

The Use of Organoid Models of Endocrine Diseases: Research Progress and Potential

Jiayu Liu¹ and Peiting Li^{1,*}

¹Department of Plastic Surgery, The Third Xiangya Hospital, Central South University, Changsha, China

Abstract

The absence of robust and reliable *in vitro* models that can accurately recapitulate the biological characteristics of many mammalian tissues and disease states represents a major barrier to both basic and translational research, owing to limited sample availability and ethical concerns. Stem cell-derived self-assembling three-dimensional (3D) organoids can replicate key structural and functional aspects of organs in a more physiologically relevant manner than traditional 2D models, thus providing a superior platform for simulating human physiology and pathology. To date, researchers have developed organoid models for a variety of endocrine tissues and their associated diseases (including pancreatic, pituitary, thyroid, adrenal tumors, etc.), offering invaluable tools for studying complex endocrine disorders. Such organoid models have significantly enhanced the accuracy and translational potential of research in disease modeling, drug screening, and regenerative medicine. Looking forward, the integration of bioengineering and multi-omics analyses with next-generation organoid models holds great promise for unraveling disease

mechanisms and advancing precision medicine.

Keywords: organoids, 3D culture, endocrine diseases, translational applications, disease modeling, tumor.

1 Introduction

Organoids are a relatively new and innovative scientific tool first reported in the 1970s by Reinwald and Green [1], who co-cultured 3T3 fibroblasts with primitive human keratin-forming cells to yield an epidermis-like lamellar squamous epithelial system. However, achieving the complex 3D organization of cells into tissue- and organ-like structures remained a challenge for decades.

The reliable establishment of 3D organoid culture systems depends on an in-depth understanding of the extracellular matrix (ECM) [2, 3] and advances in suspension culture techniques [4–6]. Early work demonstrated morphogenesis within 3D laminin-rich matrices, producing alveolar-like structures with polarized epithelial cells [6, 7]. Seminal studies by Sato et al. [8] and Eiraku et al. [9] later showed that adult stem cells (ASCs) and pluripotent stem cells (PSCs) could self-organize into intestinal organoids and optic-cup structures, respectively. These findings established the core principle of organoid research: the intrinsic capacity of stem cells to self-organize into

Submitted: 21 December 2025

Accepted: 29 January 2026

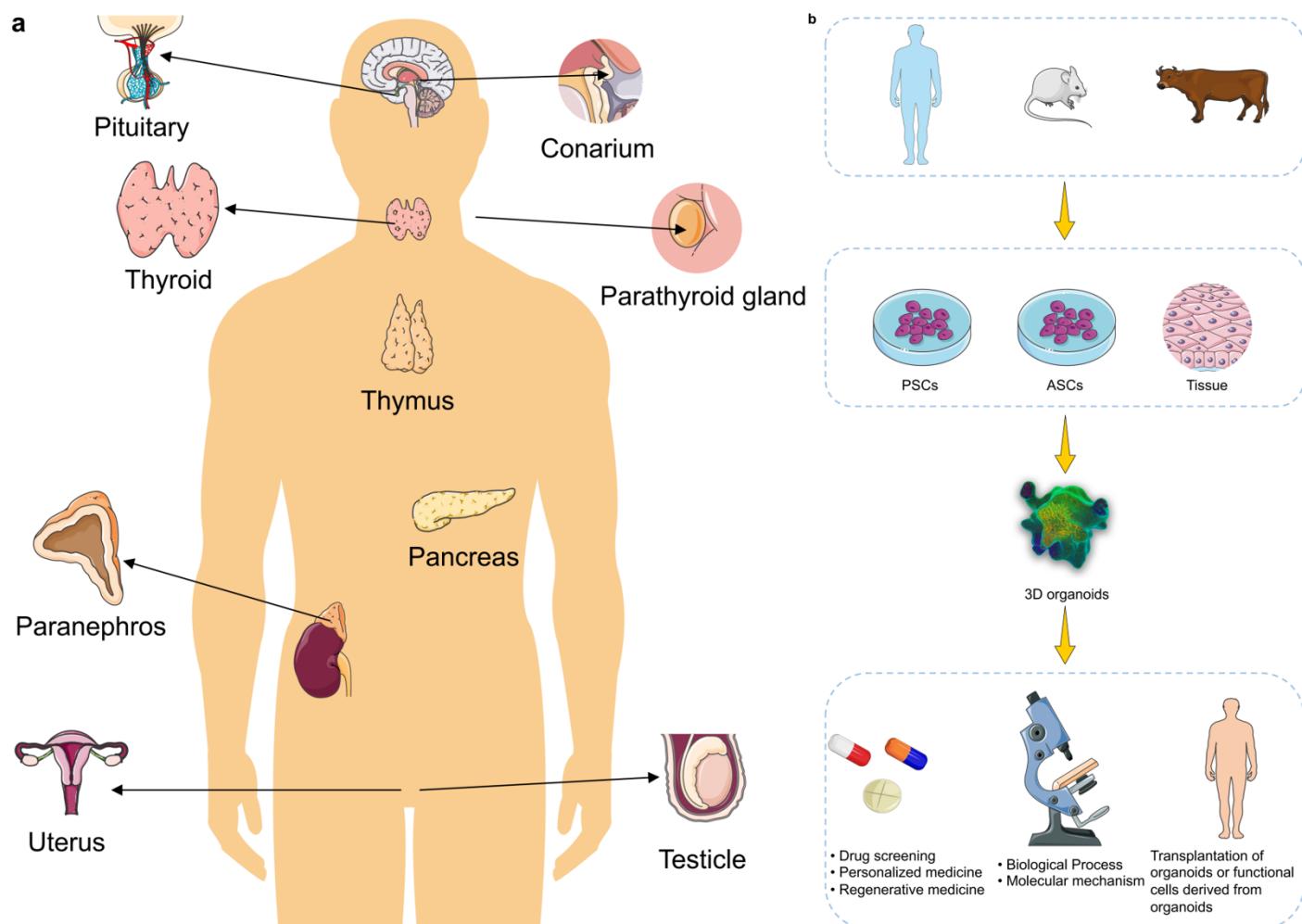
Published: 06 February 2026

Vol. 1, No. 1, 2026.

10.62762/OC.2025.777438

*Corresponding author:

✉ Peiting Li


lipeiting@csu.edu.cn

Citation

Liu, J., & Li, P. (2026). The Use of Organoid Models of Endocrine Diseases: Research Progress and Potential. *Oncology Communications*, 1(1), 8–19.

© 2026 by the Authors. Published by Institute of Central Computation and Knowledge. This is an open access article under the CC BY license (<https://creativecommons.org/licenses/by/4.0/>).

