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Abstract
This study presents an AI-powered approach
to enhance quality control and traceability in
the agri-food sector, focusing on the automated
detection and classification of two Tunisian date
varieties: Deglet Nour and "Bsir". The main
objective is to develop a smart system that can
quantitatively and qualitatively determine the
proportion of any contamination of one variety
by the other within a batch. To achieve this,
state-of-the-art object detection YOLO models, v8
and v12, have been employed, trained on a custom
annotated dataset which includes a wide range of
real-world images, capturing the variability in the
studied date fruit size, shape, and presentation.
Both YOLO models were fine-tuned over 50 epochs
using transfer learning techniques, allowing them
to adapt effectively to the specific classification task.
Training step consisted of a thorough analysis of
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bounding box distributions and samples clustering,
taking into account natural variations in date
morphology based on their 2D images. Evaluation
showed that both models achieved high detection
accuracy, with YOLOv12 outperforming slightly
in precision and speed, making it well-suited for
real-time applications. By estimating the relative
variety proportions within a mixed batch, the
developed smart system supports the intelligent
decision-making across the supply chain. This
work lays the groundwork for embedding deep
learning models into portable smart optical devices
that can assess date mixtures on-site, from farms
to packaging centers. Future developments will
focus on expanding detection to additional date
varieties and integrating the system into commercial
post-harvest processes.
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1 Introduction
Quality control and traceability represent critical
challenges in the agri-food sector, especially for
valuable crops such as date fruits (Phoenix dactylifera),
which hold significant cultural and economic
importance in several countries, including Tunisia.
Automated variety detection systems are increasingly
needed as valuable tools for better monitoring and
quality assurance in date products. These smart
systems help ensure the purity and consistency of raw
materials, thereby maintaining quality throughout the
production chain of dates and their derivatives [1]. In
this context, accurate identification and quantification
of date varieties, especially when batches of raw
material are accidentally cross-contaminated or
intentionally adulterated, are essential not only to
ensure consistent product quality and meet consumer
expectations but also to support official quality control
processes, which are critical for factory operations.
Traditional manual sorting methods are often slow,
laborious, and prone to error, emphasizing the need
for effective automated solutions [2].

2 Related Work
Artificial intelligence and machine learning
technologies have been shown to revolutionize
agricultural practices by enabling more precise
crop monitoring, quality assessment, and sorting
automation [3]. Among these, deep learning models
demonstrate strong capabilities in recognizing
complex visual patterns, making them well suited for
object detection tasks in agricultural applications [4].
During the last years, other deep learning architectures
have been applied to fruit detection. Two-stage
detectors like Faster R-CNN have been recognized for
their high accuracy in complex orchard settings, while
single-shot detectors like SSD (Single Shot MultiBox
Detector) was found to offer a strong balance of
speed and precision [5]. Furthermore, traditional
machine learning approaches, using simple features
such as color, texture, and shape with classifiers like
Support Vector Machines (SVM) or Random Forests
(RF), have also been used for fruit identification and
classifying [6].

The YOLO (You Only Look Once) family of
models has gained widespread adoption due to
its exceptional balance of speed and accuracy,
allowing real-time processing which is essential for
practical deployments such as fruit detection and
classification [7]. Significant evolution of YOLO
models has taken place over recent years [8, 9]. Earlier

