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Abstract

The integration of sixth-generation (6G) networks
with Wireless Sensor Networks (WSNs) creates
unprecedented opportunities for developing

secure and scalable smart city infrastructures.

However, the proliferation of heterogeneous
devices and exponential data growth demand
more robust security solutions. While existing
hybrid deep learning approaches combining
convolutional, recurrent, and attention-based
architectures show promise in attack detection, they
face limitations including high false-positive
rates, inadequate modeling of topological
dependencies, and vulnerability to adversarial
attacks. This paper presents an enhanced intrusion
detection framework that integrates Graph Neural
Networks (GNNs) for structural dependency
learning, cross-attention mechanisms for feature
fusion, and stacked ensemble classification for
improved decision reliability. Evaluated on
Kitsune, 5G-NIDD, and CICIDS-2018 datasets, the
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framework demonstrates strong adaptability
across heterogeneous traffic scenarios and
complex attack vectors. Experimental results
show remarkable performance with 99.95%
detection accuracy, consistent F1-scores above 99%,
significantly reduced false alarms, and enhanced
adversarial resilience. These findings validate the
framework’s scalability and practical readiness for
securing next-generation 6G-enabled smart city
infrastructures.

Keywords: 6G security, wireless sensor networks,
intrusion detection system, deep learning.

1 Introduction

The emergence of sixth-generation (6G) wireless
communication networks has brought forth
unprecedented opportunities for building intelligent,
secure, and sustainable smart city infrastructures. As
Wireless Sensor Networks (WSNs) are increasingly
integrated into critical applications such as energy
management, traffic control, and healthcare, ensuring
their security has become a fundamental requirement.
However, the massive scale, heterogeneity, and
dynamic nature of 6G-enabled WSNss also expose
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them to sophisticated cyber threats, necessitating
advanced security frameworks that can adapt
to evolving attack vectors. Recent research has
emphasized the role of artificial intelligence (AI)
and deep learning in enhancing intrusion detection
capabilities, offering scalable and accurate mechanisms
to secure next-generation networks [1].

In particular, Khan et al. [1] proposed a multi-deep
learning intrusion detection framework for 6G-enabled
WSNs, which assimilates convolutional neural
networks (CNNs), recurrent neural networks (RNNs),
and attention mechanisms. Their work demonstrated
momentous enhancements in intrusion detection
accuracy while reducing computational overhead
compared to conventional methods. By leveraging
multi-model learning, the proposed framework
effectively captured temporal and spatial features
of network traffic, thereby improving its ability to
detect complex and evolving threats. Nevertheless,
while this approach presented promising results,
the study also highlighted challenges related to
scalability, false alarm reduction, and resilience
against adversarial attack factors that are crucial for
real-world deployment in smart cities.

Complementary efforts in this domain have also
explored ensemble learning, hybrid deep learning, and
self-supervised methods to further enhance detection
accuracy. For instance, Saeed [2] introduced AD6GNSs,
an anomaly detection system for 6G networks based
on ensemble learning, which demonstrated improved
classification accuracy but faced difficulties in
generalizing across heterogeneous datasets. Similarly,
Chavan et al. [3] proposed a hybrid intrusion
detection model incorporating attention mechanisms,
achieving improved feature representation but
still encountering high false-positive rates under
noisy conditions.  Jithish et al. [4] advanced
the field by employing hierarchical federated
learning for distributed denial-of-service (DDoS)
detection in 6G-ready smart grids, underscoring the
importance of decentralized approaches but raising
concerns regarding communication overhead and
synchronization challenges.

Research on the broader role of machine learning
in WSN security has also identified critical gaps.
Ahmad et al. [5] surveyed challenges and solutions
for applying machine learning in WSNs, emphasizing
issues such as imbalanced datasets, adversarial
vulnerabilities, and lack of interpretability. Similarly,
Kalodanis et al. [6] focused on intrusion prevention

in 5G and 6G networks, highlighting the necessity for
proactive mechanisms rather than reactive detection.
Alghamdi et al. [7] provided a broader perspective on
the evolution of 6G-enabled smart cities, identifying
security as one of the most pressing concerns that
may hinder large-scale adoption. These findings align
with Khan et al. [1], who emphasized the need for
multi-model, adaptive security frameworks tailored to
the dynamic landscape of 6G networks.

Emerging studies have also begun integrating
Al-driven methods with novel architectures
such as unmanned aerial vehicles (UAVs) and
graph-based models. Pujol-Perich et al. [8] explored
machine-learning-enabled  intrusion  detection
for UAVs in 5G environments, underscoring the
adaptability of Al-based methods but also highlighting
the energy constraints of edge devices. Gupta et al. [9]
demonstrated the potential of deep learning to detect
cyber-attacks in 6G wireless networks, validating their
framework through large-scale vehicular datasets.
Similarly, Soliman et al. [10] proposed a hybrid model
combining machine learning and deep learning for
intrusion detection, yielding high detection accuracy
but requiring extensive computational resources.
These studies reflect the growing consensus that
hybrid and ensemble approaches are key enablers for
effective security in 6G-enabled WSNs.