Figure 1. (a) General distribution of major endocrine organs in the human body. (b) Overview of organoid derivation methods. Organoids can be generated from pluripotent stem cells (PSCs) recapitulating development, or from adult tissue stem cells (ASCs) and patient-derived tissues for disease modeling.

3D organ-like structures. Building on this, numerous organoid models have been generated from various tissues and species.

The endocrine system, a network of glands including the pituitary, thyroid, adrenal, and parathyroid (Figure 1), secretes hormones crucial for systemic homeostasis. Its function is tightly regulated by feedback loops, notably the hypothalamus-pituitary axis (HPA). Dysfunction in these glands or secondary endocrine tissues (e.g., pancreas, gonads) leads to a spectrum of disorders, from diabetes to endocrine tumors. Endocrine diseases can also significantly impact liver function through altered hormone metabolism and signaling, highlighting the hepato-endocrine interplay [10]. The intricate and systemic nature of endocrine regulation makes it challenging to study *in vitro*. Organoid technology, by recapitulating native tissue microenvironments in 3D, offers an unprecedented opportunity to model

endocrine physiology and disease with high fidelity. Significant progress has been made in generating endocrine organoids from diverse species and cellular sources (Table 1).

This review focuses on the application of organoid technology in modeling endocrine diseases. We discuss the generation methods and translational applications of organoids for major endocrine glands, highlighting their use in studying both benign and malignant conditions (Figure 1). We also examine the current challenges—such as achieving vascularization and long-term functional stability—and propose future directions for developing more robust, clinically relevant next-generation models. While we acknowledge advancements in tissue engineering that enhance organoid culture, detailed discussion of field-specific applications is beyond our scope, and readers are directed to recent specialized reviews.

ASCs, adult stem cells; PSCs, pluripotent stem

Table 1. An overview of primary endocrine organoid types and associated characteristics.

Endocrine organ	Source	Translational applications
Pituitary	Mouse PSCs [11]	Ectopic transplantation in hypophysectomized mice; modeling developmental disorders
	hiPSCs [12–15]	hiPSC-derived pituitary organoids to model the disease of congenital pituitary disorders [12] hiPSC-derived pituitary organoids for autoimmune pituitary disease and anti-PIT-1 antibody syndrome [13–15]
Thyroid	Mouse PSCs [16, 17] Human dissociated tissue [18, 19]	- Exceptional preclinical <i>in vitro</i> simulation
Parathyroid	Human dissociated tissue [20, 21] bovine parathyroid cells [22, 23] Rat ADSCs [24]	Explore the mechanisms governing hyperparathyroidism Differentiating ADSC-derived pituitary organoids for the treatment of hypoparathyroidism
Thymus	Human HSPCs [25, 26] Mouse HSPCs [26] Murine HSCs [27–30]	Generation of mature T cells from human HSPCs in artificial thymic organoids Experimental platform for the interrogation of clonal thymopoiesis from HSCs
Adrenal	Human dissociated tissue [31]	-
Pancreas	Mouse ASCs [32]	-
	Mouse dissociated tissue [32]	-
	Human dissociated tissue [33, 34]	Comparison between mouse pancreatic organoids generated from normal, early neoplastic and tumoural cells has revealed new insights on genes involved in the progression of pancreatic ductal adenocarcinoma Interrogate pathways involved in pancreatic tumorigenesis
	hPSCs [35] Mouse dissociated embryonic tissue [36] hESCs [37–39]	- A therapeutic approach in diabetes mellitus
Gonad Ovary	hESCs [40] Human dissociated tissue [41, 42] Mouse dissociated tissue [43]	- Xenograft and drug-sensitivity assays
Testicle	hSSCs [44] Rat SSCs [44, 45] mouse iPSCs [46]	- - Induce spermatogenesis in azoospermic testis

cells; hiPSCs, human induced PSCs; ADSCs, Adipose-Derived Stem Cells; HSPCs, hematopoietic stem and progenitor cells; hESCs, human embryonic stem cells.

2 The Pituitary

The pituitary gland is a master regulator of systemic homeostasis. Its development from oral ectoderm is tightly regulated by signaling factors like FGF (fibroblast growth factor). Disruptions lead to congenital hypopituitarism. Human pituitary research has been hampered by tissue scarcity and species differences [12].

Efforts to overcome these limitations have largely focused on the use of different types of human PSCs (hPSCs) such as embryonic stem cells (ESCs) and induced PSCs (iPSCs), as they offer valuable opportunities to assess organ development and the dysfunction thereof [47, 48]. While hPSCs have been used to generate a range of tissue and organ types to date for use in a range of applications [49], these cells have yet to be successfully used for pituitary organoid

generation as *in vitro* pituitary cell induction remains challenging. However, approaches to the *in vitro* differentiation of hPSC-derived anterior and posterior pituitary cells have recently been described [50–52], enabling researchers to better study the complex biology of this important primary endocrine organ.

In experimental contexts, iPSCs are commonly used to model disease-related processes by inducing these cells to differentiate into the tissue type of interest, with such approaches being of particular value in the context of diseases arising as a consequence of germline mutations [53]. Congenital hypopituitarism is a complex, multifactorial disease that is partially driven by genetic factors. Owing to the lack of a reliable human model of this disease and to differences between human and animal systems, however, the precise mechanistic basis for this condition remains to be fully clarified. The use of 3D culture methods to model fetal pituitary differentiation during the fetal period offers an opportunity to maintain interactions between the oral ectoderm and hypothalamus, making them potentially promising

for use in modeling congenital pituitary disorders. In one recent study, iPSCs from a patient with an *OTX2* missense mutation were successfully used to model congenital hypopituitarism. Prior work has highlighted *OTX2* as a key transcription factor that regulates the development of the pituitary [12], with multiple *OTX2* mutations having been linked to various forms of congenital hypopituitarism. During development, the expression of *OTX2* is evident in the hypothalamus and oral ectoderm [54], but the specific mechanistic role that it plays in controlling pituitary tissue development in these two tissue compartments remains controversial [55, 56]. Researchers found that the ability of these patient-derived iPSCs to differentiate into pituitary progenitor cells was impaired in the context of *OTX2* mutation, and further leveraged this model to demonstrate that the expression of this transcription factor in the hypothalamus, rather than that oral ectoderm, is of particular importance in the induction of pituitary progenitor cell development, controlling hypothalamic FGF (fibroblast growth factor) expression. Such iPSC-based organoid models thus offer clear value as tools that can be leveraged to clarify the mechanisms governing a range of pituitary disorders.

