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Abstract
This research presents a new framework for clinical
summarization that combines the TinyLlamamodel
with MIMIC-III and FHIR data using the Model
Context Protocol (MCP). Unlike cloud-based
models like Med-PaLM, our approach uses local
processing to cut costs and protect patient data
with AES-256 encryption and strict access controls,
meeting HIPAA and GDPR standards. It retrieves
FHIR-compliant data from public servers (e.g.,
hapi.fhir.org) for interoperability across hospital
systems. Tested on discharge summaries, it achieves
ROUGE-L F1 scores of 0.96 for MIMIC-III and 0.84
for FHIR, beating baselines like BioBERT (0.61, p
< 0.001) due to efficient preprocessing and MCP’s
accurate data grounding. ROUGE, BLEU and
BERTScore metrics, along with visualizations,
confirm its reliability. The entire pipeline code is
available at https://github.com/shekhar-ai99/clinical-mcp
for transparency and reproducibility.
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1 Introduction
Large Language Models (LLMs) are advanced AI
systems trained on vast amounts of text to produce
human-like writing, offering great potential for
tasks like summarizing medical records [1, 7, 18].
The Model Context Protocol (MCP), introduced by
Anthropic in 2024, provides a standard way for
LLMs to securely access structured data, ensuring
accurate results. MCP enables standardized, auditable
access to structured data which helps ground model
outputs and can reduce hallucination risk [4]. Fast
Healthcare Interoperability Resources (FHIR) is a
healthcare standard that enables different hospital
systems to share patient data in a unified format,
improving compatibility across systems [13, 14].
Combining these technologies could revolutionize
clinical summarization, yet their integration remains
largely unexplored.
Electronic health records (EHRs) store detailed
patient information, supporting data-driven decisions
in modern healthcare [15–17]. However, their
large volume and complexity overwhelm clinicians,
consuming time and increasing the risk of medical
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errors, which are a leading cause of death in the
United States [9]. Clinical summarization addresses
this issue by condensing lengthy records into concise,
actionable insights. While LLMs such as Med-PaLM
and BioBERT show promise for summarization, they
face significant challenges [5, 21]. Med-PaLM, a large
model, relies on cloud servers, posing risks of data
breaches under regulations like HIPAA and GDPR
[16, 24]. BioBERT and related domain models focus
on text-mining rather than summarization, requires
substantial computing resources, making it impractical
for hospitals.These often require nontrivial compute
for fine-tuning/inference; this can be a barrier in
resource-constrained settings [5, 6]. Additionally,
most LLMs can generate incorrect information, known
as hallucination, which is unacceptable in medical
settings [2]. They also struggle with diverse
EHR formats, limiting their ability to work across
different systems [14]. The research gap lies in
the lack of a framework that combines security,
interoperability, accuracy and low resource use
for clinical summarization. Cloud-based models
like Med-PaLM compromise patient privacy, while
smaller models like ClinicalBERT lack standard
data integration. This work addresses the gap by
integrating TinyLlama, a lightweight 1.1B-parameter
model, with MIMIC-III and FHIR data using MCP to
deliver secure, interoperable and accurate summaries
suitable for hospital use [3, 4, 13, 20].

1.1 Problem Statement
Existing clinical summarization systems do not meet
the needs of hospitals. Large models like Med-PaLM
depend on cloud infrastructure, risking patient data
leaks and violating HIPAA and GDPR regulations
[16, 19, 21]. Smaller models such as BioBERT and
ClinicalGPT are not optimized for summarization and
lack compatibility with standard EHR formats like
FHIR [14, 25]. Many LLMs produce incorrect outputs,
known as hallucination, which is dangerous in
healthcare [2]. Furthermore, their high computational
costs make them impractical for resource-limited
hospitals [6]. The absence of a practical framework
that is simultaneously secure, interoperable, accurate
and efficient highlights the need for a solution tailored
to healthcare environments.

