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Abstract
Brain tumors pose a serious threat to global
health, making accurate and early detection
essential for effective treatment planning. While
Magnetic Resonance Imaging (MRI) is widely
used for diagnosis, manual interpretation is
time-consuming and subject to error. This has
prompted increasing use of deep learning for
automated tumor classification. We propose a
novel framework based on the Swin Transformer
V2 architecture for classifying brain tumors in
MRI scans into glioma, meningioma, pituitary
tumor, and non-tumor categories. The design
introduces two core innovations: a Dual-Branch
Down-samplingmodule and anEnhancedAttention
Mechanism, which improve multi-scale feature
representation and computational efficiency.
Using a dataset of 7,023 grayscale MRI images,
the proposed model achieved an accuracy of
98.97%, outperforming ResNet50 (90.39%) and
DenseNet121 (93.20%). It maintained precision,
recall, and F1-scores above 98% across all classes
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and showed improved training efficiency. These
results demonstrate the model’s potential as a
robust and efficient diagnostic support system for
brain tumor classification.

Keywords: brain tumor classification, deep learning, MRI
scans, computational efficiency, medical image analysis.

1 Introduction
Brain tumors, resulting from the abnormal
proliferation of cells within brain tissues, pose a
major global health concern and are ranked as
the second most common cause of death globally,
as reported by the World Health Organization
(WHO) [1, 2]. These tumors are typically classified
as either benign or malignant. Benign types, like
meningioma and those affecting the pituitary gland,
usually grow slowly, remain localized, and have a
low recurrence rate following surgical removal. In
contrast, malignant tumors, such as gliomas, are
more aggressive, frequently infiltrate nearby brain
regions, and can severely disrupt normal physiological
functions if not promptly treated [3, 4]. Accurate and
early detection of tumor types is critical for timely and
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effective treatment planning.

Magnetic Resonance Imaging (the MRI) serves as a
widely adopted, non-invasive technique for diagnosing
brain tumor classification. Even though MRI offers
detailed insights into the structure of tissues, there are
some challenges concerning large volumes of data and
a potential human factor in manual interpretations.
Traditional diagnostic methods, such as biopsy,
are invasive and resource-intensive, despite their
high accuracy. Moreover, the variability in tumor
morphology such as shape, size, and density adds
complexity to classification, highlighting the need for
automatic, efficient, and accurate diagnostic solutions.

Recent progress in Artificial Intelligence (AI)
and Machine Learning (ML) technologies have
revolutionized medical imaging by introducing
robust, automated tools for analyzing MRI data [5–8].
Convolutional Neural Networks (CNNs), in particular,
have demonstrated exceptional capabilities in feature
extraction and image classification, significantly
reducing dependency on extensive preprocessing.
However, the conventional CNN architecture often
faces challenges in effectively capturing global
contextual information and balancing resource
efficiency, which are critical for precise tumor
classification [9–11].

In this study, we propose a novel framework
based on the Swin Transformer V2 architecture
that introduces a key innovation the Dual-Branch
Down-sampling module which enhances multi-scale
feature representation and improves both accuracy and
efficiency. This research offers an enhanced framework
in deep learning [12–14] enhanced classification
based on the Swin Transformer V2 architecture
to address these issues. It also gives local and
global morphological MRI features to accurately
fine-tune tumor classification, utilizing the hierarchical
design and attention mechanisms of the proposed
framework. The framework is aimed at the gliomas
(malignant), meningiomas, pituitary tumors (benign),
and no-tumor cases with high accuracy and efficiency.

The proposed approach underwent stringent testing
against benchmark datasets that substantiated
its performance over existing pre-trained models
regarding classification accuracy and computational
efficiency. Besides, the optimized architecture of the
model also promises scalability and robustness in
addressing the practical needs of real-world clinical
applications.

The subsequent sections are organized as follows:
Section 2 presents a review of related work. Section 3
outlines the proposed system model. Section 4 covers
the experimental results and corresponding discussion,
while Section 5 concludes the paper with final remarks.

2 Related Work
The application of deep learning (DL) in radiology
has demonstrated significant potential for improving
diagnostic accuracy and precision in medical imaging.
Regardless of all these developments, the combination
of DL techniques with the skills of a radiologist
is still needed to aid in the improvement of the
diagnosis. A number of researchers have developed
new methods for the classification of brain tumors
from MRI scans using new methods of feature
extraction, preprocessing steps, and models [15].
Existing research efforts can be broadly categorized
into CNN-based methods, transformer and hybrid
models, traditional machine learning approaches, and
transfer learning techniques.

