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Abstract

This research pioneers the application of a diverse
set of advanced machine learning and optimization
methods, to predict the erodibility of lateritic soil
treated with cement and nanostructured quarry
fines, providing a groundbreaking, data-driven
approach that enhances traditional erosion
analysis techniques.  Traditional experimental
methods for erosion analysis are often complex
and resource-intensive; therefore, this research
focuses on developing predictive models using
Python. To build the machine learning and
optimization models, 121 data points were collected
from existing literature. The dataset includes
erodibility measurements of unsaturated lateritic
soil treated with local cement and enhanced with
nanostructured quarry fines. The study employs
Artificial Neural Networks (ANN), Random Forest
(RF), Support Vector Machine (SVM), XGBoost,
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CatBoost, and Particle Swarm Optimization (PSO)
to predict soil erodibility. The data was divided
into training (70%), testing (15%), and validation
(15%) sets for model development and evaluation.
Model performance was assessed using statistical
metrics such as R?, M.A.E.,, M.S.E., RM.S.E., and
M.A.P.E. The results indicated an R? value are
almost equal to 1 in training, testing, and validation
phases, and the M.A.P.E. values are below 3% for the
CatBoost, RF, XGB, SVM, and ANN models across
all three phases: training, testing, and validation.
The CatBoost, RF, XGB, SVM, and ANN models
are most accurate in predicting the erodibility.
Finally, relative importance showed that maximum
unit weight and hydrated cement are the most
influencing parameter in predicting the erodibility.
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1 Introduction

The detachment and movement of soil particles
are major contributors to environmental challenges,
particularly affecting pavement foundations and
erosion-prone sites worldwide. = The combined
impact of these watershed processes poses significant
threats to environmental stability and transportation
infrastructure. The inherent tendency of soil to
become detached and transported by raindrop impact
and surface runoff is referred to as erodibility
(Er). In erosion models and earthwork designs
aimed at mitigating erosion, higher E, values
indicate a greater vulnerability of subgrade or
foundation materials to erosion. Developing nations
are particularly affected by these issues, with
erosion control efforts demanding significant financial
resources. For instance, in India, the Ministry of
Environment, Forest and Climate Change, through
initiatives like the National Mission for a Green
India, allocates significant funding annually to tackle
environmental challenges and promote sustainable
land management. With land degradation from
erosion accelerating, extensive research has focused
on addressing this issue in developing regions.
Numerous studies have explored soil modification,
treatment, and stabilization techniques to improve
subgrade resilience and reduce soil vulnerability to
erosion. Despite these efforts, there has been limited
research on predicting erosion-related parameters,
such as soil erodibility, using advanced machine
learning techniques. This research aims to predict the
erodibility of unsaturated soil stabilized with a hybrid
cement mixture, combining rice husk ash activated
by hydrated lime and enhanced with nanostructured
quarry fines.

Random algorithms, inspired by nature’s processes
like genetics and survival of the fittest, are being used
more often to make engineering predictions. These
methods are gaining traction among researchers and
engineers due to their ability to address the non-linear
and intricate interactions within stabilized soil
particles in a soil matrix. The process begins with an
initial pool of candidate solutions, where less favorable
options are stochastically eliminated, and minor
random adjustments are introduced. This pool is then
iteratively refined to create each subsequent generation.
Such evolutionary computation techniques are highly
effective in delivering optimized solutions across
expansive domains, making them valuable for
predictive and analytical tasks in engineering.

Several computational approaches, often categorized
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as machine learning techniques, have been developed
to tackle non-linear challenges in complex systems.
These include artificial neural networks (ANN),
support vector machines (SVM), genetic programming
(GP), genetic algorithms (GA), and others. A detailed
exploration of growing use of artificial intelligence
(AI) in geotechnical engineering, analyzing 1,235
studies to assess its effectiveness in modeling complex
soil and rock behaviors by [1]. Their work offers a
conclusion is that, the ANNs are the most popular
method, used in 52% of cases, across nine key
areas like slope stability and tunneling, with success
tied to dataset quality and input choices. It offers
statistical insights and outlines future opportunities
and challenges for Al in the field. The study
conducted by [2] explores the application of ANNS,
machine learning (ML), deep learning (DL), and
ensemble learning (EL) for forecasting geotechnical
and geoenvironmental parameters, including soil
mechanics and rock behavior. Unlike prior studies,
it offers a unique, systematic comparison of all four
methods, analyzing their strengths and weaknesses
using a large dataset from Web of Science and Scopus,
visualized with VOS Viewer. The findings reveal ANN
as the most commonly applied technique, though EL
stands out for its superior predictive accuracy, helping
geotechnical engineers choose the best tools for reliable
solutions.

