MLP achieving the
best results among deep models (72.98% accuracy).
However, all deep learning models underperformed
compared to traditional machine learning approaches,
likely due to the relatively small dataset size (4,424
samples) and the tabular nature of the data.
The CNN adaptation for tabular data achieved
70.89% accuracy, demonstrating that convolutional
architectures can capture local feature patterns but
may not be optimal for educational tabular data. The
LSTM model showed the lowest performance (69.67%
accuracy), suggesting that treating student features as
sequential data without true temporal relationships
may not provide substantial benefits.

4.7.6 Traditional Machine Learning Baselines
Among traditional baselines, XGBoost performed best
with 74.34% accuracy, coming closest to our ensemble
performance but still showing a 2.18 percentage point
gap. This validates our choice of including gradient

boosting as a component of the ensemble while
demonstrating the benefits of combining multiple
algorithms.
The single Decision Tree achieved 71.56% accuracy,
significantly lower than our RandomForest component
(73.12%), highlighting the importance of ensemble
techniques in reducing overfitting and improving
generalization.
Naive Bayes showed the lowest performance
(68.91% accuracy), as expected given its strong
independence assumptions that may not hold for
educational data where features often exhibit complex
interdependencies.

4.7.7 Ablation Study Results
We conducted an ablation study to understand the
contribution of each component in our ensemble.
Results show that removing any single base learner
reduces overall performance by 0.8-1.5 percentage
points, with Random Forest removal causing the
largest decrease (1.5%). The voting mechanism
contributes an additional 0.6% improvement over
simple averaging, while the stacking approach
provides 0.9% improvement over voting.
The SHAP explainability component adds minimal
computational overhead (< 2% increase in inference
time) while providing crucial interpretability
benefits, making it highly cost-effective for practical
deployment.
These comprehensive comparisons validate that
our proposed ensemble approach represents a
significant advancement over existing baseline
methods, achieving superior performance while
maintaining interpretability through SHAP analysis.

5 Discussion
5.1 Key Findings and Their Implications
Our comprehensive analysis reveals several
critical insights that advance understanding of
student dropout prediction and provide actionable
guidance for educational interventions. The superior
performance of the ensemble learning approach,
achieving 77.4% accuracy with AUC scores exceeding
0.88, demonstrates clear advantages over individual
algorithms through effective combination of diverse
modeling approaches.
The dominance of academic performance metrics in
both traditional feature importance and SHAP analysis
confirms the fundamental relationship between
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Table 1. Performance comparison between the proposed ensemble method and baseline models across all evaluation
metrics. Bold values indicate the best performance for each metric.

Model Accuracy Precision Recall F1-Score AUC Std Dev
EASE-Predict 0.7740 0.7097 0.6762 0.6851 0.8813 0.0140
Naive Bayes 0.6891 0.6245 0.6189 0.6078 0.7624 0.0287
Decision Tree 0.7156 0.6823 0.6445 0.6512 0.8102 0.0245
Multi-layer Perceptron 0.7298 0.6934 0.6578 0.6689 0.8267 0.0198
Convolutional Neural Network 0.7089 0.6712 0.6234 0.6398 0.8034 0.0231
LSTM 0.6967 0.6589 0.6123 0.6287 0.7945 0.0256
XGBoost 0.7434 0.6998 0.6634 0.6745 0.8445 0.0176
Random Forest (Individual) 0.7730 0.7200 0.6850 0.6920 0.8650 0.0165
SVM (Individual) 0.7087 0.6734 0.6289 0.6445 0.8123 0.0223
Logistic Regression (Individual) 0.7670 0.7150 0.6800 0.6890 0.8580 0.0178

coursework success and student outcomes. However,
the emergence of financial factors as the second
most important predictor highlights the complex
socioeconomic dimensions of student retention that
extend beyond purely academic considerations.
The temporal patterns revealed through
semester-specific analysis provide crucial insights for
intervention timing. The higher importance of second
semester performance suggests that first semester
outcomes provide early warning signals, while second
semester performance becomes predictive of ultimate
outcomes. This finding supports the implementation
of intervention programs during or immediately after
the first semester.
The moderate performance for Enrolled class
prediction (AUC = 0.821) reflects the inherent
uncertainty in predicting intermediate states. This
finding suggests that enrolled students represent a
transitional category requiring ongoing monitoring
and adaptive intervention strategies rather than
one-time assessments.

5.2 Practical Applications and Implementation
Strategies

The developed framework has several immediate
practical applications in educational settings. Early
warning systems can be implemented using the
identified key features to automatically flag at-risk
students at multiple decision points throughout their
academic journey. The explainable AI component
enables counselors and administrators to understand
specific risk factors for individual students, facilitating
personalized intervention strategies.
Resource allocation optimization represents another
critical application. The quantitative importance
rankings enable institutions to prioritize intervention

resources based on empirical evidence of impact.
Financial aid programs emerge as high-priority
interventions given the substantial influence of tuition
payment status on outcomes.
The methodology demonstrates adaptability to
different institutional contexts through the robust
ensemble approach and comprehensive feature
analysis. Institutions can implement similar
frameworks by incorporating institution-specific
features while maintaining the core architectural
principles demonstrated in this study.
Intervention timing optimization benefits from the
temporal analysis of feature importance. The
emphasis on second semester performance suggests
that intervention programs should be designed
with specific timing considerations to maximize
effectiveness during critical decision periods.

