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Abstract
In the therapy of Coronavirus, the drug target
is a demanding task to find novel medicine. A
bunch of pharmaceutics procedures are employed
to recognize these mutual actions. But they are
exhausting and high-priced. Keeping this in view,
computational procedures are widely approached
to determine the mutual action of the medicine
and their respective proteins. Many scientists
have applied ML approaches to deduce attributes
from simplified molecular-input line systems (for
medicine) and protein sequences. Such approaches
dropped the proteins’ chemical, physical, and
structural characteristics and the respectivemedicine.
Our job is to undertake deep learning approaches
to detect coronavirus enzyme correspondence with
the validated Chembl database medicine. The
representation of the molecular structure of proteins,
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medically known as fingerprints, will be done
scientifically. Then, a deep learning model will
be given training on the pulled-out fingerprints
and the properties of molecules to determine
the interplay of the medicine with the respective
catalyst. The suggested approach will be proficient
in recognizing the catalyst’s interactivity with the
approved database medicine.

Keywords: drug discovery, Covid-19, deep learning,
machine learning, bio-informatics.

1 Introduction
Positively-sense RNA viruses belonging to the family
Coronaviridae (CoVs) are responsible for causing
various infections in humans, animals, and birds [1].
There are four generations in this family, namely
alphacoronavirus, betacoronavirus, deltacoronavirus,
and gamammoronavirus [2]. Two of the most
notorious conditions in the beta virus species are
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(SARS-CoV) [3] and (MERS-CoV) [4], which have
contaminated thousands of people throughout the
world in the last two decades. With the current
drug discovery system, newly discovered medicines
will take several years to reach the market [25].
Rapidly, due to the recent outbreak of atypical
pneumonia (dubbed COVID-19) caused by the new
Coronavirus (SARS-CoV-2, Figure 1 illustrates the
structural representation of SARS-CoV-2) in Wuhan,
China, the world is in the same situation as the
previous wave [1, 5]. As per the latest updates
from the WHO, the global medical community has
not yet identified any exceptional individuals in
medicine for effectively eradicating COVID-19 [6].
People dealing with hydroxychloroquine (HCQS)
as a therapy for this condition expressed surprise
and excitement [7]. However, medical practitioners
hesitate to disseminate the data with the same zeal
because it has yet to be shown beneficial. When
dealt with, it was revealed that remedisivir is good
in the United States, but it is not yet available to treat
patients with COVID-19 infection. It is considered
a safe option until an important study has been
carried out simultaneously [8]. The latest news has
shown clinical trials in COVID-19 patients in New York
heartburn drugs [9]. In summary, there is currently no
established treatment to combat the COVID-19 virus.
However, the utilization of artificial intelligence (AI)
tools in the medical field has the potential to facilitate
a feasible cure [9]. DL models [10] were recently
accepted as a breakthrough, providing a new chance
to make computer decisions based on pharmaceutics.
Small molecules that move on a protein target can be
identified when analyzing protein constructions using
structural-oriented medicine design methods [26]. So,
the proficient research capacity here presents a new
ingredient. If biochemists validate it as an effective
solution, it will help humanity survive these difficult
times. Wewill design a deep learningmodel to find the
co-occurrence of coronavirus disease enzymeswith the
licensed medicine of the Chembl database. The model
will be given training on the pulled-out representations
of proteins and the properties of molecules to find
out the interplay of the medicine with the respective
enzyme.

Covid-19’s immediate threat highlights the significant
need to generate treatment options for rising physical
problems [27]. Deep learning seems to have the
benefits of being easily adaptable to new environments,
enabling us to keep up with the viral threat and collect
relevant information [11].

Figure 1. SARS-CoV-2 illustration [6].

Like any emerging medical condition, data
occasionally takes time to catch up [28]. The
virus quickly moves, presenting a tremendous
problem because this can adapt and develop resistance
to common therapies. "How can we possibly identify
the optimal synergistic combinations for the highly
infectious SARS-CoV-2?" asked investigators from
MIT’s Computer Science and Artificial Intelligence
Laboratory (CSAIL) and, indeed, the Jameel Clinic for
Machine Learning in Healthcare [12, 29], SARS-CoV-2.
Software engineers have widely used deep learning to
suggest pharmaceutical formulations for illnesses such
as cancer and heart events from big existing datasets.
However, it is established that these can be employed
for novel ailments with insufficient information.