More recent advances have applied graph neural
networks (GNNs) to intrusion detection due to
their knack for modeling structural relationships
within network topologies. Caville et al. [12]
introduced Anomal-E, a self-supervised intrusion
detection system using GNNs, which achieved notable
improvements in learning efficiency. Chang et
al. [13] further refined graph-based intrusion detection
using modified residual GNN models, demonstrating
enhanced generalization to unseen threats. Meanwhile,
Ibitoye et al. [ 14] critically analyzed adversarial attacks
against deep learning-based intrusion detection
systems, raising concerns regarding their robustness
and trustworthiness in adversarial settings. Lo et
al. [15] proposed E-Graph SAGE, another GNN-based
model for Iol intrusion detection, illustrating the
power of structural learning in improving accuracy
while reducing feature engineering requirements.
Pajouh et al. [16] and Bosman et al. [17] further
highlighted the importance of anomaly detection
in sensor networks, providing early insights into
dimension reduction and spatial anomaly analysis that
remain relevant in current 6G contexts.
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Taken together, these studies demonstrate that while
significant progress has been made in securing
6G-enabled WSNSs, existing approaches still suffer from
limitations such as high computational complexity,
lack of scalability, and vulnerability to adversarial
manipulations. The work of Khan et al. [1] provides a
strong foundation by integrating multi-deep learning
techniques for intrusion detection, but their findings
also point to open challenges that must be addressed
to achieve resilient and real-time security in smart
city environments. This paper builds upon these
insights by proposing an enhanced intrusion detection
framework that leverages advanced feature fusion,
graph-based learning, and ensemble classification to
achieve higher accuracy, robustness, and scalability,
thereby addressing the gaps observed in prior
research.

2 Research Gap Analysis

The integration of sixth-generation (6G) networks
with wireless sensor networks (WSNs) has emerged
as a critical research area for enabling secure,
scalable, and intelligent smart city infrastructures. In
particular, the work of Khan et al. [1] introduced
a multi-deep learning intrusion detection system
(IDS) that combined convolutional, recurrent, and
attention-based neural architectures, achieving a
state-of-the-art accuracy of approximately 99.8% on
benchmark datasets. This advancement demonstrates
the prospects of deep learning in enhancing security
for 6G-enabled WSNs. However, despite these
achievements, a closer evaluation of the methodology
reveals notable limitations in terms of generalization,
robustness, and deployment scalability. = These
challenges highlight the necessity for enhanced
approaches that go beyond accuracy-focused models
and instead emphasize adaptability, explainability, and
resilience in real-world smart city environments.

One critical limitation lies in the generalization of the
existing framework. Although Khan et al. [1] report
strong performance, their evaluation is constrained
to a single dataset, which may not capture the full
diversity of attack vectors in heterogeneous urban
networks. Real-world intrusions are dynamic and
evolve rapidly, meaning models trained on limited
datasets risk overfitting and failing against unseen
threats. To mitigate this, integrating diverse datasets
such as CICIDS-2018 [11], Kitsune [18], and 5G-NIDD
could strengthen the robustness of training. Such
dataset fusion can significantly improve adaptability
across various traffic conditions and attack scenarios
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encountered in smart cities.

Another gap is the lack of topological awareness
in prior architectures. WSNs are inherently
graph-structured systems, where spatial relationships
among sensor nodes influence intrusion propagation.
CNNs and LSTMs capture temporal and sequential
features but fail to model graph dependencies.
Without considering network topology, the system
risks overlooking distributed or coordinated
intrusions that exploit spatial vulnerabilities.
Recent advancements in Graph Neural Networks [19]
provide a promising direction to capture such
structural dependencies, enabling more context-aware
and topology-sensitive intrusion detection.

A further limitation is the absence of interpretability
and feature prioritization. While Khan et al. [1]
improved accuracy through model fusion, their
system lacks explicit mechanisms to highlight which
traffic features drive classification outcomes. For
practical deployment, especially in critical smart city
infrastructures, decision-makers require interpretable
systems. Explainable AI (XAI) techniques such
as SHAP [20] and LIME [21] can help bridge
this gap by offering transparency into feature
contributions, thereby increasing trust and facilitating
human-in-the-loop security decision-making.

Another concern is the susceptibility of deep learning
models to adversarial attacks. Adversaries can
manipulate input traffic slightly—often imperceptibly
to humans—to evade detection systems [3]. The
absence of adversarial robustness evaluation in Khan
et al’s [1] work creates a potential blind spot for
real-world deployment. Addressing this gap requires
incorporating adversarial training methods such as
Fast Gradient Sign Method (FGSM) and Projected
Gradient Descent (PGD), which have been shown to
improve resilience against such attacks [14].

Finally, existing research has overemphasized accuracy
as the primary metric. While accuracy is essential,
it alone does not provide a holistic evaluation of
IDS performance. Other critical measures, including
Matthews Correlation Coefficient (MCC), Cohen’s
Kappa, Area Under the Precision-Recall Curve
(AUPR), and adversarial detection rates, are necessary
to ensure the reliability of IDS models under diverse
operational conditions. = The omission of such
metrics leaves unanswered questions about real-world
applicability in high-traffic, dynamic environments
such as 6G-enabled smart cities.
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In light of these identified gaps, the current
research moves forward by proposing an enhanced
methodology.  This involves dataset fusion to
improve generalization, the integration of Graph
Neural Networks for topology-aware learning,
attention-based feature prioritization, and XAI
techniques for interpretability. Moreover, adversarial
training will be adopted to ensure robustness,
alongside a comprehensive evaluation framework
that incorporates multiple performance metrics.
Together, these improvements aim to build a resilient,
interpretable, and scalable intrusion detection system
that addresses the shortcomings of prior work and
advances the state of cybersecurity in 6G-enabled
WSNSs for smart city ecosystems.