2.1 CNN-Based Approaches
Gumaei et al. [16] offered a technique that integrates
advanced feature extraction with a Regularized
Extreme Learning Machine (RELM), achieving an
accuracy of 94.23% using min-max normalization and
hybrid feature selection. Srujan et al. [17] proposed
a 16-layer CNN architecture using ReLU activations
and the Adam optimizer, reporting 95.36% accuracy
on primary tumor classification. Similarly, Huang
et al. [30] introduced the CNNBCN model using
random graph methods, achieving 95.49% accuracy.
Deepak et al. [24] combined CNNs with Support
Vector Machines (SVMs) in a two-stage approach,
attaining 95.82%accuracy via five-fold cross-validation.
Kaplan et al. [9] explored novel local binary patterns
(nLBP and αLBP), reaching 95.56% accuracy using
KNN classifiers.

2.2 Transformer-Based and Hybrid Models
Ahmad et al. [18] integrated generative adversarial
networks (GANs) with variational autoencoders to
generate synthetic tumor images, achieving 96.25%
classification accuracy. Sun et al. [? ] presented a
model utilizing features extracted from a pre-trained
GANdiscriminator, enhancedwith data augmentation
and dropout, achieving 95.6% accuracy. Our work
contributes to this direction by introducing an
improved Swin Transformer V2 architecture with a
novel Dual-Branch Down-sampling module, aimed at

2



ICCK Transactions on Advanced Computing and Systems

Figure 1. The overall architecture of the proposed framework for brain tumor classification.

improving classification accuracy while maintaining
computational efficiency.

2.3 Traditional Machine Learning Methods
Ayadi et al. [19] utilized classical techniques like
Dense SURF and HOG features with SVMs, achieving
90.27% accuracy. Sawant et al. [? ] proposed
a segmentation-classification pipeline using WSVM,
HIK-SVM, and KNN classifiers with MODE-based
ensemble strategies, attaining 92.46% precision.

2.4 Transfer Learning and Feature Fusion
Swati et al. [20] applied transfer learning usingmodels
like VGG19, VGG16, and AlexNet, reaching accuracies
of 94.82%, 94.65%, and 89.95%, respectively. Noreen
et al. [21] leveraged pre-trained networks such as
InceptionV3 [22] and Xception, combining them with
classifiers like SVM and Random Forest, reporting
94.34% accuracy. Satyanarayana et al. [23] combined
CNNs with Mass Correlation Analysis and noise
elimination methods, achieving 94% accuracy. Deepak
et al. [24] tackled data imbalance using class-weighted
focal loss and feature fusion, attaining 94.9% and 95.6%
accuracy with SVM and KNN classifiers, respectively.
These studies highlight the advancements across
multiple deep learning and machine learning
paradigms for brain tumor classification. Despite
progress, challenges remain particularly in managing
data imbalance, achieving generalizability across
diverse datasets, and ensuring efficient processing.
The methodology presented in this work builds
upon these prior studies by leveraging the Swin
Transformer V2 architecture [25], designed to enhance
the robustness, accuracy, and efficiency of MRI-based
brain tumor classification.

3 Materials and Methods
The brain tumor classification framework illustrated
in Figure 1 outlines a structured pipeline designed

to achieve high-precision categorization of tumor
types. The workflow begins with preprocessing
of the MRI data, where all images are resized to
maintain a consistent aspect ratio, ensuring dataset
uniformity. A detailed annotation process is applied
to label the images into four distinct categories:
glioma, meningioma, pituitary, and no-tumor cases.
Subsequently, the dataset undergoes validation and
is split into training, validation, and testing sets, with
80% dedicated to model learning, 10% for tuning, and
the remaining 10% for final assessment.
The core of the system is built around an enhanced
version of the Swin Transformer V2, a sophisticated
deep learning architecture capable of capturing
both local and global contextual information
through its hierarchical design and improved
attention mechanisms. Training of the model is
conducted on the designated training subset to ensure
generalizability and minimize overfitting, while the
Adam optimizer is utilized for adaptive learning
rate adjustments throughout the process. Upon
completion of training, the model’s effectiveness is
measured through standard evaluation metrics such
as accuracy, precision, recall, and F1-score, ensuring
comprehensive performance validation.

3.1 Dataset
The dataset used in this research was collected
from a publicly available dataset on the Kaggle
platform [26], which integrates data from two free
data repositories: Figshare [27] and BR35H [28]. The
dataset comprises 7,023 JPEG files of grayscale MRIs
depicting three primary types of brain tumors glioma,
meningioma, and pituitary as well as non-tumorous
brains. The dataset captures a wide range of tumor
morphologies which helps in training and evaluating
models. Representative samples were taken from
the dataset showcasing the distinguishing features of
tumors and non-tumor images which are included in
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the dataset and are shown in Figure 2.

Figure 2. Representative MRI images showcasing the
various tumor types (glioma, meningioma, pituitary) and

non-tumor cases included in the dataset.

3