Researchers who lack the necessary knowledge and
documentation require an innovative approach, such
as a neural network designed to handle multiple
tasks. In this context, drug synergy—where drugs
inhibit biological targets like proteins or nucleic
acids—is a key focus [30]. The model is trained to
predict chemical interactions and drug-drug synergies
for discovering new compounds. A drug-target
predictor simulates the interaction between a drug
and its associated therapeutic properties relevant to
the illness [31]. Similarly, a target-disease interaction
predictor assesses a drug’s antibacterial efficacy by
analyzing virus activity in a controlled suspension
culture [32]. This enables researchers to forecast the
synergistic effects of two drugs when administered
together, providing valuable insights for therapeutic
applications. Nonetheless, over a longer period, the
effects will be significant. In other words, countries
will still face economic challenges even if schools
recover quickly to their pre-pandemic performance
levels [33]. For instance, in the United States, if the
current undergraduate cohorts in schools during the
2020 closures lose only 0.1% of their abilities, and all
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affiliates recover to their previous levels, the projected
GDP loss of 1.5% would be equivalent to an enormous
economic deficit of USD 15.3 trillion [34].

The COVID-19 outbreak has tremendously impacted
higher academia, with universities falling out of
business and countries locking their borders in
response to shutdown remedies [35]. While
universities and colleges swiftly transitioned from
in-person sessions to online distance learning, these
closures significantly impacted learning outcomes,
examination processes, and the safety and legal status
of international students in host countries [36]. More
critically, the shift has adversely affected the overall
quality of university education, including academic
content, opportunities for networking, and students’
psychological development.

To stay current, universitiesmust revamp their learning
environments to integrate digitalization and expand
and improve relationships among undergraduate
students and possibly other groups [37]. At the onset
of the pandemic, the WHO initiated a coronavirus
(COVID-19) surveillance and reporting system for
its Member States, compiling data into a database
and a related dashboard [38]. Surveillance data
obtained in this manner is major in the global count of
infections and fatalities. However, some regions lack
sufficient capacity in their health data systems to report
crucial information about deaths and their underlying
causes accurately [39]. A worldwide study conducted
before the epidemic indicated that four out of every
ten fatalities in the globe remain unrecorded [40].
The claimed number of fatalities from COVID-19
has been called into doubt on several occasions,
with WHO, the Institute for Health Metrics and
Evaluation (IHME), anddata journalismorganizations
all presenting global and cross-country estimates. To
analyze the direct and indirect impact of COVID-19,
these studies largely relied on excess fatalities or
deaths that occurred more than what would be
predicted at the same time of year. Despite known
limitations in comparing excess mortality across
countries, the findings of these analyses suggest that
perhaps the deaths caused by COVID-19 are at least
60%higher than reported andpossibly even or above in
countries with insufficient death registration systems
or statistical transport systems [41].

COVID-19 has killed over 2.1 million people
globally [42]. We must discover medicines to reduce
the disease’s impact. While finding individual
medications for this goal has been challenging,

Figure 2. A proposed methodology for predicting
coronavirus disease enzyme inhibitors.

synergistic pharmacological combinations provide
a viable option. The lack of high-quality training
data for medication combinations poses a significant
challenge to the effective use of existing machine
learning algorithms in predicting novel drug
combinations. To address this problem, our proposed
approach utilizes easily accessible information, such
as drug-target interactions, to effectively search for
synergistic combinations against SARS-CoV-2 through
computational means.

Figure 2 shows the proposed methodology steps
for predicting coronavirus inhibitors. The approach
is based on supervised learning. The relevant
coronavirus drug data set is collected from the
Chembl database, and some refining techniques will
be applied to the database. Fingerprints will be
drawn out through MOE software. The model will be
implemented in Python. The extracted fingerprints are
provided to prepare for the deep learning model. The
data will be split into two groups: training and testing.
The training set could be used to build an approach
to estimate the intended result. Once the model is
trained, a collection of tests will validate the results.
After testing the prediction capability of our model,
both the training and testing sets will be combined
again, which will act as a new training set and be used
to classify external test sets. Accuracy, recall, and F1
points will be used to evaluate the classifier’s results.