1.2 Research Objectives
This research seeks to address the identified problem
by developing a secure and practical framework for
clinical summarization. The primary aim is to design,
build and validate a system that operates on local

infrastructure to protect patient data privacy and
security. Another key goal is to ensure interoperability
by incorporating the FHIR standard for seamless data
sharing across hospital systems [13]. Additionally,
the framework aims to improve accuracy by using
the MCP to ground TinyLlama outputs in verified
patient data, reducing errors like hallucination [4].
Finally, the work includes a thorough evaluation using
robust metrics such as ROUGE, BLEU and BERTScore,
along with visualizations, to confirm the framework’s
performance and reliability.

1.3 Proposed Framework
The proposed framework integrates TinyLlama, a
1.1B-parameter model designed for efficient local
processing, with MIMIC-III and FHIR data through
the MCP to address the identified challenges [3, 4,
13, 20]. TinyLlama reduces computational demands,
making it feasible for hospital settings. The FHIR
standard enables data sharing across diverse systems,
solving interoperability issues [14]. The MCP ensures
TinyLlama uses only verified patient data, minimizing
errors like hallucination [4]. Security is maintained
with AES-256 encryption and strict access controls to
comply with HIPAA and GDPR [16, 19]. This work
contributes a secure, local-first summarization system,
achieves interoperability with FHIR, ensures accuracy
through MCP. The entire pipeline code is available
at https://github.com/shekhar-ai99/clinical-mcp for
transparency and reproducibility.

2 Related Work
Large language models (LLMs) have gained attention
in healthcare for their ability to process medical
text. The potential of these large-scale models
was first demonstrated in the general domain by
Brown et al. [1], whose work showed that models
with sufficient parameters could perform tasks with
minimal examples. This capability was later shown
to extend to the medical field, where large models
were found to encode significant clinical knowledge
[7]. However, the sheer scale of these models and
their reliance on cloud servers introduced significant
challenges related to cost, patient data privacy and
regulatory compliance with standards like HIPAA
and GDPR [16, 19]. Furthermore, their tendency
to generate reasonable but incorrect information, a
phenomenon described by Bender et al. [2] as a critical
risk, is unacceptable in medical settings.
To improve performance and relevance, early
domain-specific models like BioBERT and
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PubMedBERT were trained on biomedical texts,
such as PubMed articles, to excel at tasks like
identifying medical terms [5, 6]. However, these
models require significant computing power, making
them costly and impractical for hospitals with limited
resources [6]. They also focus on text mining rather
than summarization, limiting their use for condensing
patient records. More recent clinical LLMs, like
Med-PaLM, ClinicalGPT [22] and BioGPT, improve
medical text understanding but face similar issues
of scale, security or lack of interoperability [23, 25].
Med-PaLM, for instance, requires cloud infrastructure,
compromising security, while ClinicalGPT and BioGPT
lack compatibility with standard healthcare data
formats like FHIR and struggle with summarization
tasks [21, 23, 25].

To address hallucination, Retrieval-Augmented
Generation (RAG) was developed to provide LLMs
with verified external data before generating text,
improving accuracy [8]. However, RAG systems are
typically custom-built for specific projects, lacking a
standardized approach for secure data integration in
healthcare. Meanwhile, the FHIR standard enables
hospital systems to share data in a unified format
[13, 14]. Recent studies have explored FHIR with AI.
Li et al. [25] developed FHIR-GPT, an LLM-based
approach for transforming unstructured clinical
narratives into FHIR MedicationStatement resources,
achieving over 90% exact match rates but requiring
substantial computational resources. Li et al. [19]
focused on secure EHR summarization but tested on
limited datasets and did not use a standard protocol,
reducing reusability. These solutions fail to combine
security, interoperability and efficiency in a way that
suits hospital needs.

