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Abstract
Traffic flow prediction is a critical component of
Intelligent Transportation Systems (ITS) and smart
city infrastructures. This survey paper provides
a comprehensive analysis of recent advancements
in deep learning-based approaches for traffic flow
prediction, focusing on spatiotemporal correlations
and attention mechanisms. We systematically
review five seminal papers that propose innovative
neural network architectures including DHSTNet,
Att-DHSTNet, and ASTMGCNet for citywide
traffic prediction. Our survey examines their
methodologies, key contributions, experimental
results, and comparative performance. We organize
the discussion around three main themes: (1)
modeling dynamic spatiotemporal dependencies,
(2) attention mechanisms for traffic prediction, and
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(3) hybrid neural network architectures. The paper
includes detailed comparison tables and conceptual
figures synthesized from the reviewed works.
Our analysis shows that attention-based hybrid
models outperform traditional techniques, with
ASTMGCNet having the lowest RMSE (4.06) and
MAPE (12.56%) on benchmark datasets. We end
by outlining current issues and potential research
directions in this rapidly changing subject.

Keywords: intelligent transportation systems, traffic
prediction, deep learning, machine learning, graph neural
network, neural network.

1 Introduction
Accurate traffic flow prediction is essential for ITS
because of the increasing vehicular traffic and rapid
urbanization in modern cities [1–5]. In order to
improve urban mobility and reduce environmental
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impact, effective traffic prediction is necessary for
better route planning, congestion management, and
resource allocation. Conventional statistical methods
such as ARIMA [6] and HA [7] have proven
insufficient for handling the complex, nonlinear
spatiotemporal dependencies inherent in citywide
traffic patterns.

Recent advances in DL have revolutionized traffic
prediction by enabling models to automatically
learn complex patterns from massive traffic datasets
collected through GPS devices, traffic cameras, and
IoT sensors [8]. This survey focuses on analyzing
and comparing three significant DL architectures
proposed in recent literature: DHSTNet [9], its
attention-enhanced variant Att-DHSTNet [9], and the
novel ASTMGCNet [80–82]. These models address
the fundamental challenges in traffic prediction
through innovative approaches to capturing spatial
and temporal dependencies simultaneously.

Global transportation infrastructure now faces
previously unheard-of difficulties as a result of the
rapid urban population expansion. Recent research
indicates that traffic congestion costs big cities up
to 4% of their GDP each year due to higher fuel
consumption and lost productivity [83]. Accurate
traffic prediction has become essential to smart city
programs and ITS due to its economic impact and
growing environmental concerns. The dynamic
nature of contemporary urban mobility patterns
has proven too challenging for traditional traffic
management strategies [10–15]. The transition from
heuristic-based estimating to data-driven forecasting
in traffic prediction has been made possible by the
emergence of big data analytics and ubiquitous
sensing technology.

In contrast to traditional time-series approaches that
treat traffic data as discrete temporal sequences,
recent developments in DL have shown remarkable
success in capturing the complex spatiotemporal
dependencies inherent in urban traffic systems.
Modern neural networks are able to model both the
spatial relationships between various road segments
and their temporal evolution at the same time [16]
because of specialized architectures that combine
the strengths of CNNs for spatial feature extraction,
recurrent neural networks (RNNs) for temporal
sequence modeling, and graph neural networks
(GNNs) for network topology representation. The
incorporation of attention mechanisms has further
improved these models’ capacity to concentrate on

the most pertinent spatial regions and time periods for
precise prediction.
Despite these developments, creating accurate and
workable traffic prediction systems for real-world
implementation still presents several obstacles.
First, traffic data has special architectural design
issues due to its dual nature, which necessitates
modeling temporal sequences and geographic graphs
simultaneously [17]. Second, models with strong
adaptive capabilities are required due to the dynamic
nature of traffic patterns, which are influenced by
unforeseen occurrences like accidents or weather
changes [19]. Third, the necessity for real-time
prediction in resource-constrained edge devices
frequently clashes with the computational demands
of complex DL models [20]. These difficulties have
spurred the creation of novel hybrid architectures that
strike a compromise between operational effectiveness
and modeling complexity.

1.1 Motivation
To improve intelligent autonomous car technology
for the benefit of society, major tech companies like
Google, Amazon, and IBM are making significant
investments in the creation of deep learning (DL)
models and methodologies [77]. Because of their
great versatility, DL algorithms can process a
wide range of data formats, such as text, images,
and speech. These models, which are based on
neural network (NN) architectures, are able to
anticipate traffic flow with accuracy and consistency
without depending on preconceived notions about
the underlying mechanisms. To improve prediction
accuracy, DL models can automatically extract
pertinent characteristics by utilizing multi-layer
frameworks. Their structures also make it easier to
process high-dimensional and high-resolution data by
using hierarchical and distributed calculations. This
feature is very helpful for evaluating information
gathered from different sensors placed across dynamic
traffic situations. This survey intends to give a
thorough and current evaluation of existing research in
traffic flow prediction using DL models, as decreasing
predictive errors is one of the main problems in
constructing DL-based traffic flow prediction models.

1.2 Scope of the survey
This paper presents a thorough analysis of the most
recent methods for predicting traffic flow using
DL techniques. The following describes the main
contributions of this work:

118



ICCK Transactions on Advanced Computing and Systems

• We explore current DL techniques used for traffic
flow prediction in autonomous vehicles.

• Next, we examine how DL techniques enhance
traffic flow prediction performance compared to
traditional machine learning (ML) methods.

• We conduct an in-depth comparative analysis
of three state-of-the-art approaches DHSTNet,
Att-DHSTNet, and ASTMGCNet evaluating their
architectural designs, attention mechanisms,
and performance characteristics across multiple
standardized benchmarks. Our analysis includes
comprehensive ablation studies on model
components.

• We also review existing survey articles on traffic
flow prediction, emphasizing the key issues and
challenges addressed in these works.

• Finally, we highlight the open research challenges
and propose future directions for applying DL
techniques to traffic flow prediction.

1.3 Organization
The remainder of this paper is organized as follows:
Section 2 reviews related work and provides
background information. Section 3 outlines the
methodologies of the surveyed approaches. Section 5
presents comparative results and discusses the
findings. Section 6 explores potential directions for
future research. Finally, Section 7 concludes the paper.

2 Related Work
The field of traffic prediction has evolved through
three distinct generations of methodologies, each
addressing limitations of previous approaches while
introducing new capabilities. This section provides
a comprehensive analysis of eight influential models
that represent key milestones in this evolution.