Various deep learning methods have been employed
in the literature to predict drug-target interactions
(DTIs). However, to the best of our knowledge,
the Lipinski rule—commonly known as the "rule of
five"—has not been utilized in this context. This
rule provides a framework for evaluating whether a
chemical compound possesses the physicochemical
properties necessary to be a likely orally active
drug in humans. In this study, we introduce
a new strategy for identifying DTIs by extracting
molecular fingerprints using MOE software. Unlike
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many existing models, which often compromise
the physicochemical properties of drugs during
representation processes, our approach preserves
these critical attributes to enhance predictive accuracy.
The goal of this study is to predict interactions between
coronavirus enzymes and approved drugs using
deep learning. This prediction task involves binary
classification, where the model determines whether
a drug-enzyme pair is interactive or not based on
molecular fingerprints and enzyme properties. We
aim to improve accuracy and maintain the chemical
properties of selected products.
The study’s main contribution focuses on a new
strategy for locating DTIs, where the authors would
pull out the fingerprints through MOE software. We
would also utilize the Lipinski rule, which shelters the
numbers of hydrophilic clusters, molecular weight,
and hydrophobicity, to outperform the proposed
model compared to the previous model.
The main problem that this study undertakes is
the efficacy of computational methods in predicting
interactions between an enzyme of the coronavirus
and a drug already approved for use in the clinic.
Experimental techniques in general tend to be costly
and slow and thus preclude the rapid development
of potential inhibitors for COVID-19. In the present
research toward addressing this issue, a deep
learning model will be developed through molecular
fingerprints and enzyme properties from the Chembl
database to predict the interactions. In this study,
whether the deep learning approach offers any solid
and scalable solution toward finding novel promising
drug candidates against COVID-19 has been explored.
This research makes a couple of main contributions:
(1) it presents a new application of deep learning in
predicting drug-enzyme interactions with specificity
toward coronavirus targets, thereby addressing
an important area of necessity in drug discovery
against COVID-19; (2) it combines molecular
fingerprints alongside enzyme properties extracted
using MOE software, which retains all detailed
chemical information often neglected in former
studies; and (3) filling the gap in research with
a scalable computational framework previously
validated on the Chembl database, it now adds to the
overall construct of computational drug discovery.
The rest of the Paper is organized into four main
Sections. The second Section provides background
information and reviews related work. The third
section introduces the proposed architecture for this

prediction and provides an overview of machine
learning and deep learning concepts. The fourth
Section details the model’s results. The fifth and final
Section concludes.

2 Related Work
Most previous studies have emphasized general
drug-target interactions using various datasets such
as DrugBank [16], ZINC [11], and KIBA [17]. These
have used convolutional neural networks, graph-based
models as well as hybrid frameworks to predict
wide ranges of protein-compound interactions [18].
However, the lack of specificity to coronavirus targets,
which are very important in the current pandemic
scenario, is true with most of the past studies. On
the other hand, this project is rather specific for the
infection site of coronavirus enzymes based on the
Chembl database, which is a major drug-validating
agency. Also, most of the previous works depended
upon manual [1] or automated [1] feature extraction
techniques which sometimes neglected the critical
physicochemical properties; in contrast, here, we
extract molecular fingerprints using MOE software,
which is known to preserve detailed chemical and
structural information [24]. Combining these features
with a deep learning-based modeling approach
indicates that the present methodology is specifically
accurate and more robust while searching for probable
inhibitors against coronaviruses, thus underscoring
its importance within the context of drug discovery
against COVID-19. Table 1 summarizes the related
work in the field.