versions, such as YOLOv5, introduced streamlined
architecture and enhanced training methods, resulting
in improved efficiency and accessibility [10]. The
latest iterations, YOLOv8 and YOLOv12, incorporate
advanced features including improved backbone
networks, anchor-free detection heads, and enhanced
multi-scale feature fusion, which boosted model
performance [11, 12]. These advancements position
the models as ideal candidates for integration into
portable optical devices and edge computing systems
used in modern workflows, including agriculture [13].
Over the past decade, numerous studies have explored
the use of AI-based detection systems to support
automated fruit harvesting, with a primary focus on
fruit localization, maturity classification, and yield
estimation in field environments [14]. These works
have employed object detection YOLO models trained
on datasets featuring date clusters on trees, aiming to
enhance real-time performance for robotic harvesting
and precision agriculture. However, most of these
efforts remain limited to pre-harvest applications,
with little attention given to post-harvest quality
assessment or variety cross contamination [13]. Thus,
the present study addresses this gap by developing
an AI-powered detection and classification system
using a model based on the economically important
Tunisian date Deglet Nour variety, and the “Bsir”
dates (as known in the Tunisian dialect, and referred
to as “Bisr” in the Middle East) as a cross contaminant.
A custom-annotated dataset was created using
LabelImg, and both YOLOv8 and YOLOv12 models
were fine-tuned to capture the natural variability in
fruit size, shape, and appearance. Their performance
was evaluated to determine the most effective model
for real-time deployment. This work enables the
quantitative and qualitative assessment of variety
contamination in commercial batches, supporting
enhanced traceability, quality control, and compliance
in the agri-food supply chain. This novel approach is
designed for post-harvest environments and can be
integrated into portable optical devices to perform
on-site evaluations at farms, packaging centers, and
distribution hubs [15]. This approach is expected to
support improved smart decision-making across the
supply chain, from farm to fork.

3 Methodology
3.1 YOLO Based Model for Local Date Fruit

Classification and Detection
In this work, YOLOv8 and YOLOv12 were adopted,
both of which introduced several architectural
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Figure 1. Manual annotation of date fruits using LabelImg software, showing the generated bounding boxes and class
labels.

improvements over previous versions in the YOLO
family. These include the replacement of the C3
module with the more efficient C2f module for
better gradient flow, a simplified up-sampling process,
and an anchor-free decoupled detection head which
separates classification and localization branches to
improve precision and training stability [16]. These
models’ architecture is composed of a backbone for
feature extraction, a neck (PANet) for multi-scale
feature aggregation, and a detection head that handles
object prediction tasks without relying on predefined
anchor boxes [16].

To tailor the pretrained models on different fruits to
both date varieties specific application, YOLOv8 and
YOLOv12 were trained on a labeled dataset containing
two indigenous Tunisian varieties, Deglet Nour variety
and “Bsir”. The experiments were conducted on a
computer equipped with an Intel Core i5 processor
(4 cores, 8 threads, 2.9 GHz base frequency, up
to 4.2 GHz), 8 GB DDR4 RAM, an Intel Iris Xe
Graphics, and a 512 GB SSD. The system operated
under Windows 11 Pro 64-bit. During training, the
model was configured with several key parameters: it
ran for 50 epochs to ensure sufficient learning cycles,
with multi-scale input enabled using image sizes of
320 by 700 pixels to improve robustness across varying
resolutions. A batch size of 16 was chosen to balance
speed and hardware capacity, and 4workers were used
to efficiently load data in parallel. Several graphical
user interfaces (GUI) were developed using Tkinter to

allow users to easily select model and image files and
visualize the results. PyTorch served as the underlying
framework for model loading and inference execution.
Data handling and visualization were managed using
pandas and NumPy for numerical operations, and
Matplotlib for plotting training and evaluation charts.

3.2 Dataset Description
The dataset comprises 2,750 annotated images of date
fruits, constructed to ensure model robustness and
diversity. The fruit samples were sourced from the
Boudjebel VACPA Company (Nabeul, Tunisia) and
were all selected at a uniform, commercially ripe
maturity stage to minimize variability unrelated to
cultivar type. This final dataset was built using a
pipeline of data augmentation, incorporating random
rotation and horizontal flipping, to expose the model
to a wide range of fruit orientations and enhance its
ability to learn generalizable features.

3.3 Image Acquisition Setup
Images were captured using a 13-megapixel
smartphone camera. The setup included a ring
light providing white light at 480 lumens, mounted
on a foldable tripod to ensure consistent, natural,
and shadow-free illumination. A standardized
background was used throughout to minimize visual
noise and simplify the object detection task.
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3.4 Data labelling for training the model
The annotation processwas performedmanually using
the LabelImg software (version 1.8.1), an open-source
graphical image annotation tool widely used for
computer vision tasks (Figure 1). This tool allows for
the creation of bounding boxes and supports saving
annotations directly in the YOLO format [17]. For this
study, each image was labeled with bounding boxes
corresponding to individual date fruits, assigning a
class label based on fruit variety.