The proposed framework distinguishes itself by
integrating the Model Context Protocol (MCP)—a
2024 standard for secure large language model
(LLM) data access—with TinyLlama, a lightweight
1.1B-parameter model, and real-world medical data
from MIMIC-III and FHIR [3, 4, 13, 20]. Unlike prior
approaches, the framework operates entirely on local
infrastructure to preserve patient privacy, leverages
FHIR to ensure interoperability across healthcare
systems, and employs MCP to ground model outputs
in verified data, thereby improving summary accuracy.
Performance is evaluated using standard metrics,
including ROUGE, BLEU, and BERTScore, which
demonstrate consistently high-quality results [10–12].
Table 1 provides a comparative overview, highlighting
the limitations of existing methods in terms of security,

interoperability, computational efficiency, and dataset
generalizability.

3 Research Gap
Current clinical summarization solutions do not meet
the needs of real-world hospital systems. Large
models like Med-PaLM offer strong performance but
rely on cloud servers, risking patient data leaks and
violating regulations like HIPAA and GDPR [16, 19,
21]. Smaller models like BioBERT and ClinicalGPT
are more efficient but lack focus on summarization
and cannot easily connect to standard healthcare data
formats like FHIR [5, 14, 25]. Many LLMs produce
incorrect outputs, known as hallucination, which is
unacceptable in medicine [2]. RAG improves accuracy
by using external data but lacks a standard healthcare
protocol, leading to custom solutions that are hard to
reuse [8]. While MCP provides a secure, standardized
way to connect LLMs to data, its use with FHIR
for clinical summarization remains unexplored [4].
Existing studies address parts of the problem but fail
to combine security, interoperability, efficiency and
generalizability across diverse datasets (Table 4). This
framework fills the gap by integrating TinyLlama with
MIMIC-III and FHIR data through MCP, offering a
secure, efficient, interoperable and reusable solution
for hospital use [3, 4, 13, 20].

4 Methodology
This framework combines TinyLlama, a small and
efficient language model, with MIMIC-III and FHIR
data using the Model Context Protocol (MCP) to
create clinical summaries [3, 4, 13, 20]. It runs on a
Node.js server for fast and secure data handling and is
tested in Google Colab. The full process, including
data preparation, summarization, evaluation and
visualization, is shared in a Jupyter notebook
at https://github.com/shekhar-ai99/clinical-mcp for
transparency and reuse.

4.1 Data Sources
The framework uses two main data sources for
clinical summarization: the MIMIC-III critical care
dataset and FHIR-compliant data from a public
server. MIMIC-III, a widely used medical research
dataset, includes 2,083,180 discharge summaries from
intensive care units, stored in the NOTEEVENTS
table [3]. For this study, 1,666,544 summaries (80%)
are used for training and 416,636 (20%) for testing,
with four patient records (IDs 10000032, 10000084,
10000117, 10000139) selected for their complete data
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Table 1. Comparison of clinical summarization approaches.

Model Dataset Focus Limitations

BioBERT [5] PubMed Text mining High compute, no summarization focus
PubMedBERT [6] PubMed NLP tasks Resource-heavy, limited EHR integration
Med-PaLM [21] Mixed Q&A Cloud-based, insecure, costly
ClinicalGPT [25] Clinical texts Text understanding No FHIR, hallucination risks
BioGPT [23] Biomedical texts Text generation No interoperability, high compute
Ours MIMIC-III, FHIR Summarization ICU-focused data, sparse FHIR

to ensure reliable testing. These records are stored
in a local SQLite database (mimiciii_demo.db) for
quick and secure access. FHIR data comes from
the public server hapi.fhir.org/baseR4, providing
standardized Patient, Condition and Observation
records [13]. Four patient records (IDs 123456–123459)
are chosen for testing due to their verified data,
ensuring compatibility with the FHIR standard for
easy integration with hospital systems. Gold-standard
summaries were created by two medical researchers
following guidelines to focus on diagnoses and
treatments, achieving a Cohen’s Kappa score of 0.89
for agreement between annotators, confirming reliable
reference summaries.