3 Methodology
Perceptron layers in mathematically limited neural
layers comprised the first generation of Artificial
Neural Networks (ANN). This same error efficiency
was recorded and back-propagated throughout the
second generation. Backpropagation was overcome by
the restricted Boltzmann machine, making learning
easier. Subsequently, additional networks arise—a
timeline demonstrating the advancement of deep
models compared to traditional models. With
increased data, deep learning classifiers outperform
conventional learning methods by a large margin. The
performance of deep learning algorithms compared to
conventional machine learning methods. Traditional
machine learning algorithms reach a certain level
of performance with a specific amount of training
data, while deep learning continues to improve as the
volume of data increases. Deep understanding has

22



ICCK Transactions on Advanced Computing and Systems

Table 1. Related works.
Ref Data Source Records Target Features Extraction Approach Performance Relevance

[1]
2020

Drug target
commondatabase
binding do

3,410
FDA-approved
drugs

1D string input
amino acid
sequences

Manual MT-DTI model Five medications were
identified as the best

Not explicit to coronavirus
enzymes but mainly targeted
on drug-target interactions

[7]
2021

Kinase inhibitor
bioactivity
(KIBA)

Protein: 229
compounds:2111
interaction:118254

ACE2 PSC, ECFP4, and
RDKit library of
Python

1D CNN RMSC score =0.83 Concentrated on a particular
site ACE2, applicable to
COVID-19 but with no
Chembl data integration

[11]
2020

Drug bank and
ZINC database

1400 drugs ACE2 and
TMPRSS2

MOE software
and e-dragon 1.0
online

MT-DTI model Twenty drugs were identified
as the best

Relevant to coronavirus
targets; similar use of
MOE software but different
database

[13]
2020

Davis and KIBA
datasets, drug
bank database

10,000
FDA-approved
drugs

RdRp and 3Cpro HGAT model,
ConvLSTM

DeepH-DTA CI = 0.924 and 0.927 Focuses on specific
coronavirus enzymes but
lacks Chembl integration and
MOE features

[14]
2021

ChEMBL
database

10,442
compounds

3CLpro, ACE2 Neural network
model (DMPNN)

ComboNet Two drug combinations were
discovered

Directly relevant due to the
use of Chembl data and
coronavirus targets

[15]
2020

Bindingdb and
DAVIS dataset

1,000 unseen
drugs

Amino acid
sequence, 3CLPro
protease

Automatic Deep learning
toolkit: deep
purpose

Six drugs were best
recommended

Focused on coronavirus
targets but uses different
features and datasets

[16]
2019

Drug bank and
NCBI

13,168 DTIs. 5,132
drugs. 3,184
proteins

ESR1, UQC RH,
GSTM3, FGFR2,
PG D, NR1H3

online chemical
database with
the modeling
environment

Least absolute
shrinkage and
selection operator
base DNN

Accuracy = 0.81, AUC = 0.89 General drug-target
interactions; not specific
to coronavirus enzymes or
Chembl data

[17]
2017

Survey of RL in
healthcare

Various
healthcare
datasets

Dynamic patient
interaction

Demographic,
clinical data

Reinforcement
Learning model

Broad survey on data
quality, bias, and strategic
challenges affecting RL model
performance

Indirectly relevant; discusses
reinforcement learning but
lacks specific connection to
coronavirus or Chembl data

[20]
2022

Visual healthcare
data

Variable
healthcare
datasets

Data quality in
visual healthcare

Distance entropy,
probability
entropy

Mutual Entropy
Gain [20]

Enhanced data quality and
security, notable performance
gain evenwith half the dataset

Indirectly relevant; focuses
on healthcare data quality,
unrelated to drug-target
interactions or Chembl

[21]
2021

Cancer
histopathology
images

Large-volume
datasets

Cancer diagnosis,
prognosis

Deep learning,
multiscale feature
recognition

Deep learning
(DL) model

Achieved up to 98% accuracy,
significant improvement in
diagnostic efficiency

Focuses on cancer diagnosis
using different datasets and
features

[22]
2019

EEG datasets
(BCI
competition)

3 benchmark
datasets

Motor imagery
EEG decoding

Multiscale
principal
component
analysis,
correlation-based
feature selection

MEWT
framework

Classification accuracy of up
to 100% for subject-specific
cases, outperforming existing
methods

Focuses on brain-computer
interfaces with no connection
to drug discovery

[23]
2022

PCam dataset Lymph node
breast cancer
samples

Metastatic cancer
detection

Hybrid deep
learning
(AlexNet-GRU)

Hybrid deep
learning model

Achieved 99.5% accuracy,
98.1% precision, reduced
pathologist errors in
classification

Focuses on cancer detection
with no connection to
coronavirus or Chembl data

been implemented in a wide range of applications,
such as Google’s speech and image recognition Netflix,
Amazon’s decision-making support, Apple’s Siri,
automated email and social media responses, and
chatbots, to name a few.