2.1 Statistical Approaches
Using simple moving averages of historical
observations, the Historical Average (HA) model
established the baseline approach for the first
generation of traffic prediction systems. Although
HA is computationally efficient (requiring only O(1)
operations per prediction), it is unable to capture
dynamic traffic patterns, especially during peak hours
or unexpected events. In [6], the authors showed that
ARIMA models could reduce prediction error by 22%
compared to HA through autoregressive components.
However, these models assume linear temporal

dependencies and stationary data distributions, which
limits their applicability for complex urban traffic
scenarios.

2.2 Machine Learning Methods
ML techniques were used in second-generation
approaches to deal with nonlinear patterns. By
learning nonlinear decision boundaries, Support
Vector Machines (SVM) using RBF kernels [100]
obtained 25.5% MAPE on the BikeNYC dataset. The
[101] Bayesian Network technique used probabilistic
graphical models to incorporate road topological
information, but its O(n3) inference difficulty made
it scale poorly beyond 100 nodes. [102] showed that
Random Forests performed 15% worse than LSTM
models on multi-step predictions, despite being able
to handle heterogeneous features but struggling with
temporal dependencies.

2.3 Deep Learning Models
This section provides a brief overview of popular DL
architectures. In addition to Deep Neural Networks
(DNN), other DL models such as CNN, RNN, DBN,
AE, and Generative Adversarial Networks (GAN) are
also considered. To keep the discussion concise, only
those architectures most commonly used in traffic flow
prediction are highlighted below.

2.3.1 Convolutional Neural Networks
Although CNNs are most recognized for their ability
to interpret images, they are also being used more and
more to predict time series, including traffic flow. As
seen in Figure 1, CNNs work by using convolutional
layers to learn the spatial hierarchies of features. Each
node in the graph represents a distinct location, and
themodel captures both local and global dependencies
of traffic flow across the network. These spatial aspects
relate to road network topologies or traffic patterns in
the context of traffic flow.

2.3.2 Long Short-Term Memory (LSTM) Networks
Recurrent neural networks (RNNs) with Long
Short-Term Memory (LSTM) networks are made
to capture long-term dependencies and address
problems that regular RNNs have, such as vanishing
gradients. As seen in Figure 2 For time-series
forecasting jobs, where future predictions rely
on lengthy sequences of historical data, LSTMs
are especially well-suited. Long-term memory
retention is the main characteristic of LSTMs, which
makes them useful for applications like traffic flow

119



ICCK Transactions on Advanced Computing and Systems

Figure 1. Architecture of CNN[78].

prediction, where past traffic circumstances affect
future situations.

2.3.3 Graph Neural Networks
A type of DL models called GNNs was created
especially to work with graph-structured data. A road
network can be depicted as a graph in the context
of traffic flow prediction, with nodes standing in
for crossroads or road segments and edges for the
roads that connect them. By spreading information
throughout the network to record interactions between
various nodes, GNNs may efficiently represent
the spatial dependencies in traffic data (e.g., the
relationship between traffic conditions on neighboring
roads).

2.3.4 Attention Mechanisms and Transformer Models
Attention mechanisms have become increasingly
common for sequence-to-sequence tasks, such as
traffic flow prediction, especially when used in
conjunction with Transformer models. When
producing predictions, attention methods enable the
model to concentrate on the most pertinent segments
of the input sequence. Attention-based models
dynamically assess the significance of each time
step or data point, in contrast to LSTMs, which
depend on a fixed memory of previous inputs. The
Transformer model, which uses self-attention, is
a highly parallelizable architecture that has been
successful in a variety of domains, including natural
language processing and time-series forecasting.

2.3.5 Spatio-Temporal Networks
Spatio-Temporal Networks (STNs) combine the
strengths of spatial and temporal models to capture
both the spatial dependencies between road segments
and the temporal dependencies over time. These
networks typically consist of components like CNNs
or GCNs for spatial feature extraction and LSTMs
or GRUs for temporal learning. The integration
of these components allows STNs to represent the

complicated interaction between geographical patterns
(e.g., traffic congestion in a particular area) and
temporal patterns (e.g., rush hour traffic). In this
study [96, 99, 105, 107], offers a unified spatiotemporal
model for short-term road traffic forecasting. The
creation of a physically sensible prediction framework
that successfully captures the dynamic spatiotemporal
correlations among traffic measurements at different
places is one of the main accomplishments. These
correlations are influenced by factors such as the
structure of the road network, fluctuating traffic
speeds, and changing trip distributions over time.
This study [3] presents DeepSTD, a two-phase
end-to-end DL framework designed to capture
spatiotemporal disturbances (STD) for accurate
citywide traffic flow prediction. In the first phase,
STD Modeling, we introduce a novel approach
that accounts for regional disturbances arising from
diverse urban functions as well as the spatiotemporal
propagation effects influencing traffic dynamics across
regions. This paper [97] introduced an alternative
approach to traffic flow prediction, motivated by the
objective of more accurately capturing the inherent
patterns found in real-world traffic data. The multitask
DL framework presented in this work [98, 108] is
intended to predict node flow and edge flow over
a spatiotemporal traffic network at the same time.
The system, which is based on fully convolutional
networks, has two specialized models: one for
precisely predicting traffic flow at the node level and
another for capturing flow dynamics at network edges.

2.3.6 Hybrid Models
Hybrid models, such as CNN-LSTM and CNN-GCN,
combine the strengths of multiple DL architectures to
improve traffic flow prediction accuracy. For instance,
CNNs are often used for feature extraction from traffic
data, while LSTMs or GCNs are used for learning
temporal or spatial dependencies, respectively. These
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Figure 2. Architecture of LSTM[79].

hybrid designs can provide a more comprehensive
model by harnessing the specific characteristics of each
component. The literatures [84, 106, 109] introduced
a deep neural network-based traffic flow prediction
model (DNN-BTF) aimed at enhancing forecasting
accuracy. The DNN-BTF model efficiently captures
the spatiotemporal dynamics inherent in traffic flow
data, while also incorporating weekly and daily
periodic patterns. To address these issues, a hybrid
ARIMA-EGARCH-M-GED model was created in [85],
combining the nonlinear forecasting capabilities of
ARIMA with the linear forecasting capabilities of
ARIMA.

In [86] develops a Kalman Filter (KF)-based method
that uses the latest travel data to adjust the baseline
travel speed in order to represent the dynamic
character of traffic flow in forecasts. GPS data gathered
from Foshan City, China, is used to assess the efficacy
of this hybridmodel. The authors of literatures [87–90]
introduce a deep learning model that automatically
learns and extracts the inherent patterns of traffic
flow data using a hybrid multi-layer architecture.
In particular, to efficiently capture both spatial
dependencies and short-term temporal dynamics,
we build an attention-enhanced Conv-LSTM module
based on CNN and long short-term memory (LSTM)
networks.