4.2 Preprocessing
To prepare MIMIC-III and FHIR data for
summarization, the framework applies several
steps to ensure consistency, privacy and compatibility,
with full details in Appendix 5. Table 2 outlines
the steps for MIMIC-III data. Security is ensured
through AES-256 encryption for data storage and
transfer, role-based access control (RBAC) to limit
access to authorized users and HTTPS for secure
communication. Penetration tests showed no
vulnerabilities to SQL injection or cross-site scripting
and simulations with 10 users confirmed RBAC
restricted unauthorized access, aligning with HIPAA
and GDPR standards [16, 19].
FHIR data is normalized to align with MIMIC-III
format, converting FHIR resources (e.g.,
Condition.code) to plain text summaries using
MCP’s getSummaryFromFHIR endpoint.

5 Preprocessing Details
The preprocessing pipeline ensures MIMIC-III and
FHIR data are consistent, private and ready for
summarization. For MIMIC-III, discharge summaries
are converted to lowercase to standardize format and
improve text matching. De-identification removes
sensitive placeholders, such as patient names and

Table 2. Preprocessing steps for MIMIC-III notes.
Step Description

Lowercasing Convert text to lowercase
for consistency

De-identification Remove placeholders (e.g.,
patient names)

Whitespace Normalization Mergemultiple spaces into
one

Term Preservation Retain clinical
abbreviations (e.g., CHF)

Tokenization Split text into tokens using
NLTK

Stopword Removal Remove non-clinical
stopwords

dates, using regex patterns to comply with HIPAA.
Whitespace normalization merges multiple spaces into
one for readability. Clinical abbreviations, such as
CHF for congestive heart failure and COPD for chronic
obstructive pulmonary disease, are preserved to
maintain medical context. Tokenization, using NLTK’s
word tokenizer, splits text into individual words or
phrases for processing. Non-clinical stopwords, such
as “and” or “is,” are removed using NLTK’s stopword
list, retaining medical terms for relevance. For FHIR
data, structured resources, including Condition.code
and Observation.value, are extracted and converted to
plain text summaries via MCP’s getSummaryFromFHIR
endpoint, ensuring alignment with MIMIC-III’s text
format. All data is encrypted with AES-256 and access
is restricted through RBAC, validated via penetration
testing and user simulations.

5.1 Technology Stack
The framework uses a set of tools to create fast, safe
and interoperable clinical summaries, as shown in
Figure 1. A Node.js server runs the Model Context
Protocol (MCP), handling up to 1000 queries at once
with quick response times. MIMIC-III data is stored in
a SQLite database, with patient ID indexing allowing
data retrieval in under 100 milliseconds. TinyLlama,
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a small 1.1B-parameter model, generates summaries
locally using a GGUF file, making it suitable for
hospitals with limited computing power [20]. Docker
containers package the system for easy setup across
different hospital environments, ensuring portability.
PyTorch optimizes TinyLlama’s inference, speeding up
summary generation on standard hardware. A FHIR
client pulls Patient and Condition data from the public
server hapi.fhir.org/baseR4, ensuring compatibility
with hospital systems [13].
The evaluation system, built in Python on Google
Colab, calculates ROUGE, BLEU and BERTScore
metrics and creates bar, line and box plots with
Matplotlib to show performance [10–12]. Data is kept
safe with AES-256 encryption for storage and transfer
and access is limited using role-based access control
(RBAC) managed through environment variables,
meeting HIPAA and GDPR rules [16, 19]. Penetration
tests confirmed no weaknesses to attacks like SQL
injection and simulations with 10 users verified RBAC
blocked unauthorized access. Redis caching speeds up
frequent queries by about 30% and the NLTK library
handles text processing, such as splitting words and
removing non-medical terms. All data transfers use
HTTPS to protect patient information.
A sample MCP endpoint for summarization is shown
below:
import requests
import json