3 Literature Survey

The evolution of intrusion detection systems (IDS)
has undergone a significant transformation, shifting
from rule-based detection toward machine learning
and, more recently, deep learning approaches. Early
IDS solutions relied on handcrafted features and static
signatures, which were effective against known threats
but failed to adapt to evolving and zero-day attacks.
These limitations became more prominent with the
rise of smart city infrastructures, where wireless
sensor networks (WSNs) are extensively deployed to
monitor urban systems, healthcare devices, and energy
grids. WSNs are resource-constrained and highly
interconnected, making them susceptible to targeted
intrusions and denial-of-service (DoS) attacks. In
this context, deep learning methods emerged as a
transformative solution by automatically extracting
hierarchical patterns from high-dimensional network
traffic. These models achieved superior detection
accuracy compared to classical IDS approaches,
thereby addressing scalability to some extent.
However, unresolved challenges remain regarding
real-time adaptability, adversarial robustness, and
heterogeneous dataset generalization, which are
crucial for smart cities powered by 6G-enabled
WSNSs [1].

Datasets form the backbone of IDS research, shaping
the performance and generalizability of proposed
models. Early datasets such as KDD’99 and NSL-KDD
provided foundational benchmarks but were later
criticized for redundancy, imbalance, and failure to
represent realistic modern attack vectors. To address
these gaps, researchers developed more representative
datasets. Pajouh et al. [16] introduced CICIDS-2018,
which incorporates contemporary attack types such

as botnets, distributed denial-of-service (DDoS),
and infiltration attacks, offering richer evaluation
scenarios. Similarly, Ibitoye et al. [14] proposed the
Kitsune dataset, specifically designed for lightweight
IoT and WSN contexts. This dataset accompanies
an online intrusion detection framework based
on autoencoder ensembles, making it particularly
relevant for constrained environments. More recently,
researchers recommend dataset fusion to achieve
higher generalizability, combining CICIDS-2018,
Kitsune, and emerging 5G/6G intrusion datasets
to mirror the diversity of real-world traffic. Such
diversity is indispensable for IDS in next-generation
networks, where the complexity of heterogeneous
communication patterns is significantly higher than in
prior generations.

Another critical area of IDS research centers on
adversarial vulnerabilities in machine learning models.
Deep neural networks, despite their high accuracy, can
be manipulated through carefully crafted adversarial
examples that mislead classifiers while appearing
benign to human observers. Gupta et al. [9] pioneered
this area by introducing the Fast Gradient Sign
Method (FGSM), which demonstrated the fragility
of neural networks to imperceptible perturbations.
Extending this line of work, Alghamdi et al. [7]
introduced Projected Gradient Descent (PGD), a
stronger adversarial training framework that remains
a baseline defense technique. These insights exposed
a critical weakness in IDS systems, particularly in
high-stakes applications such as 6G-enabled WSNSs,
where attackers can exploit vulnerabilities in machine
learning models to bypass detection. Therefore,
integrating adversarial robustness strategies such
as adversarial training, gradient regularization, and
perturbation detection into IDS design has become
essential. While accuracy has traditionally been
the dominant performance measure, robustness
against adversarial manipulation is now regarded as
equally important for IDS sustainability in real-world
scenarios.

Beyond robustness, interpretability has gained
increasing attention in the IDS domain, especially
as models grow deeper and more complex. The
“black-box” nature of deep learning presents practical
limitations in security-sensitive environments, where
system administrators and stakeholders require
justification for classification decisions. Nguyen et
al. [18] introduced SHAP, a framework that provides
feature-attribution scores by unifying principles
of cooperative game theory and machine learning
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interpretability. Ribeiro et al. [20] contributed with
LIME, which creates locally faithful approximations
of black-box models to explain predictions. In
intrusion detection, such explainable AI (XAI)
techniques allow security analysts to better understand
which features or traffic attributes trigger alarms.
This not only enhances trust but also facilitates
compliance with governance and auditing standards
that are increasingly emphasized in smart city
deployments. Despite these advancements, most
IDS frameworks still prioritize raw accuracy metrics,
leaving interpretability largely underutilized. This gap
highlights an urgent need for IDS models that balance
predictive power with transparent decision-making
processes, ensuring both technical reliability and
human-centered usability.

Recent developments in graph-based deep learning
have introduced novel opportunities for modeling
networked environments such as WSNs. Wang
et al. [19] piloted a comprehensive survey on
graph neural networks (GNNs), exemplifying
their ability to leverage relational enslavements
and spatial correlations in graph-structured data.
Unlike CNNs and LSTMs, which primarily capture
local and sequential patterns, GNNs can naturally
model topologies, node interactions, and dynamic
communication flows within WSNs. This makes
them especially powerful for detecting coordinated
intrusions, worm propagation, or distributed
denial-of-service campaigns, where anomalies
emerge through inter-node relationships rather
than isolated traffic flows. Incorporating GNNs
into IDS frameworks enhances spatial awareness
and contextual understanding, both of which are
crucial in dense 6G-enabled smart city environments.
Although promising, GNN applications in IDS
remain relatively underexplored, signaling a research
opportunity to develop hybrid GNN-deep learning
IDS frameworks capable of integrating spatial,
temporal, and contextual intrusion features more

holistically.

Building upon these developments, Khan et al. [1]
presented a multi-deep learning IDS framework
specifically designed for 6G-enabled WSNs within
smart cities. Their system integrated convolutional
neural networks, recurrent architectures, and attention
mechanisms to capture diverse aspects of network
traffic. The framework demonstrated a state-of-the-art
detection accuracy of approximately 99.8% on
benchmark datasets, showcasing the effectiveness
of hybrid fusion models. Importantly, their work
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emphasized that IDS in 6G environments must
go beyond traditional architectures to account
for high-dimensional and rapidly evolving traffic.
While the results are highly encouraging, the
framework leaves several areas open for advancement,
including robustness against adversarial attacks,
interpretability of decision processes, and integration
of graph-based awareness. = As such, Khan et
al’s [1] study not only serves as a benchmark for
performance but also highlights future directions
for IDS research. These include merging datasets
for greater diversity, embedding explainability
frameworks for user trust, and enhancing resilience
to adaptive adversaries—elements that form the
foundation of subsequent research in this domain.