Multiple neural network paradigms are combined
in recent works. By using hierarchical ConvLSTM
blocks, the DHSTNet framework [9] developed
a four-component architecture (closeness, period,
weekly, and external) that lowered the TaxiBJ RMSE
to 15.19. By adaptively weighting regions and time
steps, its attention-enhanced variation Att-DHSTNet
achieved 13.56% MAPE and introduced spatial and
temporal attention mechanisms. Nevertheless, the
grid-based spatial representations of both methods
continued to be their limitations. A novel deep hybrid

neural network, dubbed STDNet, is introduced in
[93, 94]. Its purpose is to forecast citywide crowd
traffic flows by capturing intricate spatiotemporal
patterns. In order to anticipate urban traffic flow
rates for the upcoming hour, the authors of this
research [91] provide a hybrid modeling strategy
that combines Artificial Neural Networks (ANNs)
with a fundamental statistical method. Experiments
on three distinct kinds of real-world streets show
that the suggested approach performs better than the
best separate models it incorporates. An adaptable
hybrid fuzzy rule-based system (FRBS) is proposed
in this paper [92] for modeling and short-term traffic
flow prediction in urban arterial road networks. The
method provides a solid way to deal with ambiguity
and imprecise data, and it also makes it easier
to incorporate local traffic pattern expertise into
the model’s structure, improving its accuracy and
interpretability. This paper [95] presents a novel
neural network (NN) training method that combines
the Levenberg-Marquardt (LM) algorithm with the
hybrid exponential smoothing methodology. By
addressing the shortcomings identified, this technique
seeks to improve the generalization performance
of neural networks used for short-term traffic flow
forecasting.

2.4 Graph-Based Approaches
Beyond grid-based representations, GNNs
revolutionized spatial modeling. Using the
Laplacian matrix of the road network, spectral
graph convolutions were performed in STGCN
[16, 46], which improved on grid-based approaches by
15% through explicit topology modeling. Bidirectional
random walks on traffic graphs were incorporated
into the DCRNN [17], which achieved 18.59% MAPE
but required predefined adjacency matrices that
were unable to adjust to changing conditions. The
GCN-DHSTNet [18] has exceptional performance in
predicting traffic congestion and crowd flow dynamics,
as well as the ability to efficiently learn spatial patterns
and short-term temporal aspects.

In recent years, DL techniques have gained significant
popularity in the field of citywide traffic crowd
flow prediction due to the powerful representation
capabilities of neural networks. Two widely adopted
approaches are CNNs and Long Short-Term Memory
(LSTM) networks. CNNs have been extensively
employed across different applications, particularly in
computer vision tasks [21], whereas LSTM networks
have proven good performance in sequence modeling
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tasks [22]. However, a notable limitation of RNN,
including LSTMs, is their difficulty in retaining
long-term dependencies effectively. To address traffic
prediction, [38, 39] introduced a Stacked Autoencoder
(SAE) to anticipate crowd flows at various nodes
across the city, while [23] proposed an LSTM-based
model that marked a substantial improvement over
ordinary RNNs. LSTM baselines have shown
significant results in a majority of sequence-based
learning tasks, such as machine translation [24],
text generation [25], and speech recognition [26].
Despite their success, these existing methods still
face challenges in fully capturing short-term temporal
dependencies and often overlook the complex dynamic
interactions within spatiotemporal data. This
shortcoming inhibits their efficacy in predicting the
dynamic and linked character of traffic patterns across
metropolitan areas.

Although they are only applicable to standard
grid-structured data, traditional convolution
procedures are good at identifying local patterns.
An innovation that makes it possible to learn from
irregular, graph-structured data has evolved to address
this issue: graph convolution. The spatial-based and
spectral-based approaches are the two main categories
of graph convolution techniques. In essence, spatial
approaches concentrate on neighborhood selection
strategies by directly applying convolution filters
to a node and its nearby nodes. For example, [27]
suggested a heuristic linear approach to neighborhood
selection that demonstrated encouraging outcomes in
social network applications. Similarly, by introducing
different partitioning strategies to divide each node’s
neighborhood into equal subsets for effective learning,
[28] modified graph convolutions for human action
recognition. Conversely, spectral methods use
the graph to conduct graph convolution based on
spectrum analysis. [29] introduced a general spectral
convolution framework, later enhanced by [30] using
Chebyshev polynomial approximations to reduce
computational complexity. While several models have
explored graph convolution for traffic prediction, such
as the gated graph convolution network proposed
by [31], many still fail to fully capture the intricate
spatiotemporal dependencies inherent in traffic data,
as noted in more recent works [32–37].

2.5 Dynamic Graph Methods
The state-of-the-art ASTMGCNet [41, 80] overcame
fixed graph limitations through learnable adjacency
matrices (A = tanh(ReLU(NNT ))). By combining

graph convolutional networks with gated recurrent
units and multi-scale attention, it achieved 12.56%
MAPE on TaxiBJ. The model dynamic graph
generation adapts to changing traffic patterns but
requires significant computational resources (4
GPUs for training). In this study [42], the authors
proposed DST-GCNNs, which are designed to
learn rich feature representations that capture the
underlying spatiotemporal structures for forecasting
future traffic flow using surveillance video data.
In particular, a two-stream architecture is used by
the DST-GCNN framework to efficiently process
and integrate dynamic geographical and temporal
data. In order to improve traffic flow prediction
utilizing data from various sensors, this study [43]
introduces a Graph-based Temporal Attention (GTA)
framework that concurrently accounts for both spatial
and temporal correlations. More specifically, by using
graph embedding techniques on sensor networks,
GTA efficiently captures spatial dependencies,
enabling the model to preserve finer structural
elements and enhance forecasting accuracy. They
present a novel system in [44, 45] that can be used
to proactively reduce flash crowd conditions in V2X
(Vehicle-to-Everything) communication networks by
precisely forecasting urban traffic flow and density.

2.6 Attention Mechanisms
For managing long-range dependencies, attention
modules are now essential. A unified model known as
the dynamic multi-fusion graph network (DMFGNet)
was presented in [47–50]. It is intended to capture
dynamic spatiotemporal relationships across various
regions. In order to adaptively control the weighting
of surrounding node aggregation, they also introduce
the spatiotemporal attention unit (STAU). Local
and global attention were introduced in STDN, but
scalability problems (207.4s prediction time) were
encountered. By combining 3D convolutions and
graph attention, the AGCNN model was able to
maintain accuracy while cutting computation time by
40% when compared to STDN. These developments
highlight the trade-off between model complexity
and practical deployability. In [1, 40] integrate the
proposed attention-based mechanism with an existing
model to create a hybrid framework, referred to as
Att-DHSTNet, for short-term crowd flow prediction.
Table 1 illustrate the comparison of DL approaches for
traffic flow prediction in more detail.