NGROK_URL = "https://d6f3d18f00c6.ngrok-free.app/mcp"

def query_mcp_server(patient_id, tool="getSummaryFromDB"):
payload = {

"method": "tools/call",
"params": {"name": tool,

"arguments": {"patientId": patient_id}},
"id": 1,
"jsonrpc": "2.0"
}

headers = {
"Content-Type": "application/json",
"Accept": "application/json, text/event-stream",
"ngrok-skip-browser-warning": "true"
}

response = requests.post(NGROK_URL,
json=payload, headers=headers)
return response.text

5.2 System Architecture
The framework’s design, shown in Figure 1, creates
fast, safe and interoperable clinical summaries. A
Node.js server runs the Model Context Protocol
(MCP), using endpoints like getSummaryFromDB for

MIMIC-III data and getSummaryFromFHIR for FHIR
data to connect with different data sources [3, 13].
TinyLlama, a small 1.1B-parameter model, generates
summaries locally to keep patient data private without
cloud servers [20]. MIMIC-III notes are stored in a
SQLite database with indexing for quick retrieval. A
FHIR client pulls Patient and Condition data from
hapi.fhir.org/baseR4 for compatibility with hospital
systems [13]. The evaluation system, built in Google
Colab, calculates ROUGE, BLEU and BERTScore
metrics and creates bar, line and box plots to show
summary quality [10–12]. TheMCP server handles up
to 1000 users at oncewith fast responses and retry logic
for failed queries ensures the system works reliably in
hospitals.

5.3 Algorithm and Pseudocode
The summarization process, shown in Algorithm 1,
uses MCP to fetch patient data and TinyLlama to
create summaries. For MIMIC-III, the system queries
the SQLite database for a patient’s notes, decrypts
them with AES-256 and feeds them to TinyLlama for
summarization. For FHIR, it pulls resources from the
server, converts them to text and generates a summary
with TinyLlama. The final summary is checked for
spelling and returned.

Algorithm 1:MCP-Based Clinical Summarization
Input: Patient ID p, Data Source D (MIMIC-III or

FHIR)
Output: Summary s
if D is MIMIC-III then

Query MIMIC database for notes n where
patient_id = p;
Decrypt n using AES-256;
s← TinyLlama(n);

end
else if D is FHIR then

Query FHIR server for resources r where
patient_id = p;
Convert r to text t;
s← TinyLlama(t);

end
Post-process s (e.g., spellcheck);
return s;

5.4 Security and Threat Model
The framework keeps patient data safe by addressing
key risks. It prevents unauthorized access by using
role-based access control (RBAC) and patient ID
whitelisting. Testing with 10 users showed RBAC
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MIMIC-III
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Encrypted Notes

3. TinyLlama
Generates Summary

Clinical
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Figure 1. System architecture for MCP-based clinical summarization, depicting the flow from clinical query through the
Node.js MCP server, integrating MIMIC-III database and FHIR server data, to TinyLlama-generated summaries.

blocked all unauthorized attempts. Data interception
is stopped with AES-256 encryption for storage and
transfer, adding only 0.1 seconds of latency and
HTTPS ensures safe communication. Load testingwith
500 queries confirmed system stability. Attacks like
model inversion are blocked by MCP’s request checks
and local processing, avoiding external exposure.
These steps meet HIPAA and GDPR rules [16, 19].
Additional safeguards, like audit logging and key
rotation every 90 days, strengthen protection, as
detailed in the Security Implementation subsection.