A growing body of evidence has identified autoimmunity as an important driver of certain forms of hypopituitarism, including lymphocytic hypophysitis [57], IgG4-related hypophysitis [58], and immune checkpoint inhibitor-induced hypophysitis [59]. Appropriately modeling such immune-mediated diseases, however, necessitates the matching of HLA (human leukocyte antigen) types between hiPSC-derived tissues and patients. In previous studies, hiPSC-derived pituitary cells have successfully been used to model autoimmune anti-PIT-1 antibody syndrome [13–15], underscoring the potential value of these systems as tools for modeling autoimmunity, although further work is needed to more fully model disease based on patient iPSCs and donor matched cytotoxic T lymphocytes (CTLs).

During the early stages of mammalian development, the glandular epithelium originates from the on-neural head ectoderm adjacent to the anterior neural plate [60, 61], with the ectoderm and rostral hypothalamic tissues thus interacting with one another [62]. To better mimic these microenvironmental interactions, 3D ES-based culture methods have been employed, with researchers having successfully utilized aggregate murine ES cells to efficiently generate self-assembling

3D adenohypophysis tissues. To achieve this outcome, ES cells in adjacent layers of the culture system were induced to undergo differentiation into non-neural head ectodermal and hypothalamic neuroectodermal tissues, with hedgehog signaling treatment being employed. At the interface between these layers, the self-assembly of 3D Rathke's pouch-like structures was evident consistent with the biological characteristics observed *in vivo*, facilitating the subsequent production of a range of endocrine cell types such as corticotrophs and somatotrophs. The resultant corticotrophs were able to secrete adrenocorticotropic hormone when stimulated with corticotrophin-releasing hormone, and the *in vivo* grafting of these cells improved glucocorticoid levels in a murine model of hypopituitarism. As such, these ES cell culture-based tissues can effectively recapitulate local tissue interactions [11].

Current Limitations and Future Directions: While promising, current pituitary organoids often lack the complete vascular network and long-range feedback loops (e.g., HPA axis) of the native gland. Future models integrating endothelial cells and microfluidic systems ("organ-on-a-chip") are needed to study systemic hormone regulation and complex disorders like Cushing's disease.

3 The Thyroid Gland

The thyroid gland, a butterfly-shaped gland in the neck, is responsible for the synthesis, secretion and storage of thyroid hormones, which perform four major functions: controlling the rate at which the body uses energy, promoting the breakdown of proteins, fats and carbohydrates, promoting growth and development and regulating the body's sensitivity to other hormones, making it one of the most important endocrine organs in the body. PSC culture and differentiation techniques have been conducive to the *in vitro* self-assembly of 3D organoids [63, 64]. As engineered cells commonly exhibit poor engraftment that constrains their amenability to *in vivo* functionality and transplantation, organoid model systems offer a more robust opportunity to recapitulate *in vivo* endocrine tissue function without the need for orthotopic transplantation, as the engraftment of these organoids in any tissue compartment with access to systemic circulation has the potential to rescue clinical hormone deficiency. PSC-derived thyroid organoids offer potential for regenerative therapy. Mouse PSC-derived thyroid progenitors matured into follicular organoids that secreted hormones and

reversed hypothyroidism in mice [17, 65]. Patient iPSCs with NKX2-1 haploinsufficiency have been differentiated into thyroid cells, modeling genetic hypothyroidism [17]. These results offer insight into the mechanistic basis for the regulation of thyroid organogenesis and highlight promising avenues towards the development of cell-based regenerative treatments for hypothyroidism.

For thyroid cancer, patient-derived papillary thyroid cancer organoids retain the histopathological and genomic features of the original tumor, enabling personalized drug sensitivity testing [18]. Although their use in studying tumorigenesis is still emerging, thyroid cancer organoids represent a powerful preclinical model for drug screening [19]. A key challenge is achieving stable, long-term hormone secretion regulated by physiological stimuli (e.g., TSH). Incorporating vasculature to enable systemic hormone delivery in transplantation scenarios is also crucial for therapeutic applications.

4 The Parathyroid Glands

Hyperparathyroidism, characterized by excessive parathyroid hormone (PTH) secretion, leads to hypercalcemia and bone disease. *In vitro* studies of parathyroid cells are challenging due to loss of function. Early organoid systems using bovine cells maintained calcium-responsive PTH secretion for weeks [22, 23]. Human parathyroid cells from hyperplastic glands (secondary hyperparathyroidism) have been cultured long-term in organoid form, preserving CaSR expression and function [20].

When cultured *in vitro*, parathyroid cells often lose their physiological characteristics, leading Ridgeway et al. [22] to pioneer the production of multicellular organoid aggregates derived from bovine parathyroid cells in a rotating centrifuge tube. The resultant organoids exhibited consistent responsiveness to extracellular calcium stimulation *in vitro* for a minimum of two weeks. Ritter et al. [23] further developed a prosthetic parathyroid gland system by combining bovine parathyroid cells and type I collagen such that 1-2 mm artificial glands were evident within two weeks. Importantly, these glands retained expected parathyroid gland-related functional properties for extended culture periods.

Roussanne et al. [20] isolated parathyroid cells from hyperplastic gland samples from human SHPT patient hyperplastic gland tissue samples, isolating a mixed population of clustered cells capable of

maintaining calcium-induced PTH secreting activity for 5 months in part owing to the lack of use of a filter to generate a single-cell suspension during initial tissue digestion. The prolonged integrity of these parathyroid organoids may be attributable to the initial isolation of cellular aggregates, to the properties of the hyperplastic tissue from which they were derived, or the utilization of phosphate-rich media by the authors. Owing to the long-term functionality of this model system, it is well-suited to assessing the characteristics of parathyroid cell development and PTH production *in vitro*.

For hypoparathyroidism, cell therapy is being explored. Rat adipose-derived stem cells (ADSCs) differentiated into parathyroid-like cells that secreted PTH in response to calcium, offering a potential autologous cell source [24]. thus sought to generate rat ADSC-derived parathyroid-like cells as a tool for the treatment of hypoparathyroidism. When treated with activin A and SHH, these ADSCs secreted PTH and upregulated PTH, calcium-sensing receptor (CaSR), and GCM2 (glial cells missing homolog 2) in a dose- and time-dependent fashion,Primary human parathyroid organoids, especially from adenomas, are difficult to establish and expand. Developing robust protocols and understanding the niche factors that maintain parathyroid chief cell identity *in vitro* are key goals.

5 The Thymus

Early thymic organoid studies relied upon the utilization of 3D murine systems [27-29] or engineered human thymic microenvironment models [25] derived from thymic stroma capable of promoting *in vitro* human T cell maturation and positive selection. As they rely on primary thymic tissue samples, however, these experiments are difficult to perform and exhibit highly variable results, underscoring the need for serum-free approaches to efficiently and reliably promoting HSPC-derived human T cells positive selection and maturation.