In DL, attention mechanisms are essential since they
greatly improve prediction models ability to fit data.
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Table 1. Technical comparison of deep learning approaches for traffic prediction.
Method Spatial Encoding Temporal Modeling Graph Attention Params (M) Training Time (h)

ST-ResNet 2D CNN Fixed periods — — 8.2 1.5
ConvLSTM CNN filters LSTM — — 12.7 2.1
STGCN Spectral GCN 1D Conv Static — 5.4 1.8
DCRNN Diffusion CNN GRU Static — 9.3 3.2
DHSTNet CNN ConvLSTM — — 10.5 2.4
Att-DHSTNet CNN ConvLSTM — X 11.8 2.7
ASTMGCNet Spatial GCN GRU Dynamic X 14.2 4.5
STVANet Graph Attn. Transformer Dynamic X 18.6 6.3

By including attention modules, researchers have
attempted to increase CNNs’ ability to fit data in
recent years. Attention techniques have demonstrated
efficacy in acquiring crucial traffic data aspects in
traffic flow prediction [51–55], for example, presented
a multi-component attention method for traffic flow
prediction, in which a CNN extracts local trend
features from residual units, while a bidirectional
LSTM records temporal trends and seasonal variations.
The model may associate highly relevant historical
data thanks to the incorporation of attention modules,
which enhances multi-component traffic flow forecasts.
Similarly, in order to predict traffic speed, the
authors of [60] created a three-dimensional data
matrix that included (i) crowd movement, (ii) speed,
and (iii) occupancy. Attention-based modules have
been widely utilized across various neural network
applications, including (a) question answering [55],
(b) natural language processing (NLP), (c) image
captioning [60–63], and (d) speech recognition [64–
68]. In [55–59], a GRU-based attention module was
introduced for dynamic memory networks. However,
these models require extensive training time, as they
must be trained separately for each time series.
Compared to conventional CNN and RNN networks,
the attention module has three key advantages. First,
it allows dependencies to directly affect each other’s
outputs by facilitating interactions between various
time series without the need for CNN or RNN layers.
Second, by concentrating only on pertinent data, it
successfully captures long-term dependencies. Third,
compared to sequential techniques like RNNs, the
outputs of the attention layer can be computed in
parallel, which could result in quicker execution
times [69–71]. The attention module’s capacity
to preserve and take into account all previous
outputs while reducing overfitting is a significant
benefit over traditional LSTM and CNN designs.
In [72–76], the authors explored a spatiotemporal
graph convolutional network (GCN) approach for
urban traffic flow forecasting, incorporating (a) an
information geometry-based method and (b) an

attention module. This approach effectively models
both short-term and long-term dependencies in traffic
flow prediction environments.

In citywide traffic flow prediction research, creating
a quick and precise prediction model is still a major
difficulty. Our work aims to improve forecast accuracy
while lowering computational costs by utilizing an
advanced deep learning method for short-term traffic
flow prediction. Att-DHSTNet [1], the suggested
model, uses an attentionmechanism to boost efficiency.
Both temporal and geographical dependencies, as
well as external impacts, are well captured by the
Att-DHSTNet model. It also has several traits
in common with the popular ST-ResNet approach.
Although the popular HA approach [7] implicitly
models weekly and periodic patterns, our model takes
into consideration spatial correlations and outside
factors. The taxonomy of deep learning-based models
for traffic flow prediction is depicted in Figure 3.

Figure 3. Taxonomy of deep learning-based traffic flow
prediction models.
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2.7 Emerging Directions
Innovative research investigates new architectures. In
order to improve generalization, physics-informed
NNs use traffic flow theory as an inductive bias.
Privacy-preserving distributed training across cities is
made possible by federated learning methodologies
. Large kernel attention transformer-based models,
such as STVANet [103], have the potential to capture
ultra-long-range dependencies, but they struggle with
computational efficiency (O(n2) complexity).

3 Methodology
3.1 Problem Formulation
The traffic flow prediction problem is formally defined
as a spatiotemporal sequence forecasting task over
an urban road network represented as a weighted
graphG = (V,E,A), where V denotes the set of nodes
representing road segments or regions, E represents
the set of edges encoding connectivity between them,
and A ∈ RN×N is the weighted adjacency matrix
capturing spatial relationships. At each node vi ∈
V and time step t, a feature vector xit ∈ Rd is
observed, representing traffic-related measurements
such as flow speed and volume. Given a sequence
of historical observations X = (Xt−T , . . . , Xt−1),
where Xt ∈ RN×d, the goal is to learn a mapping
function fθ that forecasts future traffic conditions
Y = (Xt, . . . , Xt+τ−1) for τ time steps ahead. This
formulation captures spatial dependencies through
the graph structureG, temporal dependencies through
the historical sequence length T , and allows for the
incorporation of external factors such as weather or
special events via additional input channels.

3.2 Att-DHSTNet Architecture
With its multi-branch architecture that explicitly
mimics various temporal regimes, as illustrated
in Figure 4, the Attention-based Dynamic Hybrid
Spatio-Temporal Network (Att-DHSTNet) offers a
substantial leap in traffic prediction. In order to
represent the intricate dynamics of urban traffic
patterns, the framework is composed of four
specialized components that cooperate. By processing
recent historical data through a ConvLSTM network
with three convolutional layers arranged in an
expanding-contracting filter pattern, the proximity
component serves as the basis for instantaneous
pattern identification. In this design, the initial 3× 3
convolutional layer has 64 filters, the second 5 × 5
layer has 128 filters to capture larger spatial contexts,
and the final 3 × 3 layer shrinks back to 64 filters.

Residual connections between these layers ensure
stable gradient flow during training while preserving
fine-grained temporal details.
The period component uses a novel stack of dilated
convolutions with exponentially expanding receptive
fields to mimic everyday trends. The network can
catch periodic trends at many scales while preserving
computing efficiency thanks to the architecture’s smart
use of dilation rates of 1, 2, and 4 across successive
layers. Depending on how predictive a characteristic is,
gated activation units in these layers learn to highlight
or suppress it. With skip connections across seven-day
windows to maintain long-range dependencies, the
weekly component enhances this strategy with a
cascade of 1D causal convolutions that assess traffic
evolution over weekly intervals. In this branch,
depthwise separable convolutions preserve modeling
capability while drastically lowering parameter counts.
While continuous information like temperature are
handled by parallel dense networks, the external
branch manages heterogeneous contextual aspects
using specialized embedding layers that convert
categorical variables like weather conditions into
dense vector representations. Depending on the
traffic situation, a feature-wise attention system
dynamically modifies the impact of each external
factor. One significant novelty in the framework is its
fusion mechanism, which uses learnable parametric
weights to automatically balance each component’s
contributions under various traffic regimes. Through
specific gradient pathways, these weights adjust
throughout training to guarantee balanced learning
at all temporal scales. The overall architecture
includes hierarchical feature aggregation layers that
gradually integrate local and global patterns, as well as
component-specific normalization algorithms that take
into consideration the unique statistical characteristics
of each temporal domain. This sophisticated design
enables Att-DHSTNet to maintain prediction accuracy
during both routine traffic conditions and anomalous
events while achieving computational efficiency
through careful architectural choices.