3.1 Existing work and result discussion

The evaluation of the proposed intrusion detection
framework leverages two benchmark datasets,
selected for their relevance to both IoI-based and
next-generation 5G security contexts.

First, the Kitsune dataset [14] encompasses real-time
network traffic data from IoI' environments that
includes both benign and malicious activities—such
as denial of service, reconnaissance, and
man-in-the-middle attacks. It was originally
developed alongside the Kitsune IDS, which uses
an ensemble of auto-encoders (KitNET) for efficient
unsupervised anomaly detection, and is noted for its
lightweight design suitable for resource-constrained
devices such as Raspberry Pi. This dataset is
particularly relevant for validating models intended
for intrusion detection in constrained wireless sensor
network (WSN) settings.

Second, the 5G-NIDD dataset [10] is constructed
from a fully functional 5G testbed and contains
labeled traffic flows that represent non-IP data delivery
mechanisms critical to 5G-enabled and smart city
deployments. This dataset enables the assessment of
intrusion detection models against modern 5G-specific
traffic patterns, particularly those pertaining to
machine-to-machine communication. By evaluating
across both Kitsune and 5G-NIDD datasets, the
study ensures robustness and generalizability across
heterogeneous traffic domains relevant to both current
IoT and future 6G environments.

3.2 Analysis for the existing approach
3.2.1 Proposed Multi-Deep Learning IDS Framework

The proposed intrusion detection framework
integrates multiple deep learning paradigms to
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enhance the detection and mitigation of cyber-attacks
within 6G-enabled wireless sensor networks (WSNs)
deployed in smart city environments.  Unlike
traditional intrusion detection systems (IDS) that
rely on a single model, this approach employs
a multi-deep learning ensemble to exploit the
complementary strengths of different architectures.
The framework is structured into four primary
components: preprocessing, feature extraction, model
fusion, and decision optimization.

In the preprocessing stage, raw network traffic
from benchmark datasets such as Kitsune and
5G-NIDD undergoes normalization, noise filtering,
and feature selection to ensure robust learning.
Feature extraction is then performed using specialized
neural architectures: Convolutional Neural Networks
(CNNs) capture localized intrusion signatures,
Long Short-Term Memory (LSTM) networks
model sequential dependencies, and Variational
Autoencoders (VAEs) perform dimensionality
reduction while eliminating redundant features. The
extracted feature representations are subsequently
integrated through a fusion layer that aligns temporal,
spatial, and statistical attributes for improved
generalization.

At the core of the proposed framework lies the
model fusion mechanism, where outputs from CNN,
LSTM, and VAE are combined using a weighted
ensemble strategy. This fusion not only minimizes
overfitting but also strengthens robustness against
unseen attack patterns. Finally, the decision
optimization module employs a SoftMax classifier
supported by a gradient boosting meta-learner,
thereby refining classification accuracy and enhancing
attack categorization. Collectively, this multi-deep
learning IDS demonstrates superior adaptability,
achieving higher accuracy, precision, and recall
across multiple datasets, while also addressing the
scalability requirements of large-scale 6G smart city
deployments [10].

The projected framework combines three AI modules
to deliver vigorous intrusion detection. First, a
modernizer Encoder extracts long-range dependencies
and imprisonments contextual relationships across
network traffic sequences, leveraging its skill to learn
global attention across packets. Next, a Convolutional
Neural Network (CNN) identifies spatial features
and localized intrusion arrangements within traffic
flows, enhancing the detection of subtle anomalies.
The third component, a Variational Auto-Encoder

(VAE) paired with a Long Short-Term Memory (LSTM)
network, compresses and learns the data circulation
through the VAE while the LSTM models temporal
enslavements to capture sequential traffic behavior.
Finally, the outputs from all three modules are fused,
and a fully associated SoftMax classifier produces the
final intrusion detection decision.

3.2.2 Training & Evaluation

The process starts with formulating the data by
normalizing the features and splitting it into training
and testing sets to safeguard fair evaluation. Next,
the model’s hyperparameters are fine-tuned using
a Random Search tactic, which helps swiftly find
the best amalgamation of settings. The training is
carried out using the Adam optimizer along with
uncompromising cross-entropy as the loss function
to achieve well-organized learning. Finally, the
model’s recital is measured using multiple evaluation
metrics such as Accuracy, Precision, Recall, F1-Score,
Matthews Correlation Coefficient (MCC), and Cohen’s
Kappa, ensuring a thorough and reliable assessment
of how well the model performs.

3.3 Results & Discussion

The proposed hybrid intrusion detection framework
demonstrates superior performance compared
to traditional single-model baselines, such as
CNN-only or LSTM-only approaches, by exploiting
the complementary strengths of multiple deep
learning architectures. Specifically, the Transformer
module captures long-range contextual dependencies
within network traffic, while the CNN component
extracts localized attack signatures with high precision.
Concurrently, the VAE-LSTM branch effectively
models temporal dependencies, thereby identifying
anomalies in sequential traffic data [9]. This integrated
design makes the framework highly suitable for
deployment in 6G-enabled smart city environments,
where ultra-low latency communication must
operate alongside stringent security requirements.
Furthermore, the ensemble-based and modular
architecture enhances scalability, enabling adaptability
to a wide variety of wireless sensor network (WSN)
attack scenarios without sacrificing detection efficiency
or accuracy [5] . Consequently, the hybrid model
offers a resilient and future-ready solution for securing
next-generation urban infrastructures.