To appropriately study human T cell development, model systems must be capable of recapitulating all stages of the thymopoiesis from the HSPC stage to the production of mature T cells. While current *in vitro* models can drive HSPCs to undergo T cell lineage commitment, the ultimate yield of single-positive CD4+ or CD8+ CD3+TCRab+ T cells via this approach remains poor. The thymus is essential for T-cell development. Artificial thymic organoids (ATOs) have been developed to study thymopoiesis

and generate T cells. Serum-free ATOs using human HSPCs efficiently produce diverse, functional T cells [26]. The T cells generated using these ATO-based systems were found to exhibit a diverse TCR repertoire, a range of naïve phenotypes, and TCR-mediated functionality, giving rise to antigen-specific cytotoxic activity and a near total absence of endogenous TCR V β expression, consistent with V β allelic exclusion. These ATOs thus represent a valuable tool for studying human T cell development and utilizing stem cells in the production of engineered T cell therapeutics.

In an effort to overcome the challenges associated with artificially replicating the distinct thymic ECM when generating thymic organoids, Decellularized thymic scaffolds repopulated with thymic epithelial cells can also support lymphocyte development [66]. As thymic transplantation in athymic patients with rare medical conditions is hampered by aberrant T cell education and immunological dysfunction following transplantation, Valente et al. [67] posited that organoids may represent a valuable tool for restoring normal thymic functionality in a more appropriately regulated manner. Consistently, the implantation of a microporous annealed particle scaffold that had been seeded using thymic stromal cells into athymic mice was sufficient to facilitate T cell repopulation within two weeks. Future extensions of these regenerative medicine approaches thus have the potential to modulate adaptive T cell responses in clinically relevant contexts.

These systems have applications in immunotherapy and modeling immune disorders. ATOs can generate antigen-specific T cells for therapy and model T-cell development defects [30]. In an RNA-seq analysis of their prepared M-ATO T cell populations, the authors confirmed them to be phenotypically identical to normal thymocyte populations. When generated using bone marrow derived from Rag-/- mice, these M-ATOs were able to recapitulate normal thymopoiesis. When generated using defined HSC and lymphoid progenitor populations from the bone marrow and thymus, M-ATO systems could further be utilized to track the differentiation of T cells in a longitudinal manner. The deposition of individual HSCs into these M-ATOs was sufficient to give rise to a full repertoire of T cell clones largely recapitulating endogenous thymic biology. As such, these M-ATO platform-based systems represent promising tools for the reproducible study of clonal thymopoiesis. Moreover, human HSPCs can potentially be employed together with ATO systems to produce naïve antigen-specific engineered

T cells in a simple, scalable, and reproducible manner, thus allowing researchers to readily study human T cell development and engineered T cell therapeutic tools. Reconstituting the full complexity of the thymic stroma, including its spatial organization and role in central tolerance, remains a challenge. ATOs also need to support the complete spectrum of T-cell maturation more consistently.

6 The Adrenal Glands

The adrenal gland produces steroids and catecholamines. Organoids derived from human fetal adrenal tissue recapitulate the gland's dual cortical and medullary compartments and maintain age-specific steroidogenic programs [31]. This model is valuable for studying adrenal development and diseases like congenital adrenal hyperplasia. Modeling the adult adrenal cortex and its zonation, as well as adrenal tumors (e.g., pheochromocytoma, adrenocortical carcinoma), is an unmet need. Incorporating chronic stress hormone regulation *in vitro* is also a significant challenge.

7 The Pancreas

The primary endocrine functions of the pancreas are the regulation of blood glucose levels and digestive enzyme production. A wide range of pathological conditions, including diabetes mellitus and pancreatic cancer, can disrupt this normal tissue functionality, thereby seriously adversely affecting patient well-being. At present, there is a dearth of reliable approaches to the *in vitro* expansion of pancreatic samples in a manner that retains the characteristics of native tissue, thus limiting efforts to treat these debilitating diseases.

Normally in adult pancreatic tissue, Lgr5 is not expressed and Wnt signaling activity is inactive. Partial duct ligation (PDL), however, reportedly stimulates injury-induced Wnt signaling activation and Lgr5 upregulation, which promotes pancreatic duct regeneration [32]. Duct fragments derived from the murine pancreas can promote the expression of Lgr5 in RSPO1 culture systems, resulting in the production of budding organoids capable of undergoing five-fold weekly expansion for up to 440 weeks. Pancreatic organoids can also be generated from individual isolated duct cells, allowing for the clonal expansion of Lgr5-expressing progenitor cell populations. The resultant clonal pancreatic organoids can then be induced to undergo differentiation into ductal or endocrine cells following transplantation,

enhancing their potential utility.

For pancreatic cancer (PDAC), organoids derived from patient tumors preserve genomic alterations and tumor heterogeneity, serving as excellent platforms for drug screening and personalized medicine [33–35]. They have revealed insights into chemoresistance and tumor-stroma interactions.

Resected tumor tissues and biopsy samples can be used to readily generate pancreatic organoids which exhibit disease-related and ductal characteristics while being well-suited to surviving cryopreservation. When grown in defined media on a gel-based artificial ECM, these pancreatic cells can self-assemble into self-renewing organoids that exhibit genomic stability, properties consistent with those of the cells from which they were derived, in addition to differentiating into functional endocrine cells *in vivo*. The ability to modulate the genetic characteristics of these organoids has the potential to enable the reliable *in vitro* manipulation of adult stem cells in a manner conducive to regenerative medicine-based treatment strategies. In proteomic and transcriptional analyses of murine pancreatic organoids, researchers were able to identify key pathways and gene expression patterns that were dysregulated in the context of disease progression, underscoring the value of these organoids as an accessible model system for discovery research.

Approaches to promoting the expansion of pancreatic progenitor cells and the differentiation thereof into β cells capable of secreting insulin would be of clear clinical value. Greggio et al. [36] utilized Matrigel to establish a 3D culture system enabling the reliable expansion of dissociated murine embryonic pancreatic progenitor cells. Pancreatic organoids model both endocrine (islets) and exocrine (ductal) diseases. For diabetes, hPSC-derived islet-like organoids can secrete insulin in response to glucose and ameliorate diabetes in mice [37–39]. These "pancreatoids" hold promise for cell therapy and disease modeling. A major hurdle is creating fully functional islets with correct alpha, beta, delta, and PP cell proportions and coordinated hormone release. For cancer models, incorporating the dense fibrotic stroma characteristic of PDAC is critical for accurate drug response prediction.

8 The Ovaries

Ovarian organoids are used to study development and cancer. hESC-derived ovarian follicle-like structures model early oogenesis [40]. By focusing on two germ cell-specific RNA-binding proteins that regulate

meiotic entry and a loss of pluripotency (BOULE and DAZL), authors were able to utilize recombinant human GDF9 and BMP15 to upregulate these proteins, generating meiotic germ cells that could be further induced to produce ovarian FLCs consisting of a central oocyte like cell population and an outer granulosa-like cell layer. These characteristics are indicative of the ability of these cells to undergo self-assembly into an organized organoid amenable to use for studying the mechanisms shaping hPSC differentiation into late primordial germ cells, meiotic germ cells, and ovarian follicles.