Genetic Programming (GP), a heuristic search method
inspired by natural selection, optimizes solutions by
evolving programs across generations. Its application
in geotechnical predictions has demonstrated
considerable potential. For instance, [3] illustrated the
efficacy of GP in predicting the compression index
of weak, highly plastic soils treated with multiple
binders, highlighting its capability to navigate complex
datasets and deliver precise outcomes. Similarly,
Artificial Neural Networks (ANNs), which are loosely
modeled on the neural structure of the human brain
with interconnected nodes, have become a cornerstone
of geotechnical modeling due to their ability to handle
nonlinear relationships efficiently. [4] emphasized
the superiority of ANNSs over conventional regression
methods, a finding corroborated by [5], who employed
ANNSs to predict compression and recompression
indices based on soil properties such as water content
and plasticity index. [6] further applied ANNSs to
assess soil durability via unconfined compressive
strength, identifying the plasticity index as a critical
influencing factor, while [7] utilized a Multi-Layer
Perceptron (MLP) variant of ANN to predict soil
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erodibility with high accuracy.

The study also explores hybrid approaches, such
as Evolutionary Polynomial Regression (EPR),
which combine the strengths of ANNs and
genetic algorithms for enhanced optimization.
[8] demonstrated this by developing hybridized
ANN models integrated with bio-inspired algorithms
(e.g., particle swarm optimization and monarch
butterfly optimization) to predict soil texture in Iran’s
Mazandaran Province, showing that these hybrids
outperformed standard ANN models trained with
backpropagation. [9] similarly advanced the field
by employing linear genetic programming (LGP)
and a hybrid LGP/simulated annealing (LGP/SA)
approach to predict stabilized soil properties,
including unconfined compressive strength (UCS)
and maximum dry density (MDD), underscoring the
influence of soil texture and particle size fractions.

Despite these advancements, the article identifies a
critical research gap: the scarcity of studies collectively
applying GP, ANN, and EPR to predict both the
erodibility and durability of bio-ash-stabilized soils.
To address this gap, the study investigates how
nanotextured bio-ashes—such as waste paper ash,
palm bunch ash, snail shell ash, quarry dust, and palm
kernel shell ash—affect the durability (volumetric
stability) and erosion resistance of unsaturated lateritic
soils [11]. Using predictor variables including
plasticity index, bio-ash proportions, and compressive
strength at various curing stages, the predictive
performances of GP, ANN, and EPR are compared
[12]. This novel integration of multiple influencing
parameters and techniques offers a fresh perspective,
enhancing the understanding of how these methods
can be tailored to specific geotechnical challenges [10].
Numerous applications are derived from geotechnical
engineering, as evidenced by studies on predicting
foundation bearing capacity [13], pile drivability
[14], the performance of skirted foundations [15],
forecasting seismic activity [16], and the interpretation
of cone penetration test data [19]. Research has also
extended to the prediction of friction angles [17],
the properties of fiber-reinforced concrete [21], and
the analysis of foundations on limited-thickness sand
layers [22].

In conclusion, this research provides a comprehensive
and innovative contribution to geotechnical
engineering by synthesizing established findings
with novel applications. It builds upon prior work,
such as the use of genetic algorithms for dry density

prediction, and extends the field by addressing
overlooked aspects of soil stabilization. The study
not only reinforces the efficacy of evolutionary
computational techniques but also sets the stage for
future investigations into their combined potential,
offering practical insights for engineers aiming to
enhance prediction accuracy in complex soil systems
[18, 20].

Recent advances (within the last two years) in
machine learning (ML) have demonstrated
its effectiveness in geotechnical and structural
engineering applications. [23] investigated the use of
optimized gradient boosting algorithms—including
PSO-enhanced XGBoost, CatBoost, and Light GBM—to
predict liquefaction-induced lateral spreading,
leveraging 6,704 observations from the 2011
Christchurch earthquake. Their findings revealed
that PSO-CatBoost achieved the highest predictive
accuracy, while PSO-LightGBM proved optimal for
resource-constrained systems, with SHAP analysis
providing critical insights into variable importance.
Similarly, [24] developed a novel PSO-CatBoost
framework to predict the compressive strength of
carbon fiber-reinforced polymer-confined concrete
(CFRP-CC), utilizing an extensive dataset of 916
experimental results from 105 studies (1991-2023).
Their model outperformed six benchmark ML
algorithms and empirical models, achieving an R?
of 0.9847, supported by SHAP and permutation
feature importance (PFI) for interpretability, and
included a practical graphical interface. Together,
these studies highlight the transformative potential
of hybrid ML-optimization techniques in improving
the accuracy and applicability of predictive models
for earthquake-induced hazards and advanced
construction materials.