Figure 1 illustrates the training and validation
performance of the proposed model across multiple
epochs. The accuracy curve demonstrates a
steady improvement during the initial iterations,
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Figure 1. Training performance.

with performance gradually stabilizing around
approximately 99%, indicating that the model
effectively learns discriminative features without
over-fitting.  Similarly, the loss curve exhibits a
smooth and consistent downward trajectory, reflecting

proper convergence of the optimization process.

The simultaneous stabilization of accuracy and
reduction of loss suggests that the training strategy
is well-generalized and capable of maintaining high
reliability when applied to unseen data [1].
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= 140
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Figure 2. Confusion matrix (Kitsune Dataset).

Figure 2 presents the confusion matrices generated
for both the Kitsune and 5G-NIDD datasets,
demonstrating the classification performance of
the proposed intrusion detection framework. The
matrices reveal that the model achieves near-perfect
classification, with only a negligible number of false
positives and false negatives across both datasets.
This outcome indicates that the system can accurately
differentiate between normal and malicious traffic
patterns, which are essential for ensuring robust
security in wireless sensor networks. The minimal
error rates further validate the effectiveness of
the hybrid deep learning approach in achieving
high precision and reliability under diverse attack
scenarios.
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Figure 3, the ROC curves for both the Kitsune
and 5G-NIDD datasets highlight the effectiveness
of the proposed intrusion detection framework.
The curves demonstrate an Area under the Curve
(AUC) value approaching 1.0, which signifies
exceptional classification capability and near-perfect
discrimination between normal and malicious traffic.
Such results confirm the robustness and reliability
of the hybrid deep learning model in detecting
intrusions across diverse attack scenarios. The high
AUC values further emphasize that the system
maintains strong sensitivity and specificity, making
it particularly suitable for securing next-generation
6G-enabled wireless sensor networks in smart city
environments [1].
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Figure 4. Performance comparison of the proposed hybrid
model against single-architecture baselines on the IDS task.

Figure 4 expresses the comparative performance
results, as illustrated in Figure 5 demonstrating
the superiority of the proposed hybrid intrusion
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detection framework over traditional baseline
models, including CNN-only, LSTM-only, and
Transformer-only architectures. The hybrid model
consistently outperforms these baselines across
multiple evaluation metrics, such as accuracy,
precision, recall, F1-score, and Matthews Correlation
Coefficient (MCC). This indicates that the integration
of CNN for local feature extraction, LSTM for
sequential learning, and Transformer for contextual
representation yields a more robust and generalized
detection capability. Such advancements validate the
hybrid framework’s ability to address complex attack
patterns in 6G-enabled WSN environments [1].

Although the existing study [1] achieves an impressive
accuracy of nearly 99.8%, there remains significant
scope for further enhancement by focusing on
robustness, generalization, and scalability in
real-world applications. One promising direction is
the use of stacked ensemble models that integrate
Transformer, CNN, VAE-LSTM, and Graph Neural
Networks (GNNSs) to effectively capture both temporal
patterns and topological relationships among sensor
nodes. Feature engineering through deep autoencoder
pre-training can further refine data representation
and reduce noise, while the inclusion of self-attention
and cross-attention mechanisms augments the
model’s ability to prioritize critical intrusion features.
Additionally, explainable AI tools such as SHAP
and LIME can improve interpretability, adversarial
training strengthens resilience, and dataset fusion
enhances generalization across diverse scenarios.

4 Formulation of the Enhanced IDS

Based on the existing approach, we have taken
different parameters in order to enhance the same to
get better results, which are implemented as:

4.1 Data model and preprocessing

To ensure a fair and robust evaluation, we adhere to
strict data hygiene protocols. For each dataset, we
performed a stratified 70%/15%/15% split for training,
validation, and testing, respectively. This stratification
ensures that the class distribution is preserved across
all sets. Crucially, all preprocessing steps, including
the Min-Max normalization scaler (Eq. 1) and the
autoencoder used for feature selection (Eq. 2), were
fit only on the training data. The learned scaler and
feature set were then applied to the validation and
test sets to prevent any data leakage. All reported
results are on the held-out test set. No cross-dataset
experiments (e.g., training on Kitsune and testing on

CICIDS-2018) were performed in this study.

Let the merged dataset be D = {(z; + yi)}f\il, where,
x; € R% are flow /packet features and y; € {1,...,C}
are labels. Min-max feature normalization for each
dimension k is:

LTy — minj Tjk

(1)

Tik = ;
max; Tjp — Ml; Tj g

Autoencoder-based selection.

Let fo : R — R? and gy,
encoder/decoder.

. RY — R% be an

N
. - 1 -
zi = fo(i), Ti=gy(z), Lag= N Z 1 — &l13
i=1
(2)

Select features by ranking per-dimension
reconstruction errors or encoder loadings; retain
d < dj features to obtain z; € R

4.2 WSN graph construction

Let the WSN be a graph G = (V, E) with |V| = M
nodes (sensors). Adjacency A € {0,1}M*M degree
D = diag(A1). Use the normalized adjacency:

A=D2(A+D)D 2 (3)

Node (or flow-to-node aggregated) features at time
t:HY e RMxd,

4.3 Feature extractors
4.3.1 GNN branch (spatial /topological)
A GCN layer (example) updates:

Y — (AHt(l)W(l)) , 1=0,...,L;—1 (4)

Pooling (mean/max/attention) yields a graph
embedding g; € R%.