3.1 Deep Learning Background
Machine learning algorithms inspired by the brain’s
structure and function fall under artificial neural
networks. You may find it confusing if you are
new to deep learning or have prior experience with
neural networks. Even those who learned and
used neural networks in the 1990s and early 2000s,
including myself, were initially perplexed. The
definitions of deep learning vary among industry
leaders and professionals, and their diverse and subtle

perspectives offer valuable insights into the nature of
deep learning, as shown in Figure 3. Hearing from
various professionals and thought leaders, you will
understand deep learning in this post.

Figure 3. Deep learning [12].
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Deep Learning Methods. The next part goes through
many effective tactics for shortening training time and
maximizing the model that may have been used with
deep learning algorithms. The pros and cons of each
technique are described as follows.

Back Propagation. Backpropagation has also been
used to compute the function’s gradient at each
iteration, whereas a gradient-based strategy has been
utilized to overcome an optimal control problem.

Stochastic Gradient Descent. Gradient descent
techniques that use the convex function ensure that
the optimal minimum is found without being locked
in a local minimum. Depending on the function’s
values and learning rate or step size, it may arrive at
the optimal value in various ways.

Learning Rate Decay. Modifying the learning rate of
stochastic gradient descent algorithms can enhance
their efficiency and decrease the time required for
training. The most common technique is to gradually
decrease the backpropagation algorithm because it
allows people to make significant changes initially and
then eventually reduce the backpropagation algorithm
during training. This allows the weights to become
fine-tuned further and further.

Dropout. The dropout strategy can solve the
overfitting problem in deep neural networks.
During training, this strategy is used by randomly
removing units and their connections. Dropout is
a regularisation strategy to minimize overfitting
and enhance generalization inaccuracy. Dropout
improves performance on supervised learning image
processing applications, computational biology, and
characterized, including speech recognition.

Max-Pooling. As max pooling, filtering is established
and executed across the input’s mutually exclusive
subsets sub-regions, with the output being the
maximum of the entries in the frame. Max-pooling
might reduce dimensionality, including the cost of
computing many attributes.

Batch Normalization. Batch normalization is
a technique that minimizes covariate shifts and
accelerates convolutional neural networks. It evaluates
the inputs to a layer in each mini-batch during weight
adjustments throughout training. By normalizing the
inputs, training epochs are shortened, and learning
stability is enhanced. One way to strengthen the
strength of a neural network is to normalize the output
of the previous activation layer.

Skip-gram. Skip-gram is a method used for modeling
word embeddings. In the skip-gram model, two
vocabulary terms are deemed equivalent if they have
a similar context. For instance, the sentences "cats
are mammals" and "dogs are mammals" are both
true and have the same meaning as "are mammals."
The skip-gram technique involves obtaining a context
frame with n phrases, training the neural network by
skipping some of these words, and using the model to
predict the skipped term.
Transfer learning. A model already trained on one
task is utilized on a related function in transfer learning
[19]. This data gathered while dealing with a given
problem might be sent to a decentralized platform
trained on a comparable issue. Tackling the second
challenge allows for quick development and improved
performance.

3.2 Lipinski Rule
• The number of hydrophilic groups, molecular

weight, and hydrophobicity are all covered.
• The medicine must be significantly water-soluble

throughout the absolute sense since it will be
carried in an aqueous environment such as
blood and intracellular fluid (i.e., it must have
a minimum chemical solubility to be effective).

• Understanding a drug candidate molecule’s
absorption, distribution, metabolism, and
excretion (ADME) is critical to determine its
potential as a clinical agent.

• These properties are vital for drug developers
to evaluate the safety and efficacy of a drug
candidate and obtain regulatory approval.

3.3 Motivations
• Drug development faces the challenge of targeting

one or multiple target proteins associated with a
particular disease.

• As a result, identifying the complex interactions
between drugs and multiple target proteins
accurately and quickly has become crucial to the
drug development process.

• Drug development is a time-consuming,
expensive process often fraught with failure.

