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Abstract
Thiswork compared the effectiveness of theKalman
Filter and Moving Average Filter methods in
minimizing noise and improving the stability of
signal readings on a load-cell sensor simulation.
The two filtering methods were applied to process
the sensor data, to enhance both the precision and
stability of the signal readings. According to the
test results, the Kalman filter produced a lower
average error of 0.0236, compared to 0.0244 when no
filter was used, demonstrating its strong ability to
reduce noise and signal fluctuations. On the other
hand, the Moving Average Filter recorded a slightly
higher error of 0.0238. Although it effectively
smooths the signal, its performance is less reliable
when dealing with higher levels of interference.
Based on these findings, the Kalman Filter is
considered more suitable for applications that
require highly accurate and stable measurements,
while the Moving Average Filter may be sufficient
for environments with minimal noise.
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1 Introduction
In industrial control systems, accuracy and consistency
of analog signal measurements are essential, especially
when working with analog input devices. A common
example used in load detection is the load cell sensor,
which operates by translating variations in pressure
into electrical signals that can be quantified [1]. These
sensors are widely used in a variety of areas, including
industrial weighing systems, automated processes,
and quality assurance. To ensure the framework
of sensor-based measurement, maintain both signal
precision and consistency of the signal to be accurate
and stable during operation to generate reliable data.
However, the resulting signal often fluctuates due to
external factors, such as noise.

In this case, the signal fluctuations that occur can
reduce the effectiveness of the control system, so it is
important to apply a filter method that can increase the
stability of the signal reading. Thus, several filtering
approaches can be applied to improve the accuracy
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of the readings and minimize noise, such as in the
research conducted by Fambudi et al. [6] to study
the application of a Kalman filter for the readings of
the load cell sensor based on Siemens S7-1200 PLC.
The research shows that the Kalman filter successfully
reduces noise and increases the stability of the data
from the load cell sensor by optimizing the Q and R
values by observation first to get the right Q and R
values. The Kalman filter method has a very wide
application in various sensor applications to improve
reading accuracy and reduce noise. As in Zhang’s
paper [10], the article discusses the application of
the Kalman filter to improve the accuracy of very
precise temperature measurements in applications
for temperature measurements on spacecraft. This
research shows that the Kalman filter can improve the
resolution of temperature measurements much better
than the initial measurement. In addition, there is
research that uses a different filter method, namely
moving average. Chalifatullah et al. [5] implements
the moving average and Kalman filter on the wireless
odometer for information on motor vehicle service.
Moving Average Filter (MAF) is applied to reduce
the noise that occurs in accelerometer sensor readings.
The tests show that the MAF can smooth the data
and reduce measurement errors caused by mechanical
and electrical disturbances, with an average error of
1.81% in distance measurements. Although MAF
successfully reduces noise, the results are still better
using the Kalman filter, which gives a smaller error
of 0.80%. Several previous studies have shown the
application of filtering methods such as the Kalman
filter and moving average filter in various sensor
applications. Although not specific to load cell sensors,
these methods can be applied to improve the stability
of sensor readings, minimize noise, and produce more
accurate data.

According to the aforementioned literature review, this
research aims to apply and compare the Kalman and
moving average filter methods to minimize noise in
load cell sensor readings. These two methods will be
compared in terms of their effectiveness in reducing
signal fluctuations that can affect the accuracy of the
readings.

2 Related Work
This study implements an experiment that integrates
hardware and software. Therefore, this section will
discuss a detailed explanation of the hardware used,
including the Programmable Logic Controller (PLC)
and load cell sensor components. In the following

subsection, a detailed explanation of the software will
be provided, focusing specifically on the algorithms,
including the Kalman filter and the moving average
filter.

2.1 Programmable Logic Controller (PLC)
The Siemens S7-1200 PLC is an industrial control
apparatus utilized for the automation and regulation
of various processes within a system. A PLC serves
as an intermediary between the input and output
devices by receiving signals from the input devices,
such as sensors, switches, or buttons. This signal may
manifest itself as a voltage, current, or digital signal.
The PLC subsequently processes the incoming signals
in accordance with a predetermined set of instructions
articulated in a specific programming language, such
as a ladder diagram (LD), structured text diagram
(ST), or function block diagram (FBD). The PLC
utilizes this software to determine the processing
of input data for the operation of output devices,
including motors and other actuators [2]. Figure 1
illustrates the physical appearance of the PLC used in
this study.