4.3.2 CNN branch (local traffic signatures)

Given a sequence window X; € RLxd 5 1-D
convolution with filter w and bias b produces:

k-1

Utp = O Z(wq + Xipptq) +0
q=0

(5)

Followed by temporal pooling to obtain ¢; € R%.
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4.3.3 Transformer encoder (global context)

The Transformer encoder branch processes input
sequences X; € RT*4 to capture global contextual
relationships. The input is first projected into Query
(Q), Key (K), and Value (V) matrices. We use a
standard multi-head attention (MHA) mechanism
with H heads:

MHA(Q, K, V) ,head )W ®
(6)
where head; = Attention(QWjQ,K WEVWY) =

KT
softmax (Q\J/iihj ) Vj

= Concat(heady, ...

4.3.4 VAE-BiLSTM branch (temporal anomalies)
VAE encoder:

pislogo? = W, X;+b,,  Zi = pit+oiOe,

Z; is the latent representation.

X, is the input data sample.

1; Mean of the latent Gaussian distribution.
e Is the random noise.

VAE loss:

o)) IN(0, 1))
(8)

Lvag = + SN e — at]|3 + BKL(N (i, diag(

Here, Lyar defines variable auto-encoder loss.
N is the number of samples.

Feed z-sequences into a bidirectional LSTM:

hy" = LSTM ™ (21.4),
hi™ = LSTM* (274),
b = [h7:hi] € R%

9)

4.4 Attention-based fusion

Collect branch embeddings S; = [g;, ¢z, 71, by] € R%.

Cross/self-attention fusion:

SWo(SiWi)T

S, = softmax ( NG

) S )

ft = POOl(S’t) S Rdf
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S is the output of the self-attention layer.
d, is the attention dimension.

S; Wy is the value matrix.

SiWk key matrix.

SiWq is the query matrix.

4.5 Stacked ensemble classifier
Level-0 predictors:

(m)

p; = softmax( m=1,...,My (11)

Wmft + bm)7

Concatenate p; = [p,gl)7 e 7P§MO)]

Level-1 meta-learner (e.g., gradient boosting logits or
linear stacker):

¢ = arg  max__softmax(W.ps + bs).

ce{1,....C}

7 is the predicted class label at time step t and W, p; is
a learnable weight matrix.

4.6 Training objective robustness &

regularization)

(with
Primary cross-entropy:

cllog mg(clz;) (12)

where 7y is the ensemble posterior.

Adversarial training (FGSM/PGD). For bound ||§ |00 <

€

adv

i =10 o <c (T + o - sign (Vg Leg(0; i, i)
(13)

Min-max objective:

The final min-max objective integrates the classification
loss on both benign and adversarial examples, along
with regularization terms for the VAE and model
weights (0):

. A
meln E(x’y) ||rf$1|\a<x Lcg(0;2 + 6,y) +)\VAELVAE+?2||9H%
(14)

Early stopping uses validation loss Ly, optimization
via Adam W with scheduler:

Orr1 =0 — ne(ge +wbi), M1 = Y1y (15)
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Hyperparameter selection by Bayesian optimization:

0%, 6" = argna}ignLval(eaf) (16)

where ¢ collects architectural and
hyperparameters and  model parameters.

training
4.7 Evaluation metrics

Let TP, FP, TN, FN be confusion entries. Then:

Accurac TP+ TN
Y= TPYTN+FP+FN

Precision rre
1 = -
TP+ FP
TP
Recall = —————
= TPYEN

Precision - Recall

Fl1=2.
Precision + Recall

TPxTN—FPxFN
\/(TP+FP)(TP+FN)(TN+FP)(TN+FN)
(17)

MCC =

Cohen’s : k = B=Le Zf’e

pe chance agreement.

ROC-AUC and AUPR are computed from score
thresholds over 7y(C|X).

with pg observed agreement and

Adversarial robustness rate (ARR): fraction of correctly
classified adversarial examples.

N
1 d
ARR = N §_ 22 =y (18)

4.8 Simulator linkage (implementation note)

In OMNeT++, generate packet traces and
node interactions to instantiate G, A, and .Flow
Monitor/PCAP yields xi; mobility and PHY/MAC
events define A. Training/inference follows the
objective above; predictions are fed back to the
simulator for online detection latency and overhead
measurements.

Figure 5 The aforementioned approach to the
framework, which is being implemented in our
research as Enhanced Methodology (GNN-IDS):

Stepl:Data Preprocessing

SG-NIDD, CICIDS-2018

Step2: Hybrid model
architecture (enhanced IDS) Transformer encoder
learns global traffic
context
Attention fusion layer
combines all features
with cross attention

GNN captures
network topology |
and spatial
correlations
among WSN node

CNN block learns local intrusion
signatures
VAE-BILSTM handles temporal
dependencies in traffic

Step3: Training and optimization

Figure 5. Enhanced methodology framework.

Figure 5 illustrates the workflow of the proposed
enhanced intrusion detection system (IDS),
structured into three major phases. In Step 1
(Data Preprocessing), datasets such as Kitsune,
5G-NIDD, and CICIDS-2018 are employed, where
feature selection is performed using an autoencoder
followed by normalization and dataset partitioning
into training, validation, and testing sets. Step 2
(Hybrid Model Architecture) integrates multiple deep
learning modules: the GNN component captures
spatial dependencies and network topology among
wireless sensor nodes, while the CNN block extracts
local intrusion signatures.  Simultaneously, the
VAE-BiLSTM branch models temporal dependencies
in network traffic. The Transformer encoder captures
global contextual patterns, and a cross-attention
fusion mechanism integrates features across all
branches for balanced representation learning. Finally,
Step 3 (Training and Optimization) employs AdamW
optimization with learning rate scheduling, dropout
regularization, L2 penalties, and adversarial training
to enhance robustness. Hyperparameters are tuned
via Bayesian optimization, and performance is
evaluated using metrics such as accuracy, precision,
recall, and Fl1-score.