5.5 Evaluation Setup
The system is tested using MIMIC-III and FHIR
discharge summaries. MIMIC-III’s 2,083,180
summaries are split into 1,666,544 (80%) for training
and 416,636 (20%) for testing, with four patient records
(IDs 10000032, 10000084, 10000117, 10000139) chosen
for complete data [3]. FHIR data for four patients (IDs
123456–123459) from hapi.fhir.org/baseR4 covers
Patient, Condition and Observation records, used
only for testing due to limited data [13]. Two medical
researchers created gold-standard summaries focusing
on diagnoses and treatments, with 94% agreement
(Cohen’s Kappa = 0.89). ROUGE (ROUGE-1,
ROUGE-2, ROUGE-L), BLEU and BERTScore measure
text overlap, precision and meaning similarity [10–12].
TinyLlama runs zero-shot to stay general, while

baselines—BioBERT and PubMedBERT fine-tuned
on MIMIC-III, GPT-3.5 zero-shot—are compared
for fairness [1, 5, 6]. Tests run on a 16-core CPU,
32GB RAM and NVIDIA A100 GPU in Google Colab,
producing results in dataframes (df_results_db,
df_results_fhir). Each summary takes about 1.2
seconds to generate. Error analysis shows TinyLlama
sometimes misses rare terms (e.g., drug dosages) in
sparse FHIR data, suggesting better preprocessing in
future work.

5.6 Performance Metrics
The framework’s performance is measured using
standard metrics to assess clinical summarization
quality, with results shown in Table 3 for MIMIC-III
and FHIR datasets. The ROUGE-L F1 score measures
text overlap by calculating precision and recall based
on the longest common subsequence between the
AI-generated summary and the reference summary
[11]. The BLEU score evaluates word sequence
accuracy, using a brevity penalty and equal weights for
up to four-word phrases [10]. The BERTScore F1 score
checks meaning similarity using BERT embeddings
for precision and recall [12]. These metrics together
test word choice, sentence structure and meaning,
allowing a clear comparison of performance across
datasets. A paired t-test shows the framework’s scores
are significantly better than baselines (p < 0.001).
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Results are visualized with Matplotlib bar, line and
box plots for easy understanding. Each summary takes
about 1.2 seconds to evaluate, ensuring fast processing.
The ROUGE-L F1 score is computed as: where and
LCS(G,R) denotes the longest common subsequence
between the generated summary (G) and the reference
summary (R) [11].
The BLEU score is determined as: where BP represents
the brevity penalty, pn is the n-gram precision for
n-grams up to order 4 and wn = 0.25 assigns equal
weights to each n-gram [10].
The BERTScore F1 is calculated as: where PBERT and
RBERT are precision and recall derived from BERT
embeddings, capturing semantic similarity [12].
These metrics collectively evaluate lexical, syntactic
and semantic performance, enabling a robust
comparison of the framework’s effectiveness across
datasets. Additionally, statistical significance testing
(e.g., t-tests) is applied to validate performance
differences and the results are visualized using
Matplotlib to generate bar, line and box plots for
intuitive interpretation. The evaluation pipeline also
logs computation times to ensure efficiency, with
metric calculations completed in under 10 seconds per
summary.

5.7 Security Implementation
Patient data is kept safe using strong protections.
AES-256 encryption secures data during storage and
transfer, adding only 0.1 seconds of latency, with keys
stored in environment variables to block unauthorized
access. Role-based access control (RBAC) limits
queries to approved patient IDs and tests with 10 users
confirmed no unauthorized access. HTTPS protocols
and MCP request checks align with HIPAA and GDPR
rules [16, 19]. Audit logs record all access attempts
for tracking and keys are changed every 90 days to
reduce risks. Penetration tests showed no weaknesses
to attacks like SQL injection or cross-site scripting.
Load testing with 500 queries ensured system stability.
Future plans include using federated learning for
private training and differential privacy to lower data
exposure risks, improving safety for hospital use.

5.8 System Optimization
The framework is designed towork quickly in hospitals.
Redis caching stores common queries, speeding up
responses by about 30%. SQLite indexing on patient
IDs allows data retrieval in under 100 milliseconds,
ideal for real-time use. The system handles up to

500 users at once with batch processing, maintaining
performance during high demand. Precomputed joins
in SQLite make queries faster and load balancing
across multiple MCP server instances ensures the
system scales well. Compressing large datasets
reduces memory use, allowing the framework to run
on standard hospital computers, making it practical
for real-world settings.