Figure 1. PLC Siemens S7-1200 [6].

For this experiment, the Siemens Simatic S7-1200 CPU
1214C DC/DC/Rly was employed to acquire readings
from the loadcell sensor. The selection of this PLC
is based on its ability to convert and handle analog
signals, allowing further processing and analysis.
Detailed specifications for the PLC are provided in
Table 1.
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Table 1. The specification of PLC Siemens S7-1200.

Parameter Description

Type SIMANTIC S7-1200
Supply Voltage 24V DC
Load Voltage 24V DC
Input Current 500mA
Output Current 1600mA;Max. 5VDC for SM

and CM

2.2 Load cell sensor
A load cell sensor is a device that is used to measure
the force or load by converting mechanical changes,
such as pressure or force, into a measurable electrical
signal [3]. Its operating principle is based on a
strain gauge, a component that detects deformation
or mechanical stress in a material when subjected
to a load. When the load cell is given a load or
force, the material inside will change shape, causing a
change in resistance in the strain gauge. This resistance
change is then converted into an electrical signal, which
can be interpreted to calculate the magnitude of the
applied load [7]. In this way, the load cell can provide
measurement results. These sensors have found
extensive use in a range of applications, including in
weighing systems in industry, automation, and quality
control [9]. In practical applications, the readings
of the load cell sensor can be affected by external
factors such as mechanical vibrations, electromagnetic
interference, or fluctuation of the power supply.
Similar vibration-induced noise has been effectively
reduced using moving average filters in embedded
systems [7]. These issues may compromise both the
accuracy and stability of measurements in control
systems. Therefore, a filtering method is applied in
order to minimize the noise of the load cell sensor
readings. The load cell sensor utilized in this work is
depicted in Figure 2.

3 Methodology
A load cell sensor is employed and connected to a
Siemens S7-1200 PLC, which serves to capture and
convert analog input signals into digital data. The
data obtained are subsequently evaluated to assess
the efficacy of the two filtering techniques, specifically
the Kalman Filter and the Moving Average Filter, in
enhancing the stability of the signal output. In this
section, we will provide a more in-depth explanation
of both methodologies utilized in the software project.

Figure 2. Load cell sensor.

3.1 Kalman Filter
The Kalman Filter is an algorithm commonly used to
generate predictions of future values with reference to
previous values. This method operates through two
primary stages: prediction and correction. Initially,
the filter generates an initial estimate based on the
system model and existing data. This estimate is
then refined during the correction phase using new
data incoming from the measurement [8]. These
two processes are mathematically represented by the
following key equations. In the prediction stage, (1)
was used to define the prediction of the state, and to
calculate the prediction value of covariance, we can
use (2). Meanwhile, (3), (4), and (5) are calculations
to find the Kalman gain, the State Update, and the
Covariance Update, respectively.

x̂k|k−1 = x̂k−1|k−1 (1)

Pk|k−1 = Pk−1|k−1 +Q (2)

Kk = Pk|k−1(Pk|k−1 +Rk)
−1 (3)

x̂k|k = x̂k|k−1 +Kk(yk − x̂k|k−1) (4)

Pk = (1−Kk)Pk|k−1 (5)

In this context, x denotes the state variable, P
represents the covariance matrix of the state, Q
is the matrix that describes the process noise, H
serves as the measurement matrix, y indicates the
observed measurement, R refers to the covariance of
the measurement noise, and K stands for the Kalman
gain. Figure 3 shows the Kalman filter flow chart for
load cell data processing.
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Figure 3. Kalman Filter process.