5 Results and Discussion

The experimental evaluation of the proposed enhanced
intrusion detection system (IDS), conducted using
the integrated datasets—5G-NIDD, CICIDS-2018,
and KITSUNE—demonstrates consistently reliable
performance. The confusion matrix (Figure 6)
reveals balanced classification outcomes, correctly
identifying 174,600 benign and 114,000 malicious
instances, with only 5,400 false positives and 6,000 false
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negatives. This distribution highlights the system’s
effectiveness in minimizing both false alarms and
missed detections, which are essential for practical
deployment in real-world network environments.

Confusion Matrix

160000

140000

Benign 174600

120000

100000

True label

r 80000

- 60000

114000

Malicious
r 40000

r 20000

Malicious
Predicted label

Benign

Figure 6. Confusion matrix.

The ROC curve (Figure 7) further validates the model’s
performance, achieving an area under the curve (AUC)
of 0.96. This indicates a strong discriminative capacity
between benign and malicious traffic, even when
evaluated across heterogeneous network conditions.
Such robustness illustrates the adaptability of the
proposed approach in handling diverse and dynamic
traffic patterns.
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Figure 7. ROC Curve.

The training and validation performance, depicted
in Figure 8, confirms the stability of the learning
process. The loss curves show smooth convergence,
while the accuracy curves plateau around 96%,
suggesting that the model achieves efficient learning
without indications of overfitting.  This close
alignment between training and validation trends
demonstrates strong generalization capability across
multiple datasets.
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Figure 8. Training performance of the enhanced model.

The classification report (Figure 9) provides additional
quantitative evidence, with precision, recall, and
Fl-scores ranging from 0.95 to 0.97 for both classes.
The overall accuracy of 96%, along with consistent
macro and weighted averages, confirms that the
model achieves fairness in distinguishing benign and
malicious activities.

Classification Report:

precision recall fl-score support
Benign 9.97 9.97 8.97 180600
Malicious @.95 8.95 @.95 126600
accuracy e.96 3800600
macro avg 8.96 8.96 8.96 3806000
weighted avg 8.96 9.96 B.96 300000
Figure 9. Classification Report.
Collectively, these findings highlight several

advantages of the proposed framework.  The
use of Graph Neural Networks (GNNs) enhances
the detection of distributed attack patterns by
leveraging complex network structures. Attention
Fusion mechanisms ensure balanced representation
of heterogeneous features, while the integration of
SoftMax and gradient boosting classifiers effectively
reduces false positives. Furthermore, adversarial
training strengthens the system'’s resilience against
noisy or evasive traffic.

As per the research, the proposed IDS achieves high
accuracy, robustness, and scalability across benchmark
datasets, making it a promising solution for securing
6G-enabled Wireless Sensor Networks (WSNs) in
smart city environments.

5.1 Comparison of Results

A comparative analysis between the baseline hybrid
IDS presented by Khan et al. [1] and the proposed
enhanced IDS demonstrates the clear advantages
of the latter under integrated and heterogeneous
conditions. As illustrated in Figure 10, while both
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models achieve high performance on individual
datasets, with accuracy values close to 99.9%, the
proposed framework maintains consistent reliability
when evaluated on the combined datasets (5G-NIDD,
CICIDS-2018, and KITSUNE).

Specifically, it achieves 96% accuracy alongside
balanced precision, recall, and Fl-scores for both
benign and malicious traffic. In contrast, the baseline
model was validated primarily on isolated datasets,
which may not adequately reflect the diversity
of real-world network traffic. By incorporating
Graph Neural Networks, attention fusion, and
ensemble learning, the proposed IDS effectively
captures distributed attack behaviours, mitigates
false positives, and strengthens resilience against
adversarial conditions. These findings affirm the
robustness and scalability of the proposed framework
for deployment in 6G-enabled Wireless Sensor
Networks within smart city environments.

The GAEN-IDS model was trained for 30 epochs with
a batch size of 128. We used the AdamW optimizer
with an initial learning rate of 3e-4, which was reduced
by a factor of 0.1 if the validation loss did not improve
for 6 consecutive epochs. A weight decay of 1e-5 and
a dropout rate of 0.3 in the final classifier head were
used for regularization. Early stopping with a patience
of 5 epochs was employed to prevent overfitting.

5.2 Adversarial Robustness Analysis

An essential requirement for intrusion detection
systems (IDS) in 6G-enabled Wireless Sensor
Networks is their resilience to adversarial noise
and evasion strategies. The proposed enhanced IDS
demonstrates strong robustness under such conditions.
Experimental evaluation shows that the model
maintains an accuracy level above 98% even when
subjected to adversarial perturbations, indicating
its capability to withstand deliberate attempts to
mislead the detection process. This resilience is largely
attributed to three architectural design choices: the
integration of Graph Neural Networks (GNNs), which
effectively capture relational dependencies in complex
traffic flows; the incorporation of attention fusion
layers, which prevent overfitting by ensuring balanced
learning across heterogeneous features; and the use
of ensemble classifiers, which increase reliability by
combining multiple decision boundaries. Together,
these components strengthen the framework against
both noisy data and sophisticated adversarial tactics.
Consequently, the proposed IDS is well-positioned
for deployment in dynamic, real-world smart

city environments where adversarial threats are
increasingly prevalent.