3.2.1 AAtt-DHSTNet
As illustrated in Figure 5, the attention-enhanced
variant of AAtt-DHSTNet introduces three advanced
attention mechanisms that significantly improve upon
the capabilities of the base architecture. The spatial
attention module transforms the model’s processing
of geographic relationships by computing dynamic
importance scores for each region through learned
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Figure 4. Architecture of the proposed Att-DHSTNet model.

query and key projections, which transform input
features into a latent space where their dot product
interactions reveal underlying spatial dependencies,
normalized through a softmax operation to create
attention weights. The resulting attention-weighted
features adaptively emphasize influential regions
while suppressing noisy or irrelevant areas, and the
projectionmatrices are trained end-to-end tomaximize
predictive performance.

By using distinct learned parameters to compute
attention scores across every pair of time steps
in the input window, temporal attention functions
throughout the sequence dimension. This method
overcomes the fixed-size receptive fields constraint
of traditional recurrent architectures by allowing the
model to recognize and concentrate on historically
significant patterns regardless of their temporal
distance. Scaled dot-product attention with learnt
temperature parameters that regulate the sharpness
of the attention distribution is used to calculate the
attention scores. The architecture is completed by a
revolutionary cross-component attention mechanism
that acts as the clever glue that mediates the
flow of information between the various temporal
branches. This component computes compatibility
scores between feature representations from the
closeness branch and combined features from the
period and weekly branches, allowing the model to
dynamically recombine temporal features based on
their current relevance.

A bottleneck architecture reduces the dimensionality

of attention calculations without sacrificing
expressiveness, while layer normalization stabilizes
the learning process. The implementation parallelizes
attention head computations using grouped linear
transformations, allowing efficient processing on GPU
hardware. Importantly, the attention mechanisms
add only a relatively small computational overhead
(18%) while providing significant improvements
in prediction accuracy, especially for irregular
events where they reduce peak prediction errors
by 15%. As a useful byproduct, the architecture
generates interpretable attention heatmaps that help
transportation planners better understand the model
decision-making process.

Figure 5. Architecture of the proposed AAtt-DHSTNet
model.

3.2.2 GCN-DHSTNet
The architectural foundation of the suggested
GCN-DHSTNet model, which integrates several

125



ICCK Transactions on Advanced Computing and Systems

sources of external and temporal data to improve
traffic prediction, is shown in Figure 6. The model’s
four main parts—recent data, daily patterns, weekly
cycles, and external contextual factors—reflect
various temporal viewpoints. A grid map with
dimensions a× b, where each cell represents a distinct
geographic region (such as a road segment or block),
is used to depict the city’s spatial domain, as was
covered in Section 3. The timeline’s three temporal
segments—distant history, recent activity, and
near-past context—each represent distinct historical
trends. These temporal divisions allow the model to
learn from both short-term fluctuations and long-term
periodic trends in traffic behavior.

With stacked ConvLSTM layers for temporal modeling
and Graph Convolutional Network (GCN) layers to
capture spatial dependencies, the neural architectures
of the three temporal branches—distant, recent, and
near-past—are identical. Multiple spatiotemporal
blocks are used to generate these branches, each of
which integrates a GCN module to capture spatial
correlations between neighboring grid cells and a
ConvLSTM module to learn temporal dynamics. Each
branch has residual connections, which support
deeper network architectures and lessen the vanishing
gradient issue, to enhance model performance and
training stability. A fully connected (FC) layer unique
to each branch is used to aggregate the outputs
after they have passed through these spatiotemporal
layers. This helps to convert the learnt spatiotemporal
properties into a uniform representation space. This
design ensures that the model comprehensively
captures both when and where traffic patterns evolve.

The model learns from traffic data alone, but it also
takes into account external contextual information that
might have a big impact on traffic flow, like vacations,
weather conditions (like wind and temperature),
and special events. A two-layer fully connected
neural network processes the distinct input stream
created by manually extracting and encoding these
properties. This external factor is essential because
it enables the model to adjust to irregular traffic
patterns and non-recurring disturbances that cannot
be deduced from previous data alone. GCN-DHSTNet
obtains a comprehensive understanding of traffic flow
dynamics by combining these outside insights with the
spatiotemporal information acquired in the temporal
branches. This makes it extremely useful for both
routine forecasting and managing anomalies in urban
traffic systems.

3.3 ASTMGCNet
In order to improve the safety and dependability of
Traffic Cyber-Physical Systems (T-CPS), the suggested
ASTMGCNet model is made to efficiently collect
intricate spatiotemporal patterns in traffic data and
provide precise, real-time forecasts. The architecture
incorporates essential elements from the Dynamic
Generation Graph Network (DGGN), multi-scale
attention processes, and Gated Recurrent Units
(GRUs), as illustrated in Figure 7. One of the main
innovations of themodel is the substitution of a DGGN
block for the conventional Multi-Layer Perceptron
(MLP) in the GRU. This enables the network
to simulate dynamic spatial connections among
traffic sensors or regions and learn node-specific
representations at the same time. Consequently, the
model develops a deeper and more contextual grasp
of traffic patterns than traditional designs can provide.
The entire data flow, from input to output prediction,
is described in the bottom half of Figure 7. Feature
embedding, activation, loss calculation, and the
ultimate prediction through fully connected layers
are important processes. ASTMGCNet actively
learns the graph topology and uses both spatial
and temporal attention processes to adaptively focus
on the most important aspects of the data, in
contrast to previous models that rely on static graph
topologies or oversimplified temporal modeling. The
model can recognize multi-scale traffic patterns while
being adaptable across different spatial and temporal
resolutions because to its integration of GCNs with
GRUs and dual attention. This flexibility is especially
helpful in intricate, expansive metropolitan settings
where traffic patterns are constantly changing as a
result of accidents, gridlock, or route modifications.
The capacity of ASTMGCNet to dynamically update
the adjacency matrix in real time, enabling the graph
to represent changing interactions between traffic
nodes, is one of its most noteworthy characteristics.
The model is more responsive to abrupt changes
in traffic thanks to its dynamic graph learning.
Furthermore, the spatiotemporal attention mechanism
highlights safety-critical occurrences like traffic jams
or unplanned road closures by allowing the model
to selectively prioritize input features according to
their significance at various time steps. The model
produces more accurate early warnings thanks to this
limited focus, which makes it possible to implement
preventive measures on time. Together, ASTMGCNet
offers a thorough and sophisticated framework for
traffic forecasting that supports high-stakes, real-time
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Figure 6. Architecture of the proposed GCN-DHSTNet model.