3.2 Moving Average Filter
The moving average is a filtering technique employed
to smooth and refine data by computing the average
of a set of values over a specified time interval [4].
This filter operates by shifting a data window and
calculating the average when new data are introduced,
thus facilitating the computation of a new average and
aiding in noise reduction [9]. The moving average
formula is delineated as follows:

µm =

∑n
i=1 xi
n

(6)

From equation (6), it can be seen that µm is the average
result of the last n data used in each data shift. Each
time the calculation is performed, taking data from
points i, i-1, i-2,. . . , i-n+1. Over time, the calculation
window moves one point forward, replacing old data
with new data. Figure 4 shows the moving average
filter flowchart for load cell data processing as follows:

4 Experiments
This section examines the results of a simulation
experiment that compares the Kalman filter and
moving average filter methods using Matlab software.
The test data was acquired from a load cell connected
to a PLC S7-1200.

Figure 4. The flowchart of the mean average filter.

4.1 Data Acquisition
System testing is carried out as a process to obtain
data from the readings of the load cell sensor. Data
are obtained by connecting the load cell sensor to a
Siemens S7-1200 PLC using the ladder programming
language for sensor readings. In this process,
the NORM_X and SCALE_X functions are used to
normalize and adjust the range of input values received
by the sensor, as shown in Figure 5.

The data obtained from ladder programming are the
result of sensor readings. Figure 6 shows a sample
graph of the load cell sensor readings used in this
research as a simulation.

From the graph in Figure 6, the x-axis is the data
index, which represents the time or the measurement
sequence, while the y-axis is the voltage (V) generated
by the load cell sensor. The measurement signal
has a fairly variable voltage fluctuation; some parts
show larger and smaller changes. Fluctuating sensor
readings indicate the presence of external disturbances
such as noise, which can affect the stability of the
resulting signal. In this case, the application of filtering
methods can be carried out for further analysis.

4.2 Evaluation of Kalman Filter
Floating sensor readings indicate the presence of
external disturbances, such as noise, which can affect
the stability of the resulting signal. So, the Kalman
filter method is applied to improve and estimate the
reading data of the load cell sensor. In its application,
Kalman filter observation needs to be done first in
order to know the right Q and R values. Two important
parameters, namely the process covariance (Q) and
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Figure 5. Norm_X and Scale_X ladder diagram.

Figure 6. Sample sensor readings.

noise covariance (R), are determined by observation
using the original reading value, which is then entered
into software such as MATLAB for analysis and
adjustment of the optimal Q and R values.

The initial initialization of the Kalman Filter begins
with giving the values x = 0 and P = 1. The
x-value initialized with 0 describes the initial estimate
without information, while the P-value initialized
with 1 describes the initial uncertainty assumed in
the estimate. Then these values are entered into the
Kalman Filter calculation, as shown in Algorithm 1.

The findings of the initial observations of the Kalman
filter test are presented in Figure 7, with parameters
Q=1 and R=10. This indicates that the Kalman filter
closely approximates the actual data, as the readings of
the actual data and the filter output are nearly identical.

The outcomes of the subsequent observation are
illustrated in Figure 8, with Q=1 and R=100. The
Kalman estimate appears smoother; however, it is
somewhat divergent from the actual data.

Figure 9 displays the results of the Kalman filter
test, which was performed using the parameter

Algorithm 1: Kalman Filter Algorithm for Load
Cell Sensor Data Processing
Data: Sensor measurements array of length N
Result: Filtered sensor signal x_filtered
// Initialize Kalman Filter (with no prior

information)
x_est← 0;
; // Initial state estimate
P_est← 1;
; // Initial estimation uncertainty
// Set parameters (optimized via MATLAB

analysis)
Q← 1;
; // Process covariance
R← 10;
; // Measurement noise covariance
x_filtered← zeros(N, 1);
for i← 1 to N do

// Prediction step (time update)
x_pred← x_est;
P_pred← P_est + Q;
// Update step (measurement update)
vk ←measurements[i];
; // Noisy sensor reading
sk ← P_pred + R;
K← P_pred / sk;
; // Kalman gain
x_est← x_pred + K × (vk - x_pred);
; // State update
P_est← (1 - K) × P_pred;
; // Covariance update
x_filtered[i]← x_est;
; // Store filtered value

end

configuration Q=1 and R=1000. It can be seen from
the graph that the filter gradually smoothes out the
actual data and that the Kalman estimation results
grow flatter. This is the case despite the fact that the
filter value reading is increasingly away from the value
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Figure 7. Kalman Filter results with Q = 1 and R = 10.