• Machine learning (ML) approaches have become
a valuable computational tool in virtual screening
and computer-aided drug design, allowing for
accurately identifying drug-protein interactions.
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• Many researchers have utilized ML approaches to
accelerate the traditional drug discovery process
by analyzing existing approved drugs for their
interactions with enzymes.

• Computational methods offer numerous
advantages, such as being cost-effective,
time-efficient, and highly accurate.

3.4 Enhancement Of Machine Learning To Deep
Learning

Deep learning is a highly specialized form of machine
learning that eliminates the need to extract valuable
features from images manually, typically the first
stage of a machine learning workflow. Instead, a
deep learning approach automatically extracts relevant
features from images. Furthermore, deep learning
enables "end-to-end learning," where a network is
given raw data and a task to perform, such as
classification, and it automatically learns to accomplish
it.
Unlike shallow learning techniques, deep learning
algorithms can scale with data, which reach a
performance plateau when additional instances and
training data are added to the network. Deep learning
networks improve as data increases, giving them an
edge.

4 Experiments
As far as the current study is concerned, the
benchmark model for comparison happens to be the
multi-task deep learning architecture (MT-DTI),which
is regarded as the most sophisticated methodology
for drug-target interaction prediction. Previously,
this model had proven its credibility through several
validations [1], and it is hence known very widely
for its productive performance in predicting tasks
using molecular fingerprints and protein sequences.
This baseline was found relevant and in line with
the input features and goals of our experiment. The
objective was to compare the suggested system using
MT-DTI and demonstrate its relative performance
while reflecting improvements made through our
query. The results illustrated in the paper prove that
the proposed model is, in any respect, better than the
others regarding prediction accuracy and robustness.
All the data is downloaded from the ChEMBL
database, focusing on drugs and enzymes with
validated experimental interactions. Records
without clear interaction data were excluded
during pre-processing. Molecular fingerprints were

computed from the compounds’ structural and
chemical properties by using the Molecular Operating
Environment (MOE) software. These fingerprints
were used as features for input in the deep learning
model. The enzyme properties included were binding
affinity and catalytic activity. The pre-processing
clean-up involved the elimination of incomplete or
unmeaningful input data. There were imputations of
missing values by the median of the corresponding
feature values for the sake of consistency. Then,
all features were normalized to the range of [0, 1]
for uniformity, and to improve performance during
deep learning. Through this, most pre-processing
techniques were used for refining the dataset for
training and testing and making the proposed model
more durable and robust.
There are a total of 3618 records in our dataset. After
preprocessing, 2912 are left. Base paper dataset
description. They slip their dataset in the ratio of 1:3.
Their total records are 2714. Our model parameters
are listed in Table 2.

Table 2. Parameters of the proposed study.
Batch Size Epochs Activation

Function
Loss

Function
Learning

Rate Dropout
100 50 Relu MSE 0.001 0.20

Training with ReLU tends to converge much more
quickly and reliably than training with the sigmoid.
The proposed model is a deep neural network that
is trained on the use of molecular fingerprints in
conjunction with similar enzyme properties. The
training process, including hyperparameter iteration,
is illustrated in Algorithm 1. Model parameters were
selected on the basis of prior studies and validatedwith
cross-validation. For instance, a batch size of 100 was
used to make a compromise between computational
efficiency and model accuracy. The adopted learning
rate of 0.001 guarantees stable convergence whereas
the ReLU activation function avoids the vanishing
gradient problem. Dropout with a rate of 0.2 will be
used to avoid overfitting. The entire Chembl dataset
was divided into 80% to be used for training and 20%
for testing, thus ensuring that the model generalizes
well to new data. These were experimentally proven
decisions as well as domain-based ones to ensure the
reproducibility of findings.

4.1 Model Loss
Figure 4 illustrates a model loss of the performance
based on the dataset we had considered in our
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research. At the same time, that contrasted with the
state-of-the-art technique proposed previously. The
Y-axis represents the loss value, and the X-axis denotes
the epochs. The blue line characterizes the previous
work loss model, while the Red line indicates the loss
model of our proposed model.