For ovarian cancer (OC), a lethal malignancy often diagnosed late, patient-derived organoid biobanks encompassing all subtypes have been established [41]. These OC organoids exhibited the genomic and histological characteristics from their parental lesions, presenting with both inter- and intra-donor heterogeneity that was amenable to genetic modification. The authors utilized these OC organoids for drug screening, assessing the responses of different subtypes to platinum-based chemotherapy. This approach served as a means to study the development of chemoresistance upon disease recurrence. Prepared OC organoids were also amenable to xenografting such that they can be used to assess drug sensitivity *in vivo*. Together, these findings demonstrate the promise of these tumor-derived organoids as tools for individualized treatment.

These recapitulate tumor heterogeneity and enable high-throughput drug screening. Studies using resistant OC organoids have identified pathways like Aurora-A/SOX8/FOXK1 driving chemoresistance [42]. These authors determined that Aurora-A was able to promote resistance to cisplatin treatment by modulating glucose metabolism and cellular senescence via the SOX8/FOXK1 axis in OC. These results underscore a potential avenue to reversing chemoresistance in this deadly cancer type. Genetic editing in fallopian tube organoids has modeled the origin of high-grade serous ovarian cancer. [43] utilized a CRISPR-Cas9 genetic editing strategy to introduce mutations into genes frequently found to be mutated in HG-SOC including PTEN, NF1, BRCA1, and TP53. The results of this analysis supported the potential for both the OSE and fallopian tubes to give rise to these high-grade malignancies. The resultant mutated oviductal organoids underwent more rapid *in vitro* expansion and *in vivo* malignant tumor formation following transplantation. Modeling

the complex ovarian follicle maturation cycle and the hormone-responsive tumor microenvironment (e.g., involving ovarian stroma) *in vitro* remains difficult. Long-term culture of normal ovarian epithelial organoids is also challenging.

9 The Testes

A variety of strategies have been developed for the *in vitro* modeling of the testicular microenvironment, with these models having been employed for studies of the development and physiology of the testicular compartment. However, further work is needed to generate an *in vitro* system capable of reliably assessing testicular organogenesis and the spermatogonial stem-cell (SSC) niche. Testicular organoids offer a robust tool to study the underlying biology of these systems, and a few have been described to date for use in the context of reproductive biology and medicine.

Testicular organoids model spermatogenesis and the spermatogonial stem cell (SSC) niche. Co-culture systems with Sertoli and Leydig cells support germ cell differentiation and can be used for toxicity testing [44, 45]. iPSCs transplanted into an azoospermic testis niche can differentiate into SSC-like cells [46]. These results indicate that iPSCs can home to the testicular niche, with the local microenvironment playing an essential role in inducing their differentiation into SSCLCs.

Achieving complete, sustained spermatogenesis leading to haploid sperm production *in vitro* is the ultimate but unrealized goal. Reproducing the intricate cytoarchitecture of the seminiferous tubule is a major technical hurdle.

10 Current Challenges and Future Directions

Despite rapid progress, significant challenges impede the full potential of endocrine organoids.

1. Lack of Vascularization and Innervation: Most endocrine organoids lack functional blood vessels and nerves. This is a critical limitation because endocrine organs rely on vasculature for systemic hormone delivery and on neural inputs for regulation (e.g., adrenal medulla). Integrating endothelial and neural cells, or using microfluidic devices to provide perfusion, is a top priority.
2. Recapitulating Systemic Feedback Loops: Endocrine function is governed by body-wide feedback axes (e.g., HPA, HPT). Isolated

organoids cannot replicate this. Connecting multiple endocrine organoids on a chip to mimic inter-gland communication is a promising future direction.

3. Maturity and Long-Term Stability: Many PSC-derived organoids resemble fetal rather than adult tissues. Achieving full functional maturation and maintaining hormone secretion stability over months in culture is challenging. Optimizing differentiation protocols and niche factors is essential.
4. Tumor Microenvironment Complexity: Cancer organoids often lack the native tumor microenvironment (TME), including immune cells, cancer-associated fibroblasts, and vasculature. Co-culture systems incorporating these elements are needed for more predictive drug testing.
5. Standardization and Scalability: Protocol variability between labs hinders comparison. Automated, high-throughput production and characterization platforms will be crucial for drug discovery and biobanking.
6. Ethical and Regulatory Pathways: For therapeutic applications (e.g., islet organoids), clear regulatory frameworks for safety, efficacy, and standardization need to be developed alongside the technology.

11 Conclusions

Organoid technology has revolutionized the modeling of endocrine diseases, offering unprecedented insights into human physiology and pathology that are not achievable with traditional 2D cultures or animal models. From elucidating the developmental origins of congenital hypopituitarism to enabling personalized drug screening for thyroid and ovarian cancers, endocrine organoids are proving to be indispensable tools. They bridge the gap between simplistic cell cultures and complex *in vivo* systems, providing a patient-relevant platform for mechanistic studies, drug discovery, and regenerative medicine strategies.

The field is now moving beyond descriptive modeling towards solving fundamental biological questions and addressing clinical needs. The integration of bioengineering, such as organ-on-a-chip technology and 3D bioprinting, with advanced molecular profiling, will drive the development of next-generation organoids that are more

vascularized, functional, and physiologically integrated. Overcoming the current challenges of standardization, scalability, and recapitulation of systemic interactions will be key to translating organoid research into tangible clinical benefits, such as personalized treatment predictions and novel cell therapies for endocrine disorders. In conclusion, endocrine disease organoids represent a dynamic and powerful paradigm, poised to accelerate our understanding and treatment of a wide spectrum of endocrine conditions.

Data Availability Statement

Not applicable.

Funding

This work was supported without any funding.

Conflicts of Interest

The authors declare no conflicts of interest.

AI Use Statement

The authors declare that no generative AI was used in the preparation of this manuscript.

Ethical Approval and Consent to Participate

Not applicable.