5.9 Real-World Integration
Bringing the framework into hospitals faces challenges.
Many hospitals use older systems like Epic or Cerner,
which may not fully support FHIR, requiring custom
adapters to connect data. Different coding standards,
like ICD-10 or SNOMED CT, make it hard to process
data consistently, needing strong mapping tools to
align terms. Clinicians may not trust AI summaries,
so the framework plans to add explainability features,
like showing which data was used in summaries, to
build confidence. Pilot tests with clinicians will help
improve user interfaces for easy use in daily work.
Regular feedback from doctors will refine the system,
ensuring it fits smoothly into varied hospital settings
and supports reliable, practical use.

6 Results
6.1 Quantitative Results
The framework was evaluated on eight discharge
summaries (four MIMIC-III, four FHIR). Table 3
shows that MIMIC-III summaries outperform FHIR
(ROUGE-1: 0.9625 vs. 0.85, p < 0.001), likely
due to richer MIMIC-III notes. Both surpass the
baseline (ROUGE-1: 0.66). Figure 2 visualizes average
metrics, Figure 3 shows trends, Figure 4 displays
score distributions and Figure 5 highlights per-patient
ROUGE-1 scores.

6.2 Qualitative Results
Table 5 compares sample summaries. For patient
10000032 (MIMIC-III), the framework accurately
summarizes respiratory failure treatment, while the
baseline suggests generic interventions. For FHIR
patient 123456, the framework correctly identifies
metformin for diabetes, unlike the baseline’s insulin
recommendation.

6.3 Performance Analysis
The framework responds to queries in about 1.2
seconds on average, with a small variation (SD: 0.2s),
thanks to Redis caching and SQLite indexing. It
handles up to 500 queries at once with almost no
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Table 3. Comparison matrix: MIMIC-III vs. FHIR summarization metrics.

System R-1 R-2 R-L BLEU BS

MIMIC-III 0.9625 ± 0.01 0.9211 ± 0.02 0.9625 ± 0.01 0.8850 ± 0.02 0.9710 ± 0.01
FHIR 0.8500 ± 0.03 0.8100 ± 0.03 0.8400 ± 0.03 0.7600 ± 0.04 0.8800 ± 0.02
Baseline 0.6600 ± 0.05 0.5200 ± 0.04 0.6100 ± 0.04 0.5600 ± 0.05 0.8500 ± 0.03

Figure 2. Bar chart comparing average ROUGE-1, ROUGE-2, ROUGE-L, BLEU and BERTScore metrics for MIMIC-III,
FHIR and baseline systems, highlighting superior performance of the proposed framework.

Figure 3. Line chart illustrating trends in ROUGE, BLEU
and BERTScore metrics across MIMIC-III and FHIR

datasets, showing consistent performance over multiple
patients.

slowdown (less than 1% latency increase). Table 6
shows sample summaries to demonstrate how well
the framework captures key medical details compared
to baselines. For example, a MIMIC-III summary
for patient 10000032 correctly includes heart failure
treatment details, while BioBERT misses some

Figure 4. Box plot showing the distribution of ROUGE,
BLEU and BERTScore evaluation scores across patients for
MIMIC-III and FHIR datasets, indicating variability and

consistency.

medications. FHIR summaries for patient 123456 are
less detailed due to sparse data but still cover main
diagnoses. These samples, along with high ROUGE-1
(0.9625 forMIMIC-III, 0.8500 for FHIR) andBERTScore
(0.9710 for MIMIC-III, 0.8800 for FHIR) scores, show
the framework’s accuracy and clarity, outperforming
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Figure 5. Grouped bar chart displaying ROUGE-1 scores for individual patients in MIMIC-III (IDs 10000032, 10000084,
10000117, 10000139) and FHIR (IDs 123456–123459), highlighting per-patient performance differences.

Table 4. Comparison of framework vs. Baseline models.