3.5 Evaluation metrics
Metrics including precision, recall, F1 score, ROCAUC,
and related curves were calculated using scikit-learn
to thoroughly assess the model’s classification
performance. A user-friendly environment based on
the PIL libraries was used to load models, visualize
training progress, and quantitatively evaluate their
effectiveness across multiple metrics.

Accuracy: calculated as (TP+TN)/(TP+TN+FP+
FN) which represents the proportion of all correct
predictions made by the model, combining both true
positives (TP ) and true negatives (TN). It provides a
general sense of how well the model performs overall.

Precision: equals to TP/(TP + FP ), and measures
howmany of the instances predicted as positive by the
model are positive, therefore, reflecting the model’s
ability to avoid false positives (FP ).

Recall: calculated as TP/(TP + FN), quantifies the
model’s ability to correctly identify all actual positive
instances. In this context, recall would show how
effectively the model detects all Deglet Nour and Bsir
dates present, without leaving many undetected.

F1 Score: = 2 × [(Precision × Recall)/(Precision +
Recall)], therefore balancing precision and recall into a
single measure. It is especially useful when the dataset
has class imbalance between the two date varieties.

ROC AUC: the Receiver Operating Characteristic –
Area Under Curve summarizes the model’s ability to
distinguish between positive and negative classes at
various threshold settings. A score closer to 1 indicates
excellent discrimination, while a score ≈ 0.5 suggests
no better than random guessing.

Intersection over Union (IoU): is the ratio
(Area of Overlap/Area of Union) which measures
how well the predicted bounding boxes overlap with
the ground truth boxes. A higher IoU means the
model localizes objects more precisely, which is critical

for accurately identifying fruit locations, especially in
images with overlapping or closely clustered fruits.

4 Experiments
For this study, YOLOv8 and YOLOv12 were fine-tuned
using the labeled dataset of both indigenous Tunisian
date fruit varieties. Training was conducted using
pre-trained checkpoints for both YOLO versions.

4.1 Bounding Box Distribution Analysis
The labels.jpg file generated during the training process
provides a scatter plot showing the proportions of
both date fruit classes (Figure 2, panel A), revealing
a roughly balanced dataset. A uniform spread of
points across the entire area of the Y vs. X plot
(Figure 2, panel B) indicates that the annotated objects
are well distributed throughout the analyzed images,
rather than being concentrated in corners or confined
to specific regions of the frame. Furthermore, the
distribution of bounding box widths versus heights
across the annotated dataset (Figure 2, panel C)
shows a diverse range of object scales, including
small, medium, and large-sized date fruits. A positive
correlation between bounding box width and height
was observed, implying that the studied date fruits
are generally elliptical or circular in shape rather than
elongated or irregular. This well-distributed range of
object sizes supports the model’s ability to generalize
across varying scales, which is crucial for robust fruit
detection and classification in real-world scenarios
with variable 2D image conditions.

4.2 Metrics evaluation of the trained models
Final trained models were saved in “.pt” format
under the filenames “trained_Yolo8.pt” and
“trained_Yolo12.pt”. Each trained model demonstrates
strong performance across all evaluation metrics
and could serve as the foundation for further
experiments and deployment in practical date fruit
classification tasks. Obtained data (Table 1) show that
both YOLOv8 and YOLOv12 models demonstrated
strong performance in detecting and classifying both
Tunisian date fruit varieties. The overall classification
accuracy was approximately identical for both models
(92-94%), with perfect recall 1.0000, F1 score of
96%, and an IoU of 85%, indicating high precision
in object localization and complete detection of
relevant instances. Notably, YOLOv12 outperformed
YOLOv8 in precision, achieving ≈ 0.99 compared
to ≈ 0.93, suggesting a significant reduction in false
positive detections. ROC AUC scores were perfect
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Figure 2. Output file (labels.jpg) generated to visually
analyze the dataset distribution.