2 Research Significance

Previous studies, such as [18, 20], have shown that
advanced machine learning techniques, including
ANNSs, SVM, and Random Forest Regression (RFR),
can effectively predict the erodibility of treated
unsaturated lateritic soil, achieving high accuracy
(R? > 0.95) and low error rates (MSE, RMSE, MAE,
MAPE). However, these approaches have limitations,
and emerging methods like CatBoost, XGBoost, and
Particle Swarm Optimization (PSO) offer potential for
even greater prediction accuracy.

This study applies six advanced machine learning
models: ANN, RF, XGBoost, SVM, CatBoost, and
PSO to predict the erodibility of chemically treated
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unsaturated lateritic soil. These models were trained
and validated using a dataset of 121 experimental data
points sourced from peer-reviewed literature. Selected
for their proven effectiveness in addressing complex
geotechnical engineering challenges, particularly in
modeling soil behavior under diverse conditions, these
models aim to improve the precision and reliability of
erodibility predictions. By leveraging these advanced
computational tools, this research seeks to advance
sustainable soil stabilization practices.

3 Machine learning and optimization models

This study leverages six advanced machine learning
and optimization models Artificial Neural Network
(ANN), Random Forest (RF), Extreme Gradient
Boosting (XGBoost), Support Vector Machine (SVM),
Categorical Boosting (CatBoost), and Particle Swarm
Optimization (PSO) to predict the erodibility of
chemically stabilized unsaturated lateritic soil.
These models were selected for their demonstrated
robustness in geotechnical applications and their
ability to handle nonlinear, high-dimensional datasets.
Utilizing 121 experimentally derived data points from
published literature, the research aims to evaluate
and compare the predictive performance of these
algorithms, providing insights into optimal strategies
for soil erosion mitigation.

3.1 Artificial Neural Networks

Artificial neural networks (ANNs) replicate the
human brain’s neural framework, tackling complex
problems without predefined assumptions. Unlike
traditional methods, ANNSs identify intricate nonlinear
relationships between inputs and outputs using
raw, unprocessed data, cutting costs and boosting
efficiency. Training is essential before ANNs can
interpret new data, relying on algorithms like the
feedforward backpropagation technique highlighted
in Deep Learning [25] as versatile for multilayer
setups. This method uses interconnected layers
(input, hidden, output), where data flows from input
nodes to hidden ones, then to the output layer. The
number of hidden layers and nodes varies by problem,
often requiring tedious trial-and-error, as [26] note
in "Neural Networks in Computational Mechanics"
for geotechnical applications like soil modeling. Each
node (except input) features an activation function
and bias, filtering aggregated outputs tailored to the
task—say, slope stability prediction. Training involves
input-output vectors (training pairs), iterated until
the error, measured via RMSE, hits a threshold, a
process refined by [27] in Dive into Deep Learning
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for precision. The same flow connects hidden and
output layers, with iterations piling up until the error
aligns with targets. ANNs outshine regression-based
approaches in reliability, lacking rigid formulas, but
their design demands extensive experimentation to
pin down network architecture.

3.2 Random forest

Random Forest Regression (RFR) is a powerful
algorithm that leverages the principle of ensemble
learning, a technique that integrates multiple models
to improve predictive performance [28, 29]. At its
core, RFR relies on decision trees as its fundamental
building blocks. These trees are combined to form
a robust ensemble learning method, which is a
significant subset of machine learning approaches.
Specifically, RFR constructs numerous Classification
and Regression Trees (CARTs), each trained on
randomly selected subsets of the dataset and a
randomized assortment of feature types. This
randomness helps ensure diversity among the
trees, enhancing the model’s overall accuracy and
stability. During the training process, it’s common
for some data points to be sampled multiple
times across different CARTs, a process known as
bootstrapping [30]. One of RFR’s key strengths
is its efficiency when working with large datasets,
where it can seamlessly process thousands of input
variables without the need to eliminate any of
them. This capability makes it particularly valuable
for complex problems involving high-dimensional
data. Moreover, RFR excels in applications such
as estimation, inference, and mapping, offering
practical advantages over other methods like support
vector machines (SVM). Unlike SVM, which often
demands extensive parameter tuning and debugging,
RFR requires minimal adjustments, making it a
more straightforward and user-friendly option for
practitioners [28, 30]. This combination of scalability,
versatility, and ease of use has solidified RFR’s role as
a go-to tool in data-driven analysis.