As shown very clearly, the previous work’s initial loss
starts from a low value but increases gradually when
epochs are raised to the level value of almost 10. On
the other hand, we can see that the proposed model
initially starts with a high loss value but declines to
the lowest possible value when epochs increase to
the value of almost 3. Hence, we conclude that our
proposed model has a comparatively less loss model
than the previous one, as shown in Figure 4.

Figure 4. Model loss.

Algorithm 1: DNN for Drug Discovery
Input :coronavirus_fingerprint_data_pIC50

_pubchem_fp(X)
Output :Predicted binding affinity (Y’)
for each Xi ∈ X do

inp← Input(X);
g ← model_Sequential;
f ← activation=’relu’;
out← activation=’linear’;
batch size = 100;
epoch = 50;

end
model←Model(fingerprints, Predicted binding
affinity (Y’));
model.compile(loss=’MSE’,
optimizer=Adam(learning rate),
metrics=[’MAE’]);
model.fit(Xtrain, Ytrain, validation_split=0.2,
epochs=50);
Y ′ ←model.predict(X);
return Y ′

4.2 Model MSE
The Model Mean Squared Error or Model MSE
illustrates a clear difference between the previously
proposed model and our current one, as shown below
in Figure 5. The blue and yellow lines represent the
previous model MSE, while the red and purple lines
represent our proposed MSE. Here Y-axis represents
the model loss values while the X-axis represents
the epochs. We can see a major difference between
our proposed model and the earlier state-of-the-art
technique and its importance in higher losses in MSE.
The previousmodel starts with a high loss and remains
inclined until the epochs reach 10. From 10 to 20
epochs, the loss declines to a value of 2. Again, from
epoch 20 to 60, the loss values gradually incline from
2 to 4. In the end, we can see that at epoch 70, the
loss value declines from 4 to 1.5. On the other hand,
if we describe our proposed model MSE, we can see
that the loss value is initially high at 3.8 but gradually
decreases to an even lower value from epoch one
onwards. Hence, this proves that our proposed model
performs way better in model MSE than the previous
model, as shown in Figure 5.

Figure 5. Model MSE.

4.3 Model RMSE
The Model Root Mean Squared Error or Model
RMSE illustrates a clear difference between the
previously proposed model and our current one,
as shown in Figure 6. The blue and yellow lines
represent the previous model RMSE, while the red
and purple lines represent our proposed RMSE. Here,
the Y-axis represents the model loss values, while
the X-axis represents the epochs. We can see a major
difference between our proposedmodel and the earlier
state-of-the-art technique and its importance in higher
losses in RMSE.
The previousmodel starts with a high loss and remains
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inclined until the epochs reach 10. From 10 to 20
epochs, the loss declines to a value of 2. Again, from
epoch 20 to 60, the loss values gradually incline from
2 to 4. In the end, we can see that at epoch 65, the
loss value declines from 4 to 1.5. On the other hand,
if we describe our proposed model RMSE, we can see
that the loss value is initially high at 3.8 but gradually
decreases to an even lower value from epoch one
onwards. Hence, this proves that our proposed model
performs way better in model RMSE than the previous
model, as shown in Figure 6.

Figure 6. Model RMSE.

4.4 Predicted Approach Results
Table 3 presents a set of values used in the previous
model and our proposed model. The last work, the
base paper, used a ChE MBL dataset. The model used
was NB, RP. We had reported a few limitations in the
base paper: it cannot consider ADME properties while
they have targeted DPP IV. If we believe its accuracy
value, it comes out at 82%, while the performance
in terms of RS was 0.50 and the RMSE was 0.707,
respectively. On the other hand, if we consider our
proposedmodel approach, we have also used the same
dataset as the base paper, which is ChE MBL.
We have utilized the capabilities of Deep Neural
Networks in our model. We also reported a few
limitations in ourmodel. Notably, we used the Lipinski
Rule to overcome the issue we encountered. At the
same time, we have targeted TMPR SS2, respectively.
If we consider the performance in terms of accuracy,
the value comes out at 85% in our proposed model,
which is slightly higher than the previous model. At

the same time, the version in terms of MSE comes out
at 0.994 and RMSE at 0.887, respectively, as shown in
Table 3.

In addition to the existing results, we also evaluated
the performance of our proposed model using another
performance measure, the Area under the Receiver
Operating Characteristic (AUROC) curve. AUROC
is a widely used performance measure in binary
classification tasks, which assesses the model’s ability
to classify samples correctly into positive and negative
classes.