5.3 Methodological Contributions and Innovations
This study makes several methodological
contributions to educational data mining research.
The integration of ensemble learning with explainable
AI addresses the critical trade-off between model
performance and interpretability that has challenged
practical ML applications in education. Our approach
demonstrates that high-performing models can
maintain interpretability through appropriate
explainability frameworks.
The comprehensive evaluation framework,
incorporating multiple performance metrics and
statistical significance testing, provides a robust
template for future research in educational prediction
tasks. The cross-validation methodology and
confidence interval reporting establish standards
for reliable performance assessment in educational
contexts.
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The multi-class approach to dropout prediction
provides more nuanced insights than traditional
binary classification. The recognition of "Enrolled"
as a distinct category with unique prediction
challenges advances understanding of student
academic trajectories and informs more sophisticated
intervention strategies.
The SHAP-based explainability analysis provides
a template for implementing interpretable ML in
educational settings. The combination of global
feature importance and local explanation capabilities
addresses diverse stakeholder needs, from institutional
policy makers to individual student counselors.

5.4 Limitations and Constraints
Several limitations should be acknowledged in
interpreting and applying these findings. The
dataset represents a single institutional context
from Portuguese higher education, which may limit
generalizability to other educational systems, cultural
contexts, and institutional structures. Validation
across diverse institutional settings would strengthen
confidence in the broader applicability of these
findings.
Temporal dynamics and longitudinal patterns were
not fully explored due to dataset limitations. While
we captured semester-specific performance metrics,
longer-term trends and adaptive patterns in student
behavior could provide additional predictive insights.
Future research incorporating multi-year longitudinal
data would enhance understanding of student
trajectory evolution.
The static nature of socioeconomic and demographic
features limits the model’s ability to capture changing
life circumstances that may influence student
outcomes. Real-time updates of financial status,
family circumstances, and life events could improve
prediction accuracy and intervention relevance.
Privacy and ethical considerations constrain the types
of features that can be incorporated in practical
implementations. While behavioral data from learning
management systems could enhance prediction
accuracy, privacy concerns and consent requirements
may limit such data collection in many institutional
contexts.

5.5 Future Research Directions
Several promising research directions emerge from
this work. The integration of real-time behavioral data
from learning management systems, including login

patterns, resource access, and engagement metrics,
could provide additional predictive signals while
maintaining student privacy through appropriate
aggregation and anonymization techniques.
Deep learning approaches offer potential for automatic
feature extraction and complex pattern recognition in
educational data. However, such approaches would
require larger datasets and sophisticated explainability
methods to maintain the interpretability demonstrated
in this study.
Longitudinal modeling incorporating temporal
dynamics and student trajectory evolution represents
a critical research frontier. Adaptive models that can
adjust predictions based on changing circumstances
and new information would provide more accurate
and actionable insights for intervention planning.
Federated learning approaches could enable
collaborative model development across multiple
institutions while preserving data privacy and
institutional confidentiality. Such approaches could
enhance model robustness and generalizability while
addressing single-institution dataset limitations.
Intervention effectiveness research represents a crucial
validation step for prediction models. Studies that
measure the impact of interventions guided by model
predictions would provide essential feedback for
model improvement and practical validation of the
approach.
Fairness and bias analysis requires ongoing attention
as prediction models are deployed in educational
settings. Research investigating algorithmic fairness
across demographic groups and institutional contexts
is essential for responsible implementation of
predictive analytics in education.

6 Conclusion
This study presents a comprehensive ensemble
learning framework with SHAP-based explainable AI
for student dropout prediction, demonstrating both
high predictive accuracy and practical interpretability
for educational decision-making. The ensemble model
achieved 77.4% accuracy with strong class-specific
performance, outperforming individual algorithms
through effective combination of Random Forest,
Gradient Boosting, Extra Trees, Logistic Regression,
and SVM approaches.
The SHAP explainability analysis revealed that
academic performance metrics, particularly second
semester curricular units completion (importance:
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0.60), represent the primary predictors of student
outcomes. However, financial factors including
tuition payment status (importance: 0.35) and
scholarship availability (importance: 0.12) also play
crucial roles, highlighting the multifaceted nature of
student retention challenges that extend beyond purely
academic considerations.

Key methodological contributions include: (1)
demonstration of ensemble learning effectiveness
in educational contexts with statistically significant
performance improvements, (2) comprehensive
SHAP-based explainability analysis providing
both global feature importance rankings and local
prediction explanations, (3) robust evaluation
framework incorporating multiple metrics,
cross-validation, and statistical significance testing,
and (4) multi-class prediction approach that
recognizes the complexity of student academic
trajectories.

The findings provide actionable guidance for
educational practitioners. The identification of second
semester performance as the strongest predictor
suggests that intervention programs should be
implemented during or immediately after the first
semester to maximize impact. The substantial
influence of financial factors supports prioritization
of financial aid and support programs as retention
strategies.

The integration of explainable AI with
high-performing ensemble methods addresses critical
needs in educational technology implementation.
The transparency provided by SHAP analysis
enables educational practitioners to understand
and trust automated prediction systems, facilitating
evidence-based decision making while maintaining
accountability in algorithmic recommendations.

Practical implementation of this framework can
support multiple educational objectives: early
warning systems for at-risk student identification,
resource allocation optimization based on empirical
evidence of intervention impact, personalized support
strategies guided by individual risk factor analysis,
and institutional policy development informed by
quantitative analysis of success factors.

Future research directions include longitudinal
analysis incorporating temporal dynamics, real-time
behavioral data integration from learningmanagement
systems, federated learning approaches for
multi-institutional collaboration, and intervention

effectiveness validation through controlled studies
measuring prediction-guided intervention outcomes.
The continued development of interpretable machine
learning approaches in education holds significant
promise for improving student outcomes and
institutional effectiveness while maintaining the
transparency and accountability essential for
educational decision-making systems.
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