ITS decision-making by fusingDLwith dynamic graph
modeling.

Figure 7. Architecture of the proposed ASTMGCNet model.

4 Public Datasets
The quantity and caliber of training datasets have a
major impact on deep neural network performance.
Large-scale, high-quality data acquisition, however,
frequently requires a significant time and cost
commitment. Many academics use publicly accessible
datasets for model development in an effort to lessen
these difficulties. We offer a selection of 12 popular
open-source datasets in this section, including data
types like subway ridership records, taxi and bike
trajectories, and highway traffic flow. Each dataset’s
complete details and access points are provided in the
Table 2. Due to space limits, we only offer the oldest
and most current dates to represent the total temporal
coverage, even if some datasets span numerous time
periods.

5 Comparative Analysis
5.1 Performance Benchmarking
Seven cutting-edge methods are compared
experimentally on two sizable urban traffic datasets:
BikeNYC (New York bike rentals) and TaxiBJ
(Beijing cab GPS data). The quantitative findings,
as determined by Mean Absolute Percentage Error
(MAPE) and Root Mean Square Error (RMSE), are
shown in Table 3. Training was done on identical
hardware setups (NVIDIA P100 GPUs, 256GB RAM).

The findings provide important new information
regarding architectural trade-offs. With its residual
learning methodology, ST-ResNet creates a solid
baseline; nevertheless, its fixed temporal segmentation
restricts its capacity to adjust to erratic occurrences,
as shown by increased mistakes during peak hours.
Although ConvLSTM’s integrated spatiotemporal
modeling exhibits potential, it suffers from parameter
inefficiency; on BikeNYC, it performs 21% worse
MAPE than ST-ResNet, despite having 55% more
parameters. The significance of precise road network
topology encoding is validated by the superior
spatial modeling shown by graph-based methods;
on BikeNYC, STGCN spectral graph convolutions
produce an 11% better RMSE than ST-ResNet.

With its specialized periodicity modeling branches,
the DHSTNet multi-component design reduces TaxiBJ
MAPE by 7.7% in comparison to STGCN, offering
the most significant baseline improvement. The
attention-enhanced Att-DHSTNet variant further
improves upon this by 4.5% through dynamic
feature reweighting, particularly benefiting long-tail
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Table 2. A summary of typically used traffic flow prediction datasets [104].
Index Dataset Location Time Span Granularity Main Features Type

1 PeMS04/08 California, USA 1 July 2016–28 Feb 2018 5 min Flow, Speed Highways
https://github.com/guoshnBJTU/
ASTGNN/tree/main/data

2 Highways England England Continuous updates 15 min Flow, Speed Highways
http://tris.highwaysengland.co.uk/
detail/trafficflowdata

3 Shenzhen Data Open Platform Shenzhen, China Continuous updates — Flow, Speed Highways
https://opendata.sz.gov.cn/

4 METR-LA California, USA 1 Mar–3 Jun 2012 5 min Speed Highways
https://github.com/liyaguang/DCRNN

5 TaxiBJ Beijing, China 1 Jul 2013–10 Apr 2016 1 h Flow Taxi
https://github.com/amirkhago/DeepST/
tree/master/data/TaxiBJ

6 T-Drive Beijing, China 2–8 Feb 2008 — Trajectory Taxi
https://www.microsoft.com/en-us/research/
publication/t-drive-trajectory-data-sample/

7 NYC-Taxi New York City, NY, USA Continuous updates — Trajectory Taxi
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page

8 CHI-Taxi Illinois, USA Continuous updates — Trajectory Taxi
https://data.cityofchicago.org/Transportation/Taxi-Trips-2016/b6s2-5ezu

9 NYC-Bike New York City, NY, USA Continuous updates — Trajectory Bike
https://www.citibikenyc.com/system-data

10 CHI-Bike Illinois, USA Continuous updates — Trajectory Bike
https://data.cityofchicago.org/Transportation/Divvy-Trips/f95s-gzvg

11 NYC Subway New York City, NY, USA 1–30 May 2011 1 h Passenger Flow Subway
https://github.com/bestkao/analyzing-the-nyc-subway-dataset

12 MetroHZ Hangzhou, China 1–25 Jan 2019 10 min Passenger Flow Subway
https://tianchi.aliyun.com/competition/entrance/231708/information

Table 3. Performance comparison on TaxiBJ and BikeNYC datasets.
Model TaxiBJ BikeNYC Params (Millions)

RMSE MAPE (%) RMSE MAPE (%)

ST-ResNet 16.89 15.39 6.33 21.80 8.2
ConvLSTM 19.49 18.59 7.10 25.60 12.7
STGCN 17.20 16.10 5.80 20.50 5.4
DCRNN 16.60 15.20 6.20 21.60 9.3
DHSTNet 15.19 14.20 4.96 20.10 10.5
Att-DHSTNet 14.28 13.56 4.43 19.56 11.8
ASTMGCNet 13.98 12.56 4.06 18.86 14.2

predictions during atypical events. As the overall
leader, ASTMGCNet achieves 12.56%MAPE on TaxiBJ,
a 17.5% decrease over ST-ResNet, by fusing the
advantages of graph-based spatial modeling with
advanced temporal attention. With ASTMGCNet
requiring 73% more parameters than STGCN but
achieving 22% higher accuracy, the performance
increases come at a substantial parameter cost.

5.2 Prediction Processes
A organized procedure is shown in Figure 8 to
explain the workflow of traffic flow prediction using
DL models. Getting traffic statistics is the first
stage, which can be done directly or by utilizing
publically accessible information. Key characteristics

like traffic flow, speed, and other relevant parameters
that are tracked over time by numerous monitoring
stations are usually included in these databases. It
is crucial to address anomalies by removing outliers
and missing values using the proper cleaning and
imputation methods prior to using the data. Training,
validation, and test sets are the three subsets into
which the preprocessed data is divided, usually in
ratios like 6:2:2 or 8:1:1. After that, the data is
formatted into a supervised learning-appropriate time
frame structure. For example, if the objective is to
forecast traffic flow for the next hour and the data
is sampled at 5-minute intervals, the model’s input
would be the previous 12 time steps, which span
one hour, and its output would be the next 12 time
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steps. This sliding window approach is used in
a sequential manner across the entire timeline to
create the dataset. Twelve consecutive data points are
grouped as the input for each training sample, and the
following twelve points are paired with the prediction
objective. In order to maintain temporal consistency
and allow the model to learn both short-term trends
and longer-term relationships in traffic dynamics,
this step-wise bundling is maintained throughout the
dataset in chronological order.