3.3 Extreme gradient boosting

XGBoost, introduced by (Chen and Guestrin
2016), represents an advanced evolution of the
gradient boosting framework. Its objective function
incorporates the quadratic term from Taylor’s
expansion, enhancing its optimization process. The
algorithm measures tree complexity through two
components: the total count of leaf nodes and an L2
regularization term applied to the leaf node scores.
This L2 regularization is integrated into each leaf



ICJK

Sustainable Intelligent Infrastructure

node’s score to mitigate overfitting, ensuring the
model remains generalizable. The foundational unit
of XGBoost is the Classification and Regression Tree
(CART), as established by [32]. During training,
XGBoost begins by generating initial CARTs. It
employs an exact greedy algorithm to identify the
optimal split points, refining the tree structure for
better performance. Subsequent CARTs are then
built upon the foundation of these earlier trees. A
distinctive feature of XGBoost is the inclusion of
a regularization term in its cost function, which
manages model complexity. This term accounts for
both the number of leaf nodes and the sum of squared
L2 norms of the scores assigned to each leaf. From a
bias-variance tradeoff perspective, this regularization
reduces model variance, leading to a simpler and
more robust model that avoids overfitting. As a
result, XGBoost outperforms traditional Gradient
Boosted Decision Trees (GBDT) in terms of efficiency
and predictive power. For further insights, refer to
[31, 33-36].

3.4 Support vector machines

Support Vector Machines (SVM), introduced by
[37] and further developed by [36, 38-41], are
robust supervised learning tools for classification and
regression. SVM identifies an optimal hyperplane to
separate data into distinct classes by maximizing the
margin between support vectors—data points nearest
to the decision boundary. This is achieved through an
optimization problem:

minimize
LwP+ oS e M)
2 '
subject to
yi(w-x; +b) >1-¢ (2)
and
&>0 fori=1,...,n. (3)

where, w represents the weight vector, b the bias, C
the regularization parameter, z; the it data point,
y; its class label, and ¢; slack variables permitting
some misclassifications. The goal balances minimizing
|w||* (margin maximization) with classification error,
controlled by C' > , &. The decision rule is f(z) =
sign(w - = +b).

For regression, SVR adapts this framework to
fit data within a tolerance margin, using a loss

function to penalize deviations. Kernel functions
enhance both SVM and SVR by mapping data into
higher-dimensional spaces. The Radial Basis Function
(RBF) kernel, K(z,2') = e l==%I, measures
similarity via Euclidean distance, excelling with
nonlinear patterns. The Linear kernel, K(z,2’) =
2T, suits simpler, linearly separable data, while
the Polynomial kernel, K(z,2') = (272’ + ¢)¢,
captures nonlinear relationships through polynomial
expansions.

SVMs shine in high-dimensional settings and smaller
datasets, such as predicting UCS in cement-fly ash
stabilized clayey soil, resisting overfitting with proper
regularization. However, they can be computationally
demanding with large datasets and nonlinear kernels,
requiring meticulous parameter tuning. Neural
networks thrive with big data but risk overfitting
without sufficient resources, while ensemble methods
like Random Forests outperform single models,
offering robustness and interpretability, though at
higher computational cost. The choice hinges on data
size, resources, and complexity [39, 40].

3.5 Categorical Boosting

The Gradient Boosting Regressor is a regression
method  that  integrates  multiple  weak
learners—algorithms that perform slightly better
than random guessing—into a robust strong learner
through an iterative approach [42]. This technique,
referred to as ensemble-tree learning, involves adding
decision trees sequentially to correct errors made
by earlier trees. Unlike bagging, which constructs
independent base models, boosting builds these
models in a sequence, concentrating on challenging
data points that are harder to predict. This sequential
process strengthens the prediction model’s reliability.
During training, boosting often refines earlier base
models that struggle with accurate predictions, while
placing less focus on those already performing well.
Bagging, on the other hand, creates multiple decision
trees (DTs) using resampled datasets and combines
their predictions by averaging or voting. This is
achieved through bootstrap aggregation, commonly
known as bagging. The Random Forest (RF)
algorithm, an ensemble learning method, excels in
both regression and classification tasks. In its training
phase, approximately two-thirds of the data samples
are used for learning, with the remaining one-third
held back as out-of-bag (OOB) samples for validation.
A key strength of RF is its ability to assess feature
importance by measuring the increase in prediction
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Figure 1. Histogram illustrating the distribution of input and output parameters.

error when OOB samples for a specific feature are
shuffled, while keeping others constant [43]. RF also
manages missing data effectively, reduces overfitting,
and processes large, high-dimensional datasets
efficiently. For this study, three well-performing
supervised machine learning tree-based methods
were employed: XGBoost, CatBoost, and RF.

3.6 Particle swarm optimization

[44] introduced Particle Swarm Optimization (PSO)
inspired by the collective movement of bird swarms.
A swarm consists of individuals following specific
behavioral rules and communication patterns. This
collective ability, known as swarm intelligence, allows
each member to leverage the group’s past experiences
to guide the swarm toward an optimal solution. PSO
operates as a population-based search method where
particles navigate a space based on the best-known
position at the time [45]. [46] outlined three
fundamental rules influencing individual behavior
within a swarm, which (Kennedy and Eberhart
1995) adopted as a core concept for PSO: individuals
avoid collisions, move toward the swarm’s goal, and
gravitate toward the group’s center. These simple rules
combine to produce complex swarm dynamics.