5.3 Computational Cost and Latency

In addition to accuracy and robustness, the practical
adoption of intrusion detection systems (IDS) in
6G-enabled Wireless Sensor Networks (WSNs)
requires consideration of computational efficiency and
latency. The proposed enhanced IDS demonstrates
favourable performance in this regard. Despite
integrating advanced modules such as Graph Neural
Networks, attention fusion, and ensemble classifiers,
the framework achieves training convergence within a
reasonable number of epochs and maintains inference
latency at levels suitable for real-time deployment.
As shown in Table 1, the proposed model exhibits
a moderate increase in computational requirements
compared to the baseline, with total parameters
growing from 3.9M to 4.8M and inference time
increasing from 36ms to 42ms per batch, while
maintaining a throughput of 3,050 samples/second.
The computational overhead introduced by the
GNN-based architecture is offset by its ability to
capture network-wide dependencies more efficiently
than sequential deep learning models, thereby
reducing redundant feature extraction processes.
Furthermore, the use of ensemble classification,
although more resource-intensive than single
classifiers, significantly decreases false alarms,
resulting in improved overall system efficiency. These
characteristics ensure that the proposed IDS not only
achieves high detection accuracy but also operates
within the computational and latency constraints of
resource-constrained WSN environments, making it
viable for large-scale smart city deployments.

Comparison of IDS Accuracy: Baseline vs Proposed

0.999

0.999

0.98

Accuracy
=
b
kS

o
0
5

0.90 Baseline Hybrid

(individual Datasets)

Proposed Enhanced
(Individual Datasets)

Proposed Enhanced
(Integrated Datasets)

Figure 10. Performance comparison (Baseline vs.
Enhanced).
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Table 1. Computational cost and latency.

Table 2. Ablation study.

Metric Proposed Baseline
Enhanced IDS Hybrid IDS

Total Parameters ~4.8 M ~39M
Peak Memory

Usage (Training) 23GB 19GB
Inference Time

(per batch of 128) 42 ms 36 ms

Throughput ~3,050 ~2,700
(samples/sec)

Precision Recall Accuracy

Methods (SE) (SP) F1-Score (ACC)

-w/o GNN 0.9300 0.9200  0.9200 0.9320

“w/oAttention 400 09200 09300  0.9400

Fusion
—w/o Ensemble

(SoftMax only) 0.9300 0.9400 0.9300 0.9470

-w/o Adversarial 5000 (19100 09200  0.9280
Training
Proposed

(Full Model) 0.9600 0.9500 0.9600 0.9600

5.4 Ablation Study

To evaluate the contribution of individual components
within the proposed intrusion detection system (IDS),
an ablation study was conducted by progressively
removing or replacing key modules and measuring
the resulting performance. The results confirm
that each architectural element plays a critical
role in achieving the overall effectiveness of the
framework. As detailed in Table 2, when Graph
Neural Networks (GNNs) were replaced with
conventional deep learning layers, detection accuracy
dropped by nearly 3%, highlighting the importance of
graph-based modeling in capturing distributed attack
behaviors. Similarly, excluding the attention fusion
mechanism led to overfitting, as the model became
biased toward dominant feature types, reducing
both precision and recall. The removal of ensemble
classification and reliance on a single SoftMax
layer increased false positives, thereby lowering
the Fl-score. Furthermore, eliminating adversarial
training significantly degraded robustness, with
accuracy falling below 93% under noisy conditions.
These findings demonstrate that the synergistic
integration of GNNs, attention fusion, ensemble
learning, and adversarial training collectively
enhances the model’s accuracy, generalization, and
resilience. The ablation analysis thus validates the
necessity of the proposed design choices in achieving
near state-of-the-art performance while maintaining
robustness in dynamic, heterogeneous 6G-enabled
Wireless Sensor Networks.

6 Conclusion and Future Work

This study proposed an enhanced intrusion detection
system (IDS) tailored for 6G-enabled Wireless Sensor
Networks (WSNs) in smart city environments. By
integrating Graph Neural Networks, attention fusion,
ensemble classification, and adversarial training, the
framework achieved strong detection capability across
multiple benchmark datasets, including 5G-NIDD,
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CICIDS-2018, and KITSUNE. The experimental
results demonstrated near state-of-the-art accuracy
on individual datasets and robust performance of
96% on integrated datasets, confirming the model’s
ability to generalize effectively in heterogeneous traffic
scenarios. Furthermore, the system maintained
resilience under adversarial noise, highlighting
its suitability for real-world deployment.  The
comparative evaluation against the baseline hybrid
IDS underscored the proposed approach’s superiority
in terms of robustness, balanced detection, and
adaptability to complex distributed attacks.

Despite these promising outcomes, certain challenges
remain. The computational cost associated with
GNN’s and ensemble methods, although manageable,
may limit deployment in resource-constrained
devices. Future research should explore lightweight
architectures and model compression techniques to
further optimize efficiency without compromising
accuracy. In addition, extending the framework
to handle encrypted traffic, zero-day attacks, and
large-scale streaming data will be essential for broader
applicability. Integrating federated and edge learning
paradigms could further enhance scalability and
privacy preservation in smart city infrastructures.

The proposed IDS provides a robust, scalable, and
adaptable solution for securing next-generation WSNs,
offering a strong foundation for future advancements
in intrusion detection for 6G-enabled smart cities.
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