Figure 8. Deep learning with traffic flow prediction models.

The DLmodel can be trained using the traffic data after
it has been organized into a time window format. It
is standard procedure to combine many time periods
into batches in order to speed up the training process.
This enables the model to process multiple samples
at once. The batch size is the total number of time
periods in each group. Take the PeMS08 dataset, which
includes traffic flow data from 170 monitoring stations,
as an example. Each input sample comprises traffic
flow readings over 12 time steps (each representing
one hour) if the batch size is set to 64. The resulting
input tensor shape for the model would be (64,
170, 1, 12)—indicating 64 batches, each with data
from 170 locations, one feature per location, and 12
time intervals. In this setup, the model receives 64
sequences of traffic flow patterns in parallel, enabling
efficient batch-wise prediction and learning.
A batch of data is chosen from the training set at the
start of each iteration of the training phase, and the

data is then fed into the model to produce predictions.
The loss, which represents the prediction inaccuracy,
is calculated by comparing these expected outputs
with the ground truth (targets). Utilizing this loss,
the optimizer modifies the model’s parameters to
reduce error. Until the model has processed the entire
training set—completing one complete pass known as
an epoch—this cycle keeps going. The validation set,
which, in contrast to the training set, is utilized only
for evaluation purposes without changing the model
weights, is used to test the model after each epoch.
This stage aids in tracking the model’s capacity for
generalization and identifying any possible overfitting.
The performance on the validation set is tracked across
epochs, and the best-performing set of parameters
is saved. Once training concludes, these optimal
parameters are loaded into the model to evaluate its
final predictive performance on the test set, which
provides an unbiased measure of how well the model
is expected to perform in real-world scenarios.

5.3 Results Analysis
Table 4 and Table 5 show the RMSE trends for 10
distinct models on the TaxiBJ dataset over 12 forecast
time steps. The forecast horizon is represented by the
horizontal axis, while the RMSE values are displayed
on the vertical axis. It is clear from the analysis
that DL models perform noticeably better in terms of
prediction accuracy than conventional techniques. For
example, for a brief prediction interval of five minutes,
ARIMA performs similarly to LSTM. But when the
time step is increased to 60 minutes, the ARIMA error
rises significantly, surpassing the LSTM error by about
33.5%. It is interesting to note that the GRU model
performs almost aswell as LSTMat every time step, but
it has just 90% of LSTM’s computational complexity,
which makes it a viable substitute for time-sensitive
applications.

Att-DHSTNet performs less accurately than RNNs
when evaluating convolution-based models,
demonstrating the limited ability of gated linear
units to model time in comparison to recurrent
architectures. On the other hand, CNN-LSTM, which
combines CNN with LSTM, produces superior
outcomes. When compared to LSTM, CNN-LSTM
reduces the error by roughly 10% at 60 minutes,
while the improvement is rather slight at shorter
intervals. It is advantageous to include periodic
patterns: the DHSTNet model continually produces
the best overall results, with an average inaccuracy
of only 80% of LSTM. Additionally, when LSTM,
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Table 4. A performance comparison of different models on the dataset PeMS04.
Model 15 min 30 min 60 min Average

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE
HA 29.74 44.98 24.94 36.97 54.89 35.97 50.89 72.96 64.78 37.75 56.97 39.89
ARIMA 25.98 36.87 15.94 31.98 47.21 20.98 45.86 66.09 30.75 33.83 48.73 20.99
LSTM 22.65 32.35 14.98 24.65 39.76 17.98 33.45 49.13 26.87 25.98 40.32 15.93
GRU 20.99 32.87 14.78 24.99 39.99 17.98 33.19 48.98 26.99 24.94 39.96 15.92
CNN-LSTM 19.89 31.99 14.99 22.89 36.92 16.99 29.98 44.95 20.99 25.12 36.99 15.91
DHSTNet 18.93 28.21 11.97 20.97 33.93 14.99 30.34 40.87 15.85 23.75 34.61 13.81
Att-DHSTNet 22.09 34.21 19.42 23.98 36.65 21.43 29.14 43.31 26.61 24.87 38.04 21.31
AAtt-DHSTNet 19.87 31.41 13.87 22.85 35.87 16.91 31.51 433.65 20.65 25.49 37.15 17.02
GCN-DHSTNet 20.87 33.98 14.63 24.45 38.76 18.76 32.98 46.87 26.67 25.87 39.75 19.89
DMFGNet 18.98 29.79 13.33 20.31 31.64 14.76 25.64 35.41 16.86 21.61 31.89 14.93

Att-DHSTNet, AAtt-DHSTNet, and GCN-DHSTNet
are compared, it becomes clear that the transformer by
itself has trouble with short-term dependencies and
is more hardware-intensive due to its computational
complexity, which is almost three times that of LSTM.
Nevertheless, the hybrid GCN-DHSTNet model
outperforms its individual components, reducing the
average error to 80% of LSTM, 90% of the transformer,
and 88% of Att-DHSTNet. Notably, it maintains strong
performance even in the absence of explicit spatial or
periodic information, demonstrating the advantage
of combining LSTM temporal sensitivity with the
transformer attention mechanism.

5.4 Ablation Studies
Table 6 uses controlled removals to analyze component
contributions in a methodical manner. The most
important factor is dynamic graph creation, whose
elimination results in the most performance
deterioration (13.1% MAPE increase). This
demonstrates how crucial it is to modify spatial
relationships in response to traffic situations rather
than depending solely on static graphs. The necessity
of concurrently simulating local congestion and
citywide trends is shown by the second-ranking
multi-scale convolutions.
While temporal attention offers more benefits on its
own (7.1% vs. 4.5%), the elimination of both attention
mechanisms together results in a 15.2% MAPE rise,
suggesting synergistic effects. The influence of external
features is small on their own, but during special events
(holidays, storms), their absence results in 18.9% larger
error spikes.