References

- [1] Rheinwald, J. G., & Green, H. (1975). Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells. *Cell*, 6(3), 331–343. [\[CrossRef\]](#)
- [2] Ehrmann, R. L., & Gey, G. O. (1956). The growth of cells on a transparent gel of reconstituted rat-tail collagen. *Journal of the National Cancer Institute*, 16(6), 1375–1403. [\[CrossRef\]](#)
- [3] Orkin, R. W., Gehron, P., McGoodwin, E. B., & Martin, G. R. (1977). A murine tumor producing a matrix of basement membrane. *The Journal of Experimental Medicine*, 145(1), 204–220. [\[CrossRef\]](#)
- [4] Harrison, R. G., Greenman, M. J., Mall, F. P., & Jackson, C. M. (1907). Observations of the living developing nerve fiber. *The Anatomical Record*, 1(5), 116–128. [\[CrossRef\]](#)
- [5] Michalopoulos, G., & Pitot, H. C. (1975). Primary culture of parenchymal liver cells on collagen membranes: morphological and biochemical observations. *Experimental cell research*, 94(1), 70–78. [\[CrossRef\]](#)
- [6] Barcellos-Hoff, M. H., Aggeler, J., Ram, T. G., & Bissell, M. J. (1989). Functional differentiation and alveolar morphogenesis of primary mammary cultures on reconstituted basement membrane. *Development*, 105(2), 223–235. [\[CrossRef\]](#)
- [7] Petersen, O. W., Rønnow-Jessen, L., Howlett, A. R., & Bissell, M. J. (1992). Interaction with basement membrane serves to rapidly distinguish growth and differentiation pattern of normal and malignant human breast epithelial cells. *Proceedings of the National Academy of Sciences of the United States of America*, 89(19), 9064–9068. [\[CrossRef\]](#)
- [8] Sato, T., Vries, R. G., Snippert, H. J., van de Wetering, M., Barker, N., Stange, D. E., ... & Clevers, H. (2009). Single Lgr5 stem cells build crypt-villus structures *in vitro* without a mesenchymal niche. *Nature*, 459(7244), 262–265. [\[CrossRef\]](#)
- [9] Eiraku, M., Takata, N., Ishibashi, H., Kawada, M., Sakakura, E., Okuda, S., ... & Sasai, Y. (2011). Self-organizing optic-cup morphogenesis in three-dimensional culture. *Nature*, 472(7341), 51–56. [\[CrossRef\]](#)
- [10] Malespin, M., & Nassri, A. (2019). Endocrine diseases and the liver: An update. *Clinics in Liver Disease*, 23(2), 233–246. [\[CrossRef\]](#)
- [11] Suga, H., Kadoshima, T., Minaguchi, M., Ohgushi, M., Soen, M., Nakano, T., ... & Sasai, Y. (2011). Self-formation of functional adenohypophysis in three-dimensional culture. *Nature*, 480(7375), 57–62. [\[CrossRef\]](#)
- [12] Matsumoto, R., & Takahashi, Y. (2021). Human pituitary development and application of iPSCs for pituitary disease. *Cellular and Molecular Life Sciences*, 78(5), 2069–2079. [\[CrossRef\]](#)
- [13] Yamamoto, M., Iguchi, G., Takeno, R., Okimura, Y., Sano, T., Takahashi, M., ... & Takahashi, Y. (2011). Adult combined GH, prolactin, and TSH deficiency associated with circulating PIT-1 antibody in humans. *Journal of Clinical Investigation*, 121(1), 113–119. [\[CrossRef\]](#)
- [14] Bando, H., Iguchi, G., Fukuoka, H., Yamamoto, M., Hidaka-Takeno, R., Okimura, Y., ... & Takahashi, Y. (2014). Involvement of PIT-1-reactive cytotoxic T lymphocytes in anti-PIT-1 antibody syndrome. *The Journal of Clinical Endocrinology & Metabolism*, 99(9), E1744–E1749. [\[CrossRef\]](#)
- [15] Kanie, K., Bando, H., Iguchi, G., Fujita, Y., Odake, Y., Yoshida, K., ... & Takahashi, Y. (2019). Pathogenesis of Anti-PIT-1 antibody syndrome: PIT-1 presentation by HLA class I on anterior pituitary cells. *Journal of the Endocrine Society*, 3(11), 1969–1978. [\[CrossRef\]](#)
- [16] Kurmann, A. A., Serra, M., Hawkins, F., Rankin, S. A., Mori, M., Astapova, I., ... & Kotton, D. N. (2015). Regeneration of thyroid function by transplantation of differentiated pluripotent stem cells. *Cell Stem Cell*, 17(5), 527–542. [\[CrossRef\]](#)

[17] Antonica, F., Kasprzyk, D. F., Opitz, R., Iacovino, M., Liao, X.-H., Dumitrescu, A. M., ... & Costagliola, S. (2012). Generation of functional thyroid from embryonic stem cells. *Nature*, 491(7422), 66–71. [\[CrossRef\]](#)

[18] Chen, D., Tan, Y., Li, Z., Zhang, X., & Liu, Z. (2021). Organoid cultures derived from patients with papillary thyroid cancer. *The Journal of Clinical Endocrinology & Metabolism*, 106(5), 1410–1426. [\[CrossRef\]](#)

[19] Samimi, H., Atlasi, R., Parichehreh-Dizaji, S., Sadeghi, S., Bigham-Sadegh, A., & Ochs, M. (2021). A systematic review on thyroid organoid models: time-trend and its achievements. *American Journal of Physiology-Endocrinology and Metabolism*, 320(3), E581–E590. [\[CrossRef\]](#)

[20] Rousanne, M. C., Gogusev, J., Hory, B., Duchambon, P., Souberbielle, J. C., Nabarra, B., ... & Drucke, T. B. (1998). Persistence of Ca²⁺-sensing receptor expression in functionally active, long-term human parathyroid cell cultures. *Journal of Bone and Mineral Research*, 13(3), 354–362. [\[CrossRef\]](#)

[21] Zeng, L., Zou, Q., Huang, P., Zhang, Y., Shi, K., Wang, Y., ... & Hou, Z. (2021). Inhibition of autophagy with Chloroquine enhanced apoptosis induced by 5-aminolevulinic acid-photodynamic therapy in secondary hyperparathyroidism primary cells and organoids. *Biomedicine & Pharmacotherapy*, 142, 111994. [\[CrossRef\]](#)

[22] Ridgeway, R. D., Hamilton, J. W., & MacGregor, R. R. (1986). Characteristics of bovine parathyroid cell organoids in culture. *In Vitro Cellular & Developmental Biology*, 22(2), 91–99. [\[CrossRef\]](#)

[23] Ritter, C. S., Slatopolsky, E., Santoro, S., & Brown, A. J. (2004). Parathyroid cells cultured in collagen matrix retain calcium responsiveness: Importance of three-dimensional tissue architecture. *Journal of Bone and Mineral Research*, 19(3), 491–498. [\[CrossRef\]](#)

[24] Zhang, P., Zhang, H., Dong, W., Wang, Z., Qin, Y., Wu, C., & Dong, Q. (2020). Differentiation of Rat Adipose-Derived Stem Cells into Parathyroid-Like Cells. *International Journal of Endocrinology*, 2020(1), 1860842. [\[CrossRef\]](#)