98

Another key aspect of PSO is the decision-making
process of individuals. Each particle decides its
next move based on its own best results so far and
the overall best position within the swarm. To
ensure an effective search, termination criteria are
carefully chosen to prevent premature convergence
while avoiding excessive evaluations [47]. Common
termination conditions include reaching a maximum
number of iterations, achieving a satisfactory solution
specific to the problem, or observing no improvement
over a set number of iterations. These criteria help
PSO converge on a practical solution by optimizing
the objective function, which varies depending on the
problem. The fitness of each particle is assessed by
evaluating its current position against this function,
guiding the swarm toward the desired outcome
through an iterative process that continues until a
termination condition is met.

4 Data collection

To develop a predictive model for estimating the
erodibility of treated unsaturated lateritic soil, a
dataset comprising 121 samples was compiled from
previously published research studies [18, 20] This
dataset includes fifteen independent (input) variables
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Table 1. Statistical parameters.

Input/outputM . . Standard 75th 50th 25th Coefficient
parameters aximum Minimum Mean Deviation '8¢ Percentile Percentile Percentile gf .
ariation

HC 12.00 0.00 6.00 3.51 12.00 9.00 6.00 3.00 0.58
NQF 1.20 0.00 0.60 0.35 1.20 0.90 0.60 0.30 0.58

C 24.07 23.02 2349 0.32 1.05 23.76 23.46 23.20 0.01

A, 2.00 0.60 1.35 0.40 1.40 1.71 1.40 1.00 0.30

C. 1.96 0.84 1.41 0.30 1.12 1.65 1.43 1.19 0.21

Cy 5.86 2.05 3.80 1.32 3.81 4.89 3.92 2.30 0.35
Omax 1.99 1.25 1.69 0.24 0.74 1.95 1.69 1.46 0.14
Wax 19.00 16.00 18.02 0.77 3.00 18.55 18.20 17.70 0.04
dpart 14.46 0.81 1.63 1.23 13.65 1.90 1.62 1.18 0.75

Doc 98.90 65.00 89.01 9.73 33.90 96.90 94.80 80.20 0.11

WL 66.00 27.00 48.00 11.54 39.00 59.00 49.00 37.00 0.24

Ip 45.00 14.00 30.82 9.15 31.00 40.00 31.00 22.00 0.30

N, 12.62 10.00 11.32 0.63 2.62 11.78 11.35 10.88 0.06

¢ 21.60 15.00 1824 2.09 6.60 20.40 17.95 16.45 0.11
Yunsat 20.72 14.00 17.01 1.97 6.72 18.35 16.85 15.32 0.12

E, 12.10 3.50 7.77 1.83 8.60 8.80 7.80 7.22 0.23

and one dependent (output) variable representing
soil erodibility. ~The input parameters reflect a
comprehensive range of geotechnical and material
characteristics relevant to soil behavior, including

clay activity (A.), internal friction angle (¢), coefficient
of uniformity (C,,), optimum moisture content (wmax ),
partial maximum dry density (Jpart), unsaturated
unit weight (vyunsat), liquid limit (LL), hybrid
cement content (HC), clay content (CL), coefficient
of curvature (C.), maximum dry density (dmax),
plasticity index (Pr), cohesion (N.), degree of
compaction (Dy.), and nanostructured quarry fines
(NQF). Descriptive statistics for both the input and
output variables are summarized in Table 1 to
provide insights into their distribution and variability.
Additionally, the overall dataset distribution is visually
represented using a histogram, as illustrated in
Figure 1. To further explore the interrelationships
between variables, a Pearson correlation heatmap was
generated, offering a clear understanding of potential
linear dependencies among the parameters as shown
in Figure 2. The data was divided into training (70%),
testing (15%), and validation (15%) sets for model
development and evaluation [48].

The methodological flow of the present study is
illustrated in Figure 3. It outlines the limitations
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Figure 2. Pearson correlation heatmap of input and output
parameters.

of traditional techniques, the total dataset used, the
data splitting for training, testing, and validation, the
models applied, the performance metrics adopted, and
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the model comparison process.
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5 Model Benchmarking and Reproducibility
Enhancements