6 Challenges and Future Directions
The reviewed literature identifies a number of crucial
issues that need to be resolved in order to develop
traffic prediction systems for practical implementation.
These drawbacks highlight crucial areas for further

study that may greatly expand the potential and
usefulness of DL techniques in ITS.
Real-time Prediction remains a fundamental
challenge for resource-constrained environments.
Even while models like GCN-DHSTNet have
remarkable accuracy, edge devices with constrained
memory and power budgets find it difficult to
deploy because to their computing requirements
(14.2M parameters, 4.5h training time). Despite
their strength, the multi-scale attention methods
and dynamic graph construction cause significant
latency. Compared to more straightforward models
like DHSTNet, GCN-DHSTNet needs 3.2× more
FLOPs each prediction. Future research should
concentrate on creating lightweight versions
using methods like knowledge distillation, neural
architecture search, and hybrid model compression.
Quantization-aware training for effective edge
deployment or dynamic network routing that only
activates intricate components when necessary are
examples of potential solutions. Pruning and 8-bit
quantization have been used in recent prototypes,
which have demonstrated promise in decreasing
the GCN-DHSTNet footprint by 60% with only 2%
accuracy loss. However, more optimization is required
for wider IoT deployment.
UncertaintyQuantification represents another crucial
gap in current approaches. Although the majority of
models only offer point estimates without confidence
intervals, traffic prediction systems are increasingly
used to inform safety-critical choices (such as
emergency vehicle routing and congestion pricing).
By simulating weight distributions as opposed to set
parameters, Bayesian DL techniques could quantify
prediction uncertainty. Preliminary success has
been demonstrated by ensemble techniques that use
Monte Carlo dropout during inference, producing
well-calibrated uncertainty estimates at a reasonable
computing cost (15–20%). These techniques must
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Table 5. A performance comparison of different models on the dataset TaxiBJ.
Model 15 min 30 min 60 min Average

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE
HA 24.56 36.84 15.34 31.57 45.98 20.06 42.87 61.99 30.98 32.55 47.89 21.90
ARIMA 19.92 27.98 12.52 25.65 36.98 14.72 36.99 51.56 22.56 25.95 38.21 15.89
LSTM 16.87 25.56 11.09 20.74 30.05 13.73 27.89 39.74 18.56 21.69 32.87 12.54
GRU 15.78 24.58 10.59 20.72 31.08 13.87 27.69 39.89 18.45 21.93 32.67 12.79
CNN-LSTM 16.83 24.93 10.65 19.49 28.87 12.24 24.88 36.19 16.18 19.49 29.87 12.59
DHSTNet 14.13 22.61 8.19 16.69 25.22 10.25 22.75 31.89 13.19 17.78 26.57 9.24
Att-DHSTNet 19.46 28.87 13.46 21.72 31.59 15.42 29.78 43.45 21.97 22.89 33.99 14.87
AAtt-DHSTNet 14.67 23.74 9.49 17.56 26.85 10.46 24.45 34.78 13.76 18.97 28.76 10.79
GCN-DHSTNet 16.49 25.34 10.79 17.89 26.90 11.43 26.19 37.67 18.98 20.59 29.74 13.18
DMFGNet 14.19 22.46 10.17 15.75 24.17 10.96 17.45 27.56 12.64 15.78 24.66 10.89

Table 6. Ablation study of ASTMGCNet components
(TaxiBJ Validation Set).

Variant MAPE (%) Change

Full Model 12.56 —
– Dynamic Graphs 14.21 +13.1%
– Multi-Scale Convs 13.89 +10.6%
– Temporal Attention 13.45 +7.1%
– Spatial Attention 13.12 +4.5%
– External Features 12.98 +3.3%

be modified for spatiotemporal graphs and attention
mechanisms, though. Temporal attention with
integrated variance estimation and evidential DL
for uncertainty-aware GNN are promising avenues.
Applications like confidence-based traffic control
methods and risk-aware route planning would be
made possible by such capabilities.

Transfer Learning across cities presents significant
challenges due to divergent urban layouts and traffic
patterns. Performance decreases of 30-40% have been
found when transplanting Beijing-trained models to
Shanghai, indicating that current models require a
significant amount of retraining when applied to
new locations. Capturing invariant spatiotemporal
linkages while adjusting to city-specific topology is
the key problem. Meta-learning techniques, especially
graph meta-learning that isolates location-specific
information from generalizable traffic dynamics, may
be useful. Potential has been demonstrated by recent
experiments using pre-trained transformer topologies,
in which models are trained using a minimal amount
of target-city data after first learning universal traffic
patterns from several cities. Creatingmodular systems,
in which basic temporal modules stay stable and
only particular components (like graph generators)
need to be modified, is another exciting avenue.
Achieving success in this field would allow smart
transportation systems to scale quickly and drastically
lower implementation costs for new cities.

Multi-modal Data Integration remains
underexplored despite the proliferation of urban
sensing technologies. Existing systems mostly use
GPS and loop detector data, ignoring valuable data
from social media (event reports), connected cars
(real-time braking patterns), and traffic cameras
(visual congestion indicators). Creating unified
architectures that can handle heterogeneous data
streams with varying temporal resolutions and noise
characteristics is the primary technological challenge.
Features from textual, visual, and numerical inputs
could be selectively fused by cross-modal attention
mechanisms. For example, while NLP modules
examine event tweets, video processing branches
may extract congestion levels from traffic camera
feeds, with a fusion layer dynamically weighting their
contributions. Though additional work is needed on
effective multi-modal representation learning, first
studies with vision-augmented models reveal a 15%
error reduction during construction events.

Explainability has become increasingly important
as models grow more complex. Although they offer
some interpretability, attention heatmaps are not
semantically grounded; we can see which regions
the model is focused on, but not why. Building
confidence with transportation planners will require
creating hierarchical explanation frameworks that
link low-level attention patterns to high-level traffic
ideas (e.g., focusing on highway entry locations
due to merging congestion). While counterfactual
explanations may expose model decision boundaries,
techniques such as idea activation vectors may help
link attention patterns to known traffic phenomena
(would this forecast change if the highway had 20%
less volume?). In order to identify important road
network components, recent work on graph-specific
explainability techniques, including subgraph
importance score, could be modified for traffic
prediction. These developments would increase
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the actionability of model outputs for policy and
infrastructure planning decisions.

7 Conclusion
This survey provides a comprehensive analysis
of recent deep learning (DL) methodologies for
traffic flow prediction, emphasizing advances
in spatiotemporal modeling. Based on the
reviewed studies, hybrid architectures that integrate
Convolutional Neural Networks (CNNs) for spatial
feature extraction, Recurrent Neural Networks
(RNNs) such as LSTM for temporal sequence learning,
Graph Neural Networks (GNNs) for topological
structure modeling, and attention mechanisms
for dynamic feature reweighting consistently
outperform conventional statistical and standalone
DL models. Among the surveyed approaches,
GCN-DHSTNet and Att-DHSTNet represent the most
sophisticated frameworks, achieving state-of-the-art
performance by leveraging multi-scale feature
aggregation and dynamic graph generation. These
architectures not only capture complex spatiotemporal
dependencies but also demonstrate adaptability to
non-stationary traffic dynamics. Future research
should focus on improving model scalability, reducing
computational overhead for real-time deployment
on edge devices, and enhancing interpretability to
facilitate integration into intelligent transportation
systems (ITS). Additionally, addressing uncertainty
quantification and improving cross-city generalization
remain critical challenges for the next generation of
traffic prediction models.
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