[25] Chung, B., Montel-Hagen, A., Ge, S., Blumberg, G., Kim, K., Klein, S., ... & Crooks, G. M. (2014). Engineering the human thymic microenvironment to support thymopoiesis *in vivo*. *Stem Cells*, 32(9), 2386–2396. [\[CrossRef\]](#)

[26] Seet, C. S., He, C., Bethune, M. T., Li, S., Chick, B., Gschweng, E. H., ... & Crooks, G. M. (2017). Generation of mature T cells from human hematopoietic stem and progenitor cells in artificial thymic organoids. *Nature Methods*, 14(5), 521–530. [\[CrossRef\]](#)

[27] Anderson, G., Jenkinson, E. J., Moore, N. C., & Owen, J. J. T. (1993). MHC class II-positive epithelium and mesenchyme cells are both required for T-cell development in the thymus. *Nature*, 362(6415), 70–73. [\[CrossRef\]](#)

[28] Plum, J., De Smedt, M., Defresne, M. P., Leclercq, G., & Vandekerckhove, B. (1994). Human CD34+ fetal liver stem cells differentiate to T cells in a mouse thymic microenvironment. *Blood*, 84(5), 1587–1593. [\[CrossRef\]](#)

[29] Poznansky, M. C., Evans, R. H., Foxall, R. B., Olszak, I. T., Piascik, A. H., Hartman, K. E., ... & Scadden, D. T. (2000). Efficient generation of human T cells from a tissue-engineered thymic organoid. *Nature Biotechnology*, 18(7), 729–734. [\[CrossRef\]](#)

[30] Montel-Hagen, A., Sun, V., Casero, D., Tsai, S., Riviera, J., Bredemeyer, A., ... & Crooks, G. M. (2020). In vitro recapitulation of murine thymopoiesis from single hematopoietic stem cells. *Cell Reports*, 33(4), 108320. [\[CrossRef\]](#)

[31] Poli, G., Sarchielli, E., Guasti, D., Benvenuti, S., Ballerini, L., Mazzanti, B., ... & Morelli, A. (2019). Human fetal adrenal cells retain age-related stem- and endocrine-differentiation potential in culture. *The FASEB Journal*, 33(2), 2263–2277. [\[CrossRef\]](#)

[32] Huch, M., Bonfanti, P., Boj, S. F., Sato, T., Loomans, C. J. M., van de Wetering, M., ... & Clevers, H. (2013). Unlimited *in vitro* expansion of adult bi-potent pancreas progenitors through the Lgr5/R-spondin axis. *The EMBO Journal*, 32(20), 2708–2721. [\[CrossRef\]](#)

[33] Boj, S. F., Hwang, C. I., Baker, L. A., Chio, I. I. C., Engle, D. D., Corbo, V., ... & Tuveson, D. A. (2015). Organoid models of human and mouse ductal pancreatic cancer. *Cell*, 160(1–2), 324–338. [\[CrossRef\]](#)

[34] Broutier, L., Andersson-Rolf, A., Hindley, C. J., Boj, S. F., Clevers, H., Koo, B.-K., & Huch, M. (2016). Culture and establishment of self-renewing human and mouse adult liver and pancreas 3D organoids and their genetic manipulation. *Nature Protocols*, 11(9), 1724–1743. [\[CrossRef\]](#)

[35] Huang, L., Holtzinger, A., Jagan, I., BeGora, M., Lohse, I., Ngai, N., ... & Muthuswamy, S. K. (2015). Ductal pancreatic cancer modeling and drug screening using human pluripotent stem cell- and patient-derived tumor organoids. *Nature Medicine*, 21(11), 1364–1371. [\[CrossRef\]](#)

[36] Greggio, C., De Franceschi, F., Figueiredo-Larsen, M., Gobaa, S., Ranga, A., Semb, H., ... & Grapin-Botton, A. (2013). Artificial three-dimensional niches deconstruct pancreas development *in vitro*. *Development*, 140(21), 4452–4462. [\[CrossRef\]](#)

[37] Kim, Y., Kim, H., Ko, U. H., Oh, Y., Lim, A., Sohn, J. W., ... & Lee, M.-A. (2016). Islet-like organoids derived from human pluripotent stem cells efficiently function in the glucose responsiveness *in vitro* and *in vivo*. *Scientific Reports*, 6(1), 35145. [\[CrossRef\]](#)

[38] Wang, W., Jin, S., & Ye, K. (2017). Development of islet organoids from H9 human embryonic stem cells in

biomimetic 3D scaffolds. *Stem Cells and Development*, 26(6), 394–404. [\[CrossRef\]](#)

[39] Scavuzzo, M. A., Yang, D., & Borowiak, M. (2017). Organotypic pancreatoids with native mesenchyme develop Insulin producing endocrine cells. *Scientific Reports*, 7(1), 10810. [\[CrossRef\]](#)

[40] Jung, D., Xiong, J., Ye, M., Qin, X., Li, L., Cheng, S., ... & Liu, H. (2017). In vitro differentiation of human embryonic stem cells into ovarian follicle-like cells. *Nature Communications*, 8(1), 15680. [\[CrossRef\]](#)

[41] Kopper, O., de Witte, C. J., Löhmannsaaar, K., Valle-Inclan, J. E., Hami, N., Kester, L., ... & Clevers, H. (2019). An organoid platform for ovarian cancer captures intra- and interpatient heterogeneity. *Nature Medicine*, 25(5), 838–849. [\[CrossRef\]](#)

[42] Sun, H., Wang, H., Wang, X., Aoki, Y., Wang, X., Yang, Y., ... & Lu, Z. (2020). Aurora-A/SOX8/FOXK1 signaling axis promotes chemoresistance via suppression of cell senescence and induction of glucose metabolism in ovarian cancer organoids and cells. *Theranostics*, 10(15), 6928–6945. [\[CrossRef\]](#)

[43] Löhmannsaaar, K., Kopper, O., Korving, J., Begthel, H., Vreuls, C. P. H., van Es, J. H., & Clevers, H. (2020). Assessing the origin of high-grade serous ovarian cancer using CRISPR-modification of mouse organoids. *Nature Communications*, 11(1), 2660. [\[CrossRef\]](#)

[44] Pendergraft, S. S., Sadri-Ardekani, H., Atala, A., & Bishop, C. E. (2017). Three-dimensional testicular organoid: a novel tool for the study of human spermatogenesis and gonadotoxicity *in vitro*. *Biology of Reproduction*, 96(3), 720–732. [\[CrossRef\]](#)

[45] Alves-Lopes, J. P., Söder, O., & Stukenborg, J.-B. (2017). Testicular organoid generation by a novel *in vitro* three-layer gradient system. *Biomaterials*, 130, 76–89. [\[CrossRef\]](#)