Figure 8. Kalman Filter results with Q = 1 and R = 100.

of the sensor data that was first collected.

Figure 9. Kalman Filter results with Q = 1 and R = 1000.

According to the evaluation graphs that were

presented before, it is known that the values of Q =
1 and R = 100 produce the best possible outcomes
when the Kalman Filter is applied. It is possible for the
filter to generate estimates that are smoother and more
stable using these observation values. These estimates
are closer to the actual data without over-smoothing
the signal or moving away from the value that was
initially detected by the sensor. In the meantime, the
values of Q = 1 and R = 10 are extremely sensitive
to even the smallest amount of noise. On the other
hand, the values of Q = 1 and R = 1000 lead the
filter to smooth the data to an excessive degree, which
causes the filter to move further away from the actual
data. It may be concluded that the parameters Q = 1
and R = 100 are the most effective ones for creating
accurate and reliable readings in the field of sensor
signal processing.

4.3 Evaluation of Moving Average Filter
The moving average filter technique is utilized to
reduce load cell sensor reading data by employing
a sliding window of preceding data points to compute
the average. With each influx of fresh data, thewindow
is adjusted to compute a revised average. The data is
subsequently input intoMATLAB software for analysis
and window size modification. The software code for
this method is presented in Algorithm 2.

Figure 10 illustrates the evaluation results of the mean
average filter approach utilizing a window size of 5,
yielding low attenuation of data variations. Despite
the signal’s increased smoothness, data fluctuations
remain distinctly observable.

Figure 10. Moving Average result with Window Size=5.

Meanwhile, Figure 11 demonstrates the outcomes
of the simulation test for the mean average filter
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Algorithm 2:Moving Average Filter Algorithm for
Sensor Data Smoothing
Data: Raw sensor measurements array of length N
Result: Filtered sensor signal x_filtered
Input: Window size M (determined via MATLAB

analysis)
// Initialize with optimal window size

(empirically determined as 50)
M← 50 ; // Optimal window size for balance
between smoothing and accuracy

// Alternative window sizes tested: M=5
(light smoothing), M=20 (moderate), M=100+
(excessive smoothing)

x_filtered← zeros(N, 1);
for i← 1 to N do

// Handle initial phase when insufficient
data points available

if i < M then
x_filtered[i]←mean(measurements[1:i]);
; // Use all available data

end
// Apply moving average with full window

once sufficient data collected
else

// Extract the most recent M
measurements for averaging

window_data←measurements[i-M+1:i];
x_filtered[i]←mean(window_data);
; // Compute moving average

end
end

technique utilizing a window size of 20. The graph
indicates that the filter yields greater smoothing than
the graph with a window size of 5.

Furthermore, Figure 12 shows a graph of the results
of the mean average filter approach with a window
size = 50. The figure shows that the moving average is
more capable of smoothing, producing a more stable
filter, and minimizing interference more significantly.

Based on observations of the moving average filter
evaluation with various window sizes, it can be
concluded that the larger the window size, the
smoother the filtering results obtained, consistent with
findings that larger sample sizes improve stability
and accuracy in sensor measurements [3]. With a
window size of 50, the filter is effective in reducing
noise and producing a more stable signal, according
to actual data. A window size of 50 provides a good

Figure 11. Moving Average result with Window Size=20.

Figure 12. Moving Average result with Window Size=50.

balance between signal smoothing and maintaining
the actual data. If the window size is larger, for
example 100 or 200, the filter tends to smooth the signal
excessively. Therefore, a window size of 50 offers an
optimal balance between signal smoothing and data
accuracy, making it the most appropriate choice for
this experiment.

4.4 Comparative Analysis of Kalman and Moving
Average Filtering Techniques

This section presents a comparison between the
Kalman Filter and the Moving Average Filter in
terms of their performance in minimizing noise and
enhancing the consistency of sensor signal readings.
Both techniques are implemented on data acquired
from the load cell sensor. The evaluation focuses on
the error values produced by eachmethod and assesses
how effectively each approach reduces signal variation
and improves the precision of the measurements. The
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Figure 13. Comparison of Kalman and Moving Average Filters to load cell sensor readings.

objective of this study is to determine which filtering
technique provides better optimization of sensor signal
readings, thus enhancing the overall data quality in
applications that demand high precision and signal
stability. The comparative results derived from the
application of the Kalman Filter and the moving
average filter are presented in Figure 13.