(1.0000) for both models, confirming excellent class
separability. Obtained results align with previous
studies reporting the effectiveness of YOLO models
in detecting and classifying date fruits [18]. Despite
identical confusion matrices, YOLOv12 demonstrated
more confident classification decisions, likely due to
its enhanced architecture. These results validate the
effectiveness of both models, with YOLOv12 offering
a slight advantage in precision-critical scenarios.

Table 1. Metrics of trained models using
Yolo v8 and Yolo v12.

Metric Values
YOLO8 YOLO12

Accuracy 0.9286 0.9412
Precision 0.9286 0.99937
Recall 1.0000 1.0000

F1 Score 0.9697 0.9630
ROC AUC 1.0000 1.0000

IoU 0.8594 0.8544
FLOPS in MMac

FLOPS in B
255.38
(0.51)

186.41
(0.37)

The analysis of FLOPS (Floating Point Operations Per
Second), which measures the computation required
by each model, showed that YOLOv8 demands 255.38
Mega Multiply-Accumulate operations (0.51 Billion
FLOPS), while YOLOv12 is more efficient at 186.41
MMac (0.37 Billion FLOPS). Higher FLOPS indicate

greater computational cost, potentially slowing
processing. These results highlight the suitability of
the more efficient YOLOv12 model for integration into
portable optical devices, enabling real-time, on-site
agri-food applications and improved supply chain
decision-making.

The presented metrics demonstrate that both models
achieved high performance on the independent test
set, with YOLOv12 reaching a near-perfect Precision
of 0.999 and YOLOv8 also demonstrating a strong
Precision of 0.929 (Table 1). With regard to the
exceptional score of YOLOv12, it is important to
underline the potential risk of overfitting, where a
model memorizes training data rather than learning
generalizable features. The robustness of this result
is confirmed by its consistent high performance of
both models on the final test data, which the models
had never encountered before and was not used
during training process at all. This consistency,
supported by the strategic use of data augmentation,
indicates that the models learned robust and invariant
representations of the date fruit classes. Therefore,
we conclude that the reported metrics, particularly
for YOLOv12, are a reliable indicator of strong model
generalization and not an artifact of overfitting.

4.3 Training and Validation Loss Analysis
The obtained chart (Figure 3) shows how the model’s
training and validation loss changed over time as it
learned. Over successive epochs, a steady decrease in
both curves has been observed which means that the
model was improving and becoming more accurate in
its predictions. The fact that the two lines (training loss,
and validation loss) stay close to each other suggests
the model learned patterns that also work well on
new, unseen data. Overall, this shows that the training
process was stable and effective.

The training and validation loss curves, while showing
expected fluctuations, exhibit a clear and simultaneous
descending trend, ultimately converging at a low value.
This pattern indicates stable learning dynamics and a
reduced risk of overfitting. This robustnesswas further
promoted by the use of data augmentation techniques,
specifically random rotation and horizontal flipping,
which enhanced the model’s ability to generalize.

4.4 Training and Validation Accuracy Analysis
The training and validation accuracy curves illustrate
the performance of the YOLOv8 and YOLOv12 model
across epochs (Figure 4). As observed, both metrics
demonstrate a consistent upward trend, indicating that
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Figure 3. Training and validation loss of YOLOv8 (left) and YOLOv12 (right) models.

Figure 4. Training and validation loss of YOLOv8 (left) and YOLOv12 (right) models.

the model effectively learned discriminative features
over time. The relatively close alignment between
training and validation curves suggests minimal
overfitting and good generalization to unseen data.
This reflects the stability and robustness of the training
process, thus, validating the model’s suitability for the
task of data fruit detection in the dataset.

The ROC curves for both YOLOv8 and YOLOv12
models exhibited ideal performance, achieving an
AUC of 1.0000 (Figure 5). This indicates perfect class
separability, with the models consistently assigning
higher confidence scores to correct predictions across
all thresholds. Such results confirm the robustness
of the used models in distinguishing between the
two date fruit varieties, independent of classification
threshold.

Throughout training, the two models demonstrated
steady improvements across key performance metrics
(Figure 6). Precision and recall curves reached high
values early and remained stable, with YOLOv12
showing slightly higher precision overall, suggesting

fewer false positives. Curves of mAP@0.5 and
map@0.5:0.95 followed similar trajectories, reflecting a
strong balance between precision, recall and accurate
localization.