[46] Rahmani, F., Movahedin, M., Mazaheri, Z., & Soleimani, M. (2019). Transplantation of mouse iPSCs into testis of azoospermic mouse model: *in vivo* and *in vitro* study. *Artificial Cells, Nanomedicine, and Biotechnology*, 47(1), 1585–1594. [\[CrossRef\]](#)

[47] Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., Waknitz, M. A., Swiergiel, J. J., Marshall, V. S., & Jones, J. M. (1998). Embryonic stem cell lines derived from human blastocysts. *Science*, 282(5391), 1145–1147. [\[CrossRef\]](#)

[48] Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., & Yamanaka, S. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. *Cell*, 131(5), 861–872. [\[CrossRef\]](#)

[49] Aviñor, Y., Sagi, I., & Benvenisty, N. (2016). Pluripotent stem cells in disease modelling and drug discovery. *Nature Reviews Molecular Cell Biology*, 17(3), 170–182. [\[CrossRef\]](#)

[50] Dincer, Z., Piao, J., Niu, L., Ganat, Y., Kriks, S., Zimmer, B., ... & Studer, L. (2013). Specification of functional cranial placode derivatives from human pluripotent stem cells. *Cell Reports*, 5(5), 1387–1402. [\[CrossRef\]](#)

[51] Ozone, C., Suga, H., Eiraku, M., Kadoshima, T., Yonemura, S., Takata, N., ... & Matsumoto, R. (2016). Functional anterior pituitary generated in self-organizing culture of human embryonic stem cells. *Nature Communications*, 7, 10351. [\[CrossRef\]](#)

[52] Ogawa, K., Suga, H., Ozone, C., Sakakibara, M., Ando, N., Ikeda, H., ... & Arima, H. (2018). Vasopressin-secreting neurons derived from human embryonic stem cells through specific induction of dorsal hypothalamic progenitors. *Scientific Reports*, 8(1), 3615. [\[CrossRef\]](#)

[53] Sterneckert, J. L., Reinhardt, P., & Schöler, H. R. (2014). Investigating human disease using stem cell models. *Nature Reviews Genetics*, 15(9), 625–639. [\[CrossRef\]](#)

[54] Ferran, J. L., Puelles, L., & Rubenstein, J. L. (2015). Molecular codes defining rostrocaudal domains in the embryonic mouse hypothalamus. *Frontiers in Neuroanatomy*, 9, 46. [\[CrossRef\]](#)

[55] Mortensen, A. H., Schade, V., Lamonerie, T., Camper, S. A., & Pfaeffle, R. W. (2015). Deletion of *OTX2* in neural ectoderm delays anterior pituitary development. *Human Molecular Genetics*, 24(4), 939–953. [\[CrossRef\]](#)

[56] Dateki, S., Fukami, M., Sato, N., Muroya, K., Adachi, M., & Ogata, T. (2008). *OTX2* mutation in a patient with anophthalmia, short stature, and partial growth hormone deficiency: Functional studies using the IRBP, HESX1, and POU1F1 promoters. *The Journal of Clinical Endocrinology & Metabolism*, 93(10), 3697–3702. [\[CrossRef\]](#)

[57] Iwama, S., Sugimura, Y., Kiyota, A., Kato, Y., Yasuda, Y., Suzuki, H., ... & Arima, H. (2015). Rabphilin-3A as a targeted autoantigen in lymphocytic infundibulo-neurohypophysitis. *The Journal of Clinical Endocrinology & Metabolism*, 100(7), E946–E954. [\[CrossRef\]](#)

[58] Bando, H., Iguchi, G., Fukuoka, H., Taniguchi, M., Yamamoto, M., Matsumoto, R., ... & Takahashi, Y. (2015). A diagnostic pitfall in IgG4-related hypophysitis: Infiltration of IgG4-positive cells in the pituitary of granulomatosis with polyangiitis. *Pituitary*, 18(5), 722–730. [\[CrossRef\]](#)

[59] Garon-Czmil, J., Petitpain, N., Rouby, F., Bay, P., Montastruc, F., & Salvo, F. (2019). Immune check point inhibitors-induced hypophysitis: A retrospective analysis of the French Pharmacovigilance database. *Scientific Reports*, 9(1), 19419. [\[CrossRef\]](#)

[60] Takuma, N., Sheng, H. Z., Furuta, Y., Ward, J. M., Sharma, K., Hogan, B. L., ... & Westphal, H. (1998). Formation of Rathke's pouch requires dual induction from the diencephalon. *Development*, 125(23), 4835–4840. [\[CrossRef\]](#)

[61] Suh, H., Gage, P. J., Drouin, J., & Camper, S. A.

(2002). Pitx2 is required at multiple stages of pituitary organogenesis: Pituitary primordium formation and cell specification. *Development*, 129(2), 329–337. [\[CrossRef\]](#)

[62] Zhu, X., Gleiberman, A. S., & Rosenfeld, M. G. (2007). Molecular physiology of pituitary development: Signaling and transcriptional networks. *Physiological Reviews*, 87(3), 933–963. [\[CrossRef\]](#)

[63] Lancaster, M. A., & Knoblich, J. A. (2014). Organogenesis in a dish: modeling development and disease using organoid technologies. *Science*, 345(6194), 1247125. [\[CrossRef\]](#)

[64] McCracken, K. W., Catá, E. M., Crawford, C. M., Sinagoga, K. L., Schumacher, M., Rockich, B. E., ... & Wells, J. M. (2014). Modelling human development and disease in pluripotent stem-cell-derived gastric organoids. *Nature*, 516(7531), 400–404. [\[CrossRef\]](#)

[65] Ma, R., Latif, R., & Davies, T. F. (2015). Human embryonic stem cells form functional thyroid follicles. *Thyroid*, 25(4), 455–461. [\[CrossRef\]](#)

[66] Tajima, A., Pradhan, I., Geng, X., Trucco, M., & Fan, Y. (2016). Construction of thymus organoids from decellularized thymus scaffolds. In *Organoids: Stem Cells, Structure, and Function* (pp. 33-42). New York, NY: Springer New York. [\[CrossRef\]](#)

[67] Valente, L. A., Begg, L. R., Anderson, A. R., Segura, T., Rudisill, A., Kurtzberg, J., & Filiano, A. J. (2020). Developing a novel thymus organoid as a cell therapy to correct autoimmunities. *Cytotherapy*, 22(5), S138. [\[CrossRef\]](#)

Jiayu Liu received the Bachelor's degree in Clinical Medicine from Shanxi Medical University, China, in 2025. (Email: 3260607591@qq.com)

Peiting Li received the Ph.D degree in Clinical Medicine from Central South university China, in 2025. (Email: lipeiting@csu.edu.cn)