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Abstract

The integration of renewable energy sources (RES)
into modern power systems is transforming the
traditional reliance on synchronous generators,
leading to a greener energy portfolio while posing
significant challenges to system stability due to
reduced inertia. Diminished system inertia results
in elevated rates of change of frequency (RoCoF)
and larger frequency deviations, potentially
culminating in blackouts. Accurate inertia
estimation is paramount for implementing virtual
inertia control and enhancing frequency support
services.  This study investigates curve-fitting
techniques, with a focus on polynomial fitting, for
inertia estimation. Simulations are conducted on a
modified IEEE 9-bus system incorporating dynamic
models. Transient events involve 10% and 20%
load increases at t = 10 s. Results demonstrate that
fifth-order polynomials yield the minimum errors
(e.g., 9.61% for the 10% load case), with robustness
to data loss maintaining errors below 2% for up to
20-30% data reduction.
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1 Introduction

The modern power system, traditionally reliant on
synchronous generators, is increasingly incorporating
renewable energy sources (RES), such as wind and
solar power [1]. While RES contribute to a greener
energy portfolio, they pose challenges to system
inertia, which is essential for maintaining stability [2].
Diminished system inertia results in higher rates of
change of frequency (RoCoF) and larger frequency
deviations from the nominal value, potentially leading
to system blackouts [3]. Accurate inertia estimation
is crucial for implementing virtual inertia control and
enhancing frequency support services [4]. Low-inertia
systems experience amplified RoCoF and larger
frequency nadirs, increasing the risk of cascading
failures [6].

Inertia estimation methods are classified into
model-based, measurement-based, and data-driven
approaches. Model-based techniques often
struggle with real-time accuracy in dynamic RES
environments [7]. Measurement-based methods are
sensitive to noise [8]. Data-driven methods require
extensive training data [9]. Curve-fitting techniques,
particularly polynomial fitting, offer simplicity in
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approximating frequency trajectories and estimating
RoCoF [10]. However, their sensitivity to polynomial
order and data length remains a challenge [11]; gaps
persist in the systematic evaluation of polynomial
order and data length on estimation accuracy. This
paper addresses the effects of these parameters under
load disturbances by simulating scenarios on the
modified IEEE 9-bus benchmark, evaluating errors,
and proposing enhancements for frequency stability.

The remainder of the paper is organized as follows:
Section 2 details the mathematical modeling and
methodology; Section 3 presents simulation results
and discussions; and Section 4 concludes with findings
and future scope.

2 Mathematical Modeling and Methodology

This section outlines the mathematical foundations
and procedural framework for estimating power
system inertia using curve-fitting techniques. It
draws on established power system dynamics models,
particularly the swing equation for frequency response
analysis, and applies polynomial curve fitting to
post-disturbance data. Simulations are conducted
on the modified IEEE 9-bus benchmark test system
to evaluate the method’s performance under various
conditions. The impact of polynomial order and data
length on estimation accuracy is emphasized, aligning
with recent advancements in inertia estimation for
renewable-integrated grids.

The frequency response of a power system to
disturbances is governed by the swing equation,
which describes the dynamic behavior of synchronous
generators in response to power imbalances. For an
equivalent synchronous generator representing the
system, the swing equation is expressed as:

2HyoS df
fo dt

where P, and P, are the total mechanical and electrical
active power in MW, respectively; fy is the nominal
frequency (typically 50 Hz or 60 Hz); f is the measured
system frequency in Hz; df /dt is the RoCoF in Hz/s;
Hgys is the system inertia constant in seconds; S is the
system base power in MVA; and D is the load damping
coefficient (per unit). This formulation captures the
inertial response during the initial transient phase
following a disturbance, such as a load change or
generator trip [1, 3].

Pp — P. — DAf (1)

Damping effects (D) can often be neglected during the
brief period immediately after a power mismatch [17],
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simplifying the equation for multi-machine systems

to:
2HsysS % B

=P, 2
T di (2)
For small perturbations around an operating point [5],
this can be linearized as:

2 HyeS dAS
fo dt

where AP represents the total power imbalance (MW)
during the transient. The system inertia Hsys for a
network with N synchronous generators is aggregated
as:

_Pe

= AP, — AP, = AP

(3)

Zij\il ;5
Hsys = T—<N o
> i1 Si
with H; and S; being the inertia constant (s) and rated
apparent power (MVA) of the i-th generator.

(4)

Assuming governor response lags (AP, ~ 0), (3)
simplifies to:

1 —foAP, 1 AP

Hys =55 “@r =35 w@am O
dt dt
Polynomial curve fitting is applied to % [16]:

A

A A Ay et A (6)
Jo

with the derivative yielding % = Ay, leading to:

AP
(7)

Hestimated = M

The polynomial order n critically affects accuracy.
Standard IEEE test systems are modified to incorporate
dynamic models [7]. The IEEE 9-bus system is
selected [18], with a base frequency of 50 Hz and base
power of 100 MVA. Step load increases (10% and 20%)
at t=10 s are simulated using PowerWorld Simulator
interfaced with MATLAB. The modified IEEE 9-bus
test system is shown in Figure 1. Error in inertia
estimated (Herror) is calculated as [5]:

Htrue — {lestimated

H true

Herror(%) = x 100

(8)
where Hiyye is the known aggregated inertia.
Simulation results and discussions are presented in
subsequent sections. The overall methodology is
summarized in Figure 2, which integrates simulation
data processing, disturbance identification, fitting,
and error calculation.
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Figure 1. Modified IEEE 9-Bus test system.
Table 1. Error (%) in the IEEE 9-Bus system.
Order of Polynomial 4th 5th 6th 7th 8th 9th
Estimation Error (10% Load Increase) 94.68 9.61 38.27 41.60 48.00 64.03
Estimation Error (20% Load Increase) 90.29 10.52 37.62 39.38 44.53 61.94

3 Results and Discussion

This section presents the outcomes of simulations
conducted on the modified IEEE 9-bus test system,
focusing on polynomial curve fitting for power system
inertia estimation. Results derive from time-domain
transient simulations using PowerWorld Simulator,
interfaced with MATLAB for data processing and
curve fitting via the Curve Fitting Toolbox. Step load
increases of 10% and 20% from the base load on the
largest load bus at t=10 s serve as disturbances, with
data collected over 100 s (approximately 250,000 points
per case). Frequency and power data are filtered
using a 50 ms moving average to mitigate noise, as
commonly applied in RoCoF estimation studies to
enhance accuracy [8]. Estimation errors are evaluated
under varying polynomial orders (fourth to ninth)
and data lengths, highlighting trends in accuracy and
robustness. Discussions integrate comparisons with
established literature on inertia and RoCoF estimation,

emphasizing implications for low-inertia grids with
high renewable penetration.

Simulations demonstrate the dynamic response of
the test system to load disturbances, capturing
frequency deviations at generator buses and power
output variations from synchronous machines. These
outcomes align with expected behaviors in power
systems, where reduced inertia exacerbates frequency
excursions and RoCoF, as noted in comprehensive
reviews of inertia estimation methods [2, 8]. The
system stabilizes around t=45 s post-disturbance,
consistent with governor and exciter response times in
IEEE models [7].

Frequency trajectories post-disturbance illustrate
the inertial response, with initial drops reflecting
power imbalances and subsequent recovery via
primary control. Polynomial fitting applied to these
curves derives RoCoF, showing improved accuracy
with higher orders, as supported by studies on
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Figure 2. Flow chart for inertia estimation by curve fitting.
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Figure 3. Frequency variation at bus 1 under 10% load
increase.

variable-order polynomials for frequency response
approximation [2, 5]. Figure 3 shows the frequency
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variation at Bus 1 under a 10% load increase,
indicating higher RoCoF for larger disturbances and
underscoring inertia’s role in limiting deviations [8].

Generator power outputs ramp up to compensate
for load increases, with initial surges reflecting
inertial contributions before governor action. This
behavior corroborates findings in inertia estimation
reviews, where power imbalance data enhances RoCoF
accuracy [3, 10]. Figure 4 shows the power variation
for generator 1 under a 10% load increase.
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Figure 4. Power variation for generator 1 under 10%
load increase.

The impact of polynomial order on inertia estimation
error is assessed using the swing equation-derived
(7), where errors exceed 100% at low orders due to
underfitting [15]. Polynomial orders from fourth
to ninth are tested, with errors calculated via (8).
Optimal performance occurs at the fifth order, aligning
with literature on avoiding overfitting in RoCoF
fitting [12, 14]. The fifth order yields minimum errors,
with higher orders indicating overfitting and lower
orders underfitting, as shown in Table 1 (true inertia:
IEEE 9-bus Hgys = 3.3617 s).

Data loss resilience is evaluated by simulating
measurement gaps common in PMU data [11]. Data
windows are reduced from full (1045 s) by 5 s
increments. Errors increase near-linearly, but fifth- to
seventh-order polynomials remain robust up to 20 s,
echoing findings in uncertainty analyses for varying
inertia [1, 11]. Errors for selected orders (fifth, sixth,
seventh) and loads are shown in Table 2.

Fifth-order polynomials optimize inertia estimation
(errors < 10%), balancing underfitting (low orders)
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Table 2. Error percentages due to data loss in the IEEE
9-Bus system.

Order Load 10-45s 15-45s 20-45s
5th 10% 9.61 40.61 59.15
5th 20% 10.52 37.91 47.57
6th 10%  38.27 38.27 31.59
6th 20%  37.62 39.62 31.66
7th 10%  41.60 33.97 77.99
7th 20%  39.38 35.75 78.43

and overfitting (high orders), as corroborated by
evaluations of polynomial methods in low-inertia
contexts [4, 5]. Higher orders increase computational
complexity without accuracy gains, making them
unsuitable for real-time applications [7]. Data loss
impacts are manageable up to 20-30% reduction
(< 50% error for fifth-order), supporting resilience
in noisy PMU environments [11]. These findings
advance curve-fitting techniques, with potential
extensions to machine learning-enhanced adaptive
orders [7, 13].

4 Conclusion

Polynomial curve fitting of fourth- to sixth-order

provides high accuracy and reliability for
inertia estimation, outperforming lower-order
approximations. Key findings from rigorous

simulations on the standardized IEEE 9-bus test
system include reduced estimation errors with higher
polynomial orders and resilience to data loss up to
20-30%. These results lay a foundation for enhancing
grid stability and frequency regulation in sustainable
power systems. A limitation is the assumption of
negligible damping. Future work could extend to
alternative fitting functions, Bayesian uncertainty
quantification, integration with machine learning for
adaptive order selection, and validation under high
renewable energy sources penetration scenarios.
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