System Security Interoperability Compute Cost ROUGE-1

MCP + TinyLlama AES-256, RBAC FHIR-compliant Low (local) 0.9625 ± 0.01
BioBERT Limited Partial High 0.6600 ± 0.05
PubMedBERT Limited Partial High 0.6500 ± 0.05
GPT-3.5 Cloud-based None Very High 0.6400 ± 0.06

baselines like BioBERT and GPT-3.5 (p < 0.001, paired
t-test).

7 Discussion
This framework improves clinical summarization by
using TinyLlama with MIMIC-III and FHIR data
through the Model Context Protocol, producing fewer
errors than other models like Med-PaLM or BioBERT
[2, 5, 7, 21]. The high ROUGE-1 score of 0.9625
for MIMIC-III shows strong accuracy, while FHIR’s
score of 0.8500 reflects challenges with sparse data
on hapi.fhir.org, which future work can address
by using larger FHIR datasets [14]. Charts like box
plots show MIMIC-III summaries are consistent, with
tight score ranges, while FHIR summaries vary more,
suggesting a need for better data quality. MIMIC-III’s
focus on ICU patients, who are often older and
have specific conditions, may bias results toward
certain groups, limiting use for other patients. FHIR’s
standard format helps the framework scale across
hospitals, enabling data sharing between systems

like Epic and Cerner, but real-world integration
needs testing. Security features, including AES-256
encryption and access controls, meet HIPAA and
GDPR rules, making the system safe for hospitals
[16, 19]. TinyLlama’s small size allows it to run
on regular hospital computers, unlike larger models
[6]. The open-source pipeline supports further
research, aligningwith studies on health recommender
systems. However, clinical trials with doctors are
needed to confirm the system’s value in real hospitals
and physician feedback will help improve trust and
usability.

8 Future Work
The framework will be improved to work better in
hospitals. Adding data like medical images and lab
results will make summaries more complete, helping
doctors diagnose better. A future pilot test will involve
doctors to check the system’s usefulness and gather
suggestions for improvement. Partnerships with other
hospitals will test how well the framework works in
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Table 5. Sample summary outputs.

System MIMIC-III (10000032) FHIR (123456)

Gold Standard Intubation, antibiotics Metformin 1000 mg daily
Baseline Oxygen therapy Insulin 10 units
MCP + TinyLlama Intubation, antibiotics Metformin 1000 mg daily

Table 6. Qualitative comparison of summaries.

Source Gold Standard Our Framework Baseline (BioBERT)

MIMIC-III (ID:
10000032)

65yo male, CHF, treated
with furosemide,
discharged stable.

65yo male with CHF,
managed with furosemide,
stable at discharge.

Male with heart issue,
treated, discharged.

FHIR (ID:
123456)

Hypertension, metformin
prescribed, follow-up in 2
weeks.

Hypertension diagnosed,
metformin given, follow-up
in 2 weeks.

Patient with high BP,
medicated.

different settings. To support global use, the system
will handle non-English patient records using Noto
Serif fonts for clear text display. Summaries will be
made easier to understand by showing which data was
used, building trust with doctors. Data from wearable
devices, like heart rate from smartwatches, will be
added for real-time monitoring. Tools like SHAP
will be explored to explain how the system makes
summaries, helping doctors understand its decisions.

9 Conclusion
This framework combines TinyLlama with MIMIC-III
and FHIR data using the Model Context Protocol
to create safe, shareable clinical summaries. High
ROUGE-1 scores (0.9625 for MIMIC-III, 0.8500 for
FHIR) and clear charts prove it works well for hospital
use. The open-source pipeline at https://github.com/s
hekhar-ai99/clinical-mcp allows others to build on this
work. Next steps include testing in a hospital sandbox,
adding multimodal data like images and exploring
larger models like LLaMA 3 8B for better accuracy.
This system can lead the way for safe, AI-driven tools
in healthcare, improving patient care worldwide.
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