To ensure robust benchmarking, we evaluated multiple
machine learning models—ANN with feed-forward
backpropagation, Random Forest, XGBoost, SVR,
CatBoost, and a custom PSO regressor—for predicting
erodibility (E,) from the dataset. These models,
spanning tree-based, kernel-based, neural network,
and optimization-based paradigms, were assessed on
train, validation, and test sets using Mean Squared
Error (MSE) and R? scores, with feature importance
derived via permutation importance and SHAP
explanations for tree-based model (CatBoost). This
comprehensive approach facilitated a thorough
comparison of model performance. To enhance
reproducibility, explicitly detailed the hyperparameter
tuning, cross-validation methods, and random seed
settings.  For hyperparameter tuning, CatBoost
and SVR employed GridSearchCV with 3-fold
cross-validation, optimizing parameters such as
iterations ([500, 1000]), learning_rate ([0.01, 0.03]),
depth ([6, 8, 10]), and 12_leaf reg ([3, 5, 7]) for
CatBoost, and C ([0.1, 1, 10, 100]), gamma ([’scale’,
‘auto’]), and kernel (['rbf’]) for SVR, with selected
parameters reported in Table 2.
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Random Forest and XGBoost, initially using default
parameters (e.g., n_estimators=100 for Random
Forest), were updated to include GridSearchCV
tuning over n_estimators ([100, 200, 300]), max_depth
([10, 20, None]), and learning_rate ([0.01, 0.1, 0.3])
for XGBoost, using 3-fold cross-validation. The
ANN, with an architecture of 128 and 64 nodes
(ReLU activation, 0.2 dropout, Adam optimizer
with a 0.001 learning rate), was optimized via grid
search over learning rates ([0.001, 0.01]) and batch
sizes ([16, 32]) on the validation set. The PSO
regressor’s bounds ([-10, 10]) were justified based
on empirical testing to balance exploration and
convergence, with n_particles ([100, 150, 200]) and
max_iter ([500, 1000]) tuned using the validation
set. Cross-validation was standardized to 3-fold for
CatBoost, SVR, Random Forest, and XGBoost to ensure
consistent evaluation, while the ANN incorporated
3-fold cross-validation in addition to validation set
monitoring, and the PSO regressor’s performance
was validated using the validation set due to its
optimization-based nature. To ensure reproducible
results, a random seed of 42 was set for data
splitting (train_test_split), CatBoost, Random Forest,
XGBoost, and permutation importance calculations.
For the ANN, TensorFlow’s random operations were
standardized with tf.random.set_seed(42), and the
PSO regressor used np.random.seed (42) for particle
initialization.

6 Performance evaluation of the models

Once the predictive model has been developed, it
is crucial to assess its performance to evaluate its
ability to forecast the erodibility prediction of treated
unsaturated lateritic soil. In the absence of a universal
consensus among researchers regarding the best
evaluation metric, accuracy is often employed as a
major concern , with the goal of minimizing error.
Various statistical indicators are commonly used to
quantify prediction errors, including Mean Absolute
Error (M.A.E.), Mean Square Error (M.S.E.), Root
Mean Square Error (RM.S.E.), and Mean Absolute
Percentage Error (M.A.P.E.). Each of these metrics
offers distinct insights into model performance. M.A.E.
provides a measure of overall accuracy by averaging
the absolute differences between predicted and
observed values, assigning equal weight to all errors.
It is particularly useful for evaluating the spread of
error, with smaller values indicating better model
performance. M.S.E., on the other hand, calculates the
average of the squared differences between predictions
and actual observations, assigning higher penalties to
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Table 2. Hyperparameter tuning summary for ML models.

Model Hyperparameter  Search Space Selected Value Tuning Method
CatBoost iterations [500, 1000] 1000 GridSearchCV (3-fold CV)
learning_rate [0.01, 0.03] 0.03 -
depth [6,8,10] 8 -
12_leaf reg [3,5,7] 5 -
SVR C [0.1,1, 10, 100] 10 GridSearchCV (3-fold CV)
gamma ['scale’, "auto’| "scale’ -
kernel ['rbf’] 'rbf’ -
ggr“e‘itom n_estimators [100, 200, 300] 200 GridSearchCV (3-fold CV)
max_depth [10, 20, None]| None -
min_samples_split [2, 5] 2 -
XGBoost n_estimators (100, 200, 300] 200 GridSearchCV (3-fold CV)
max_depth [10, 20, None] 10 -
learning_rate [0.01,0.1,0.3] 0.1 -
ANN learning_rate [0.001, 0.01] 0.001 Grid search (validation set)
batch_size [16,32] 16 -
128-ReLU — Dropout Same as search
Architecture (0.2) - 64-ReLU - -
Dropout (0.2) — 1 space
PSO . N .
Regressor n_particles [100, 150, 200] 150 Validation set evaluation
max_iter [500, 1000] 1000 -
Bounds [-10, 10] [-10, 10] -
omega Fixed: 0.6 0.6 -
phip Fixed: 1.0 1.0 -
phig Fixed: 1.0 1.0 -

Table 3. Calculated statistical values of the training data.

Table 4. Calculated statistical values of the testing data.