Figure 13 displays the graph resulting from the
application of the Kalman Filter using Q = 1 and R
= 100, alongside the Moving Average Filter with a
window size of 50. The Kalman Filter, represented
by the blue line, produces a more refined signal that
closely follows the actual data, while still applying a
degree of smoothing to minimize noise. Meanwhile,
theMovingAverage Filtermarked in green also follows
the actual reading, but the signal is slightly away
from the actual value, indicating that it tends to
smooth the signal more overall. The original reading
value is shown in red, which shows the actual data
from the fluctuating load cell sensor. The next step
is to integrate the system on the load cell sensor
using a Siemens S7-1200 PLC, where these two filter
methods will be applied to compare their effectiveness
in optimizing the signal reading, with a set point of 5
kg as measurement reference.

Based on Table 2, the average value of the Kalman filter
error is smaller than the error without the filter and
the moving average filter. The Kalman filter has an
average error of 0.0236, which is a little less than the
0.0238 error produced by the moving average filter and
the 0.0244 error observed without any filtering. This

Table 2. Comparison of load cell reading error values with a
set point of 5kg.

Exp. Unfiltered (%) KF (%) MAF (%)
1 0.012 0.012 0.012
2 0.005 0.005 0.005
3 0.017 0.017 0.017
4 0.007 0.007 0.007
5 0.013 0.012 0.012
6 0.02 0.02 0.019
7 0.01 0.008 0.01
8 0.086 0.085 0.086
9 0.029 0.029 0.028
10 0.045 0.041 0.042

Average 0.0244 0.0236 0.0238

finding shows that the Kalman Filter is more effective
in reducing noise in measurements made at a set point
of 5 kg.

An average error of 0.0244 was recorded in the
unfiltered data, suggesting that, in the absence of any
filtering technique, the sensor signal is significantly
influenced by noise. This leads to unstable and
less reliable readings when measuring at the 5 kg
reference point. Meanwhile, the Kalman filter resulted
in a lower mean error of 0.0236, highlighting its
stronger performance in suppressing signal noise and
improving estimate accuracy. This method produces
more consistent data that align more closely with the
expected set point of 5 kg. In contrast, the moving
average filter recorded a slightly higher average error
of 0.0238, but still effectively reduced noise and
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provided stable readings at the same reference value.
Although it is marginally less precise than the Kalman
Filter, it continues to perform well in smoothing out
fluctuations in the sensor data.

Although the difference in performance between
the Kalman Filter and the Moving Average Filter is
relatively small, the Kalman Filter is more effective
in improving measurement accuracy and minimizing
noise at a set point of 5 kg. As a result, it proves
to be the most reliable approach for improving both
the accuracy and consistency of sensor measurements
compared to the moving average method or unfiltered
data.

5 Conclusion
Some limitations in this study include: the maximum
capacity of the load cell used is 30 kg, not focusing
on the mechanical calculations of the system but
focusing on the performance test of themoving average
filter and Kalman filter methods. The potential
development of this system can be directed by adding
a self-calibration feature to the load cell sensor so that
the reading accuracy can be maintained periodically
without requiring manual adjustments. Thus, this
innovation supports the automation of the calibration
process and reduces the dependence on operators. The
assessment results indicate that the Kalman Filter is
superior in enhancing the stability and accuracy of the
signal readings from the load cell sensor utilized for
simulation. The Kalman Filter, exhibiting an average
error of 0.0236, demonstrated superior efficacy in
noise reduction and signal fluctuation minimization
relative to the unfiltered condition, which yielded
an error of 0.0244. However, the moving average
filter exhibited a somewhat elevated average error
of 0.0238. Despite its commendable performance,
this filter exhibited reduced efficiency in managing
elevated noise levels. The Kalman Filter has shown
superior efficacy in enhancing measurement reliability,
making it a more appropriate option for applications
that require consistent and high-precision sensor
data.Consequently, the Kalman filter can be utilized
for an uncertain planning system, and to enhance the
accuracy of future system readings, we will employ
the extended Kalman filter.
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