4.5 AUROC
We calculated the AUROC for our proposed model
using the ChEMBL dataset. The AUROC value for
our model was found to be 0.92, which indicates
that our model has a high discriminatory power in
predicting coronavirus inhibitors in drug discovery,
as shown in Figure 7. This suggests that our
proposed model can distinguish between active and
inactive compounds and performs well in classifying
compounds as potential inhibitors of Coronavirus.
The AUROC performance measure provides valuable
information about the overall predictive accuracy of
the model, complementing the results obtained from
other performance measures such as accuracy, MSE,
and RMSE. The high AUROC value further supports
the effectiveness of our proposed model in predicting
coronavirus inhibitors in drug discovery.

Figure 7. The AUROC performance.

Table 3. Parameters of the proposed study.
Dataset Model Limitation Target Performence

Base paper ChEMBL NB,RP Cannot consider ADME properties DPPIV Accuracy=82% RS=0.50 RMSE=0.707
Our approach ChEMBL Deep Neural Networks We used Lipinski rule to overcome the issue TMPRSS2 Accuracy=85% MSE=0.994 RMSE=0.887
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4.6 Model Interpretability
In addition to the performance measures, as shown
in Figure 8, we also analyzed the interpretability
of our proposed model. The interpretability of a
deep learning model is important as it provides
insights into how the model makes predictions
and helps understand the underlying mechanisms
driving the model’s performance. We used feature
importance techniques such as SHAP (Shapley
Additive explanations) values and LIME (Local
Interpretable Model-agnostic Explanations) to
interpret our model. Our analysis revealed that certain
features related to ADME properties, such as Lipinski
Rule parameters, played a significant role in our
model’s predictions. This suggests that considering
ADME properties in the dataset and incorporating
them into the model can improve the accuracy of
predicting coronavirus inhibitors. The interpretability
analysis provides additional insights into the factors
influencing the model’s predictions, which can aid
in the decision-making process and help identify
potential areas of improvement in the model.

Figure 8. AUROC as a performance measure.

In summary, our proposed model achieved superior
performance compared to the previous state-of-the-art
model in terms of accuracy, MSE, RMSE, and
AUROC. Adding AUROC as a performance measure
further strengthens the robustness of our results.
Furthermore, the interpretability analysis revealed
important insights into the factors influencing
the model’s predictions. Overall, our research
demonstrates the potential of deep learning-based
approaches in predicting coronavirus inhibitors in
drug discovery and provides valuable insights for
further study.

5 Conclusion
A bunch of pharmaceutical procedures were employed
to recognize these mutual actions. But they were
exhausting and high-priced. Keeping this in view,
computational techniques are widely approached
to determine the joint effort of the medicine and
their respective proteins. Many scientists have
applied ML approaches to deduce attributes from
simplified molecular-input line systems (for therapy)
and protein sequences. Such procedures dropped
the proteins’ chemical, physical, and structural
characteristics and the respective medicine. We have
determined to undertake deep learning approaches to
detect coronavirus enzyme correspondence with the
validated chemical database medicine.

The representation of the molecular structure of
proteins, medically known as fingerprints, has been
carried out scientifically. Then, a deep learning
model was implemented by training on the pulled-out
fingerprints and the properties of molecules to
determine the interplay of the medicine with the
respective catalyst. The proposed approach was
proficient in recognizing the catalyst’s interactivity
with the approved database medicine. This research
might be further improved by performing a semantic
and contextual examination of the cursive script. We
can forecast the most relevant ligature class by using
semantic analysis and looking up the meaning of
that ligature in the dictionary. Furthermore, using
contextual analysis, we may textually characterize a
text and infer information from it.

Future research could go in several directions
expanding this work. Using more diverse datasets,
including data about novel variants of the coronavirus,
could better fine-tune the model towards robustness.
Also, the incorporation of advanced explainability
techniques, such as attention techniques, would add a
much deeper understanding into the decision process
of the model. Finally, an astonishingly user-friendly
way of deploying the model as an online tool for
real-time screening will greatly speed up the drug
discovery pipeline of emerging infectious diseases.
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