Model r R? MSE RMSE MAE MAPE Model r R? MSE RMSE MAE MAPE
ANN 1 1 0.07 026 021 296 ANN 1 1 006 024 019 258
RF 1 1 0.001 004 003 036 RE 1 1 001 012 009 122
XGB 1 1 0.000003 0 0 0.02 XGB 1 1 0.02 0.14 011 152
SVR 1 1 0.0042 0.07 0.06 0.78 SVR 1 1 0.05 0.23 0.12 1.68
CatB 1 1 0.00113 0.03  0.03 0.34 CatB 1 1 002 016 011 145
PSO 094 086 1007 317 214 258 PSO 095 081 1589 399  3.06 37.03

larger errors. This makes it effective for identifying

models that consistently produce large deviations.

R.M.S.E. is the square root of M.S.E. and retains the unit
of the predicted variable, making it more interpretable
in many contexts. While RM.S.E. is also sensitive
to large errors, it is more intuitive than M.S.E. when

evaluating the magnitude of prediction errors.

M.A.PE. expresses prediction errors as a percentage,
making it useful for comparing models across datasets
with different units. It is generally interpreted using
specific thresholds: values below 10% are considered
highly accurate, between 10-20% indicate good
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Table 5. Calculated statistical values of the validation data.

Model R? MSE

RMSE

MAE MAPE

ANN
RF
XGB
SVR
CatB
PSO

0.08
0
0.02
0.01
0
98 092 6.29

T g Y

r
1
1
1
1
1
0.

0.28
0.06
0.12
0.07
0.05
251

0.22
0.04
0.09
0.05
0.04
1.78

3.07
0.65
1.17
0.76
0.59
21.59

13 13
1 o Training p 1o Training
27 & Testing e 27 & Testing w{.
11 Validation o 114 o Validation o
Zero line g Zero line ,,g‘
10 o 10
5 99 = 99
4 3
2 4] 2 o]
£ £
7]
s
6 ’e/
° /
* 5 ’p"
a- Oﬂ“
r
8 9 10 " 12 13 3 4 5 6 7 8 9 10 1" 12
Experimental Experimental
() (b)
13 13
1/ @ Training 1/ @ Training
29 % Testing 0™ 29 & Testing 49
114 @ Validation e 114 @ Validation p,a'
Zero line Zero line
10+ 9" 104 }g/
3 °] 3 °]
3 o4
2 8 2 8] .
g £
" e e P
6 oo 6 o
51 o 5 “‘:1?
44 '3)7’ 4 ,ﬁ"
A
3 T T T T T T T T T 3 T T T T T T T T T
3 4 5 6 7 8 9 10 " 12 13 3 4 5 6 7 8 9 10 " 12
Experimental Experimental
(©) (@)
13 13
© Training
1/ @ Training / ] b ° °
29 Testing »’m 12 * Testing °
1] o Validation S 11] | @ Validation
Zero line of Zero line 000 °
10 10 0
9 o o o
E; . Eu: °" 5'/9 °
2 s 2 8 g
£ £ ' 2%, ° °
& & 0% 8o o,
6 o s g & se° ° o
] % ] A I e
54 4 s4 & 7 ° . *
o o o *
e s
“ 9 g
T 34 T
3 4 5 6 7 8 9 10 1 12 13 3 4 5 6 7 8B 9 10 1 12 13
Experimental Experimental
() U]

Figure 4. Comparison between experimental and predicted
erodibility using ANN (a), RF (b), XGB (c), SVM (d),
CatB (e), and PSO (f).

accuracy, 20-50% are acceptable, and values above
50% reflect poor predictive performance. Unlike other
metrics, M.A.P.E. is unit-independent and facilitates
comparison across studies. While RM.S.E. and M.S.E.
have historically been popular due to their statistical
significance in modelling, they can be overly sensitive
to outliers. In contrast, M.A.E. provides a more robust
evaluation, as it minimizes the influence of extreme
deviations. When both M.A.E. and R.M.S.E. are used
together, they can reveal variability in prediction
errors: if RM.S.E. is significantly higher than M.AE.,
it suggests the presence of large, inconsistent errors;
if they are nearly equal, it implies uniform error
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Figure 5. Comparison of total experimental data with
predicted data using ANN ANN (a), RF (b), XGB (c),

SVM (d), CatB (e), and PSO (f).
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Figure 6. Comparison of total experimental data with predicted data using all the six models.

magnitudes.