As a real application of the retained YOLOv12 trained
model, a new image containing a mixed batch of both
varieties (Figure 7) was used; this image was not
part of the training, testing, or validation datasets.
The output shows detected object classes along with
values displayed next to the bounding boxes. These
values represent (i) the class label/name, indicating
the category of the detected object, either "Deglet
Nour" or "Bsir" varieties, and (ii) the confidence score
(also called probability or confidence), which mostly
approaches 1 confirming how certain the model is that
the detected object belongs to the given class.

Furthermore, the developed AI-ML model accurately
quantified the detected objects, providing both the
absolute count and the relative percentage of each
class within a sample. This detailed classification
enables precise identification of any accidental mixing
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Figure 5. ROC curve of YOLOv8 (left) and YOLOv12 (right) models.

Figure 6. Evolution of metrics for YOLOv8 (left) and YOLOv12 (right) models on validation.

Figure 7. Typical real application result to detect date
varieties using Yolov12 trained model.

or “contamination” of date variety lots by detecting
the presence of extraneous varieties (Figure 8).

The results obtained in this work are significant,
confirming the robustness of the developed AI-driven
system to accurately qualify and quantify cross-mixed
date varieties, which greatly benefits both farming and
the food industry. High accuracy reduces the time and
cost associated with manual sorting, making the entire
supply chain faster and more efficient. It also ensures
that date fruits are packed and labeled correctly,
which is crucial for quality control. Early detection
of cross-contaminated fruit prevents the need for later
interventions, ensures product authenticity [19] and
guarantees that only the best products reach customers,
thereby improving satisfaction and trust. Moreover, by
automating these processes, farmers and distributors
can respond more quickly to market demands and
optimize inventory management, benefiting the entire
agricultural economy.

Looking forward, advances in computing such
as edge AI devices, faster processors, and more
efficient neural networks will enable real-time fruit
classification directly in the field or packing lines
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Figure 8. Quantitative analysis of a mixed batch of DegletNour and Bsir date varieties.

without relying heavily on cloud computing [20]. This
will reduce latency and increase privacy and reliability.
Integration with Internet of Things (IoT) systems
and smart sensors will also create fully automated,
intelligent supply chains capable of monitoring
date fruit quality throughout transportation
and storage [21]. Such developments promise
to revolutionize agriculture by making it more
precise, sustainable, and open to global food supply
challenges [22].

4.5 Deployment Feasibility and Limitations
The high-performance metrics and robust training
dynamics demonstrated in the above sections indicate
strong potential for practical applicability. The
lightweight nature of the best-performing YOLO
model makes it highly feasible for use on cost-effective
embedded systems or mobile devices, enabling
portable, on-site quality control. A key limitation to
consider is that the model’s dependency on conditions
similar to its training data; performance may degrade
with the introduction of new date varieties or under
significantly different lighting. For scaling this system
to a commercial sorting line, futureworkwould involve
the establishment of a continuous data pipeline for
model retraining to ensure long-term reliability and
adapt to new scenarios.

5 Conclusion
Accurate date fruit classification is crucial in
agriculture and the food industry for quality control
and post-harvest processing. High classification
accuracy reduces manual sorting errors and ensures
consistency between package labeling and its content.
Moreover, early detection of defective or mislabeled
produce guarantees that only high-quality date fruits

reach consumers. By enabling faster and more precise
automatic sorting, this AI-based system optimizes
inventory management. Besides, it paves the way for
real-time monitoring and predictive analytics, further
enhancing production efficiency and food quality
standards.

This work demonstrated that AI systems, particularly
trained YOLO models effectively detect and classify
local Tunisian date varieties, accurately identifying
cross mixed batches. YOLOv12 slightly outperformed
in speed and precision, supporting its potential for
real-time applications. Integrating these models into
portable optical devices can significantly improve
quality control and traceability across the date supply
chain. Futurework should focus on expanding tomore
varieties and embedding the system in commercial
post-harvest processes to advance smarter farm-to-fork
decision-making. Overall, AI-driven solutions
promise to revolutionize agri-food monitoring and
management.
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