These metrics are negatively oriented, meaning lower
values indicate better performance. Additionally,
M.AE. may favor models that perform reasonably
well on average but allow occasional large errors,
whereas M.S.E. penalizes such deviations more heavily,
thus preferring models that avoid large mistakes.
While most estimation techniques rely on least-squares
methods, relying solely on M.A.E. could result in
logical inconsistencies. Hence, the choice of an
error metric significantly influences the evaluation
of predictive accuracy across different modelling
techniques. For neural network models, traditional
evaluations often rely on the coefficient of correlation
(r) and coefficient of determination (R?). However,
relying solely on these can lead to biased assessments.
Therefore, it is recommended to incorporate unbiased
statistical metrics such as M.A.E.,, M.S.EE.,, RMS.E,,
and M.A.PE. alongside r and R? to achieve a
comprehensive evaluation.

7 Results and Discussions

In this study, five soft computing methods (Random
Forest, XGBoost, Support Vector Machine, CatBoost,
and Particle Swarm Optimization) were implemented
using Python on the Google Colab platform.
The performance of each soft computing model
configuration was assessed using r, R?, M.S.E.,
RMS.E.,, MAE, and M.APE. for both training,
testing, and validation datasets as shown in Tables 3,
4, and 5. The experimental Vs predicted plots were
drawn for each model and shown in Figure 3. From
the analysis of Tables 3, 4, and 5, it can be concluded
that the M.A.P.E. is low for RF (training: 0.36, testing:
1.22, validation: 0.65), CatB (training: 0.34, testing:

1.45, validation: 0.59), XGB (training: 0.02, testing:
1.52, validation: 1.17), and SVM (training: 0.78,
testing: 1.68, validation: 0.76) indicating that these
four models are highly precise in predicting soil
erodibility.

Similarly, from the Figure 4, the training, testing, and
valuation values almost all data points are on the Zero
line in the CatBoost, RF, XGBoost, and SVM models.

Hence, it can be concluded that the CatBoost and RF,
XGBoost, and SVM models are most reliable models
to predict the output erodibility. Compared to the
CatB, RF, XGB, and SVM models, the ANN model
shows slightly lower predictive accuracy, while the
POS model exhibits poor predictive performance. The
underperformance is likely due to the experiential
nature of PSO, which may require extensive tuning and
a higher number of iterations to effectively converge
in high-dimensional feature spaces. Additionally,
unlike tree-based models or neural networks, PSO
lacks intrinsic mechanisms to capture complex feature
interactions efficiently. Finally, all the data points are
compared with five models individually and shown
in Figure 5 and combinedly shown in Figure 6.

To perform a relative comparison of all the models, a
Taylor diagram was presented in Figure 7. From this
figure, it can be observed that, with the exception of
the PSO-based model, all other models demonstrate
a high level of accuracy in predicting erodibility. The
clustering of these models near the reference point
in the Taylor diagram indicates strong correlation,
lower standard deviation differences, and reduced
root-mean-square errors. In contrast, the PSO model
deviates significantly, highlighting its comparatively
poor performance.
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Standard Deviation
Figure 7. A comparative Taylor diagram.

8 Relative Importance

This section explores the contribution of the individual
input variables on the erodibility (output) by
performing relative importance. This study explores
the six soft computing models to predict the erodibility.
Among the six models four models are preforming
well in predicting the desired output. The best model,
CatBoost was used to perform the relative importance
using permutation importance approach in the python
code. From this relative importance a ranking was
provided and as shown in Figure 8.
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Figure 8. Relative importance.

From the study of the Figure 8 reveals that, the ynax
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Figure 9. Feature significance derived from SHAP analysis
for CatBoost.

Likewise, the SHAP analysis outcomes for the
CatBoost model are shown in Figure 9.  This
figure reveals similarities with Figure 8, as the top
five parameters are identical, though their rankings
differ. The positions of the remaining nine input
parameters vary significantly. Nevertheless, all 14
input parameters influence the output prediction to
some extent, so none were excluded from the modeling
process.

9 Conclusion

The erodibility of treated unsaturated lateritic soil
was estimated using six advanced soft computing
approaches, namely ANN, RF, XGB, SVM, CatBoost,
and PSO. Based on the model’s performance, the
following conclusions were drawn:

e The datasets were utilized in various soft
computing approaches including ANN, REF,
XGB, SVM, CatBoost, and PSO to estimate soil
erodibility based on several input variables.

e Model effectiveness was assessed through various
error metrics, including, r, R2, M.A.E.,, M.S.E,,
R.M.S.E., and MAPE, all of which indicated strong

predictive performance.

e The calculated M.A.P.E. values are below 3% for
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the CatBoost, RF, XGB, SVM, and ANN models
across all three phases: training, testing, and
validation.

e Relative importance showed that 7, and HC are

the most influencing parameter in predicting the
erodibility.

To enhance the prediction of this environmental
challenge, it is advisable to explore alternative machine
learning methods such as EPR, GP, GEP, and ANFIS.
Additionally, expanding the dataset to include at least
300 or more samples is recommended for improved
model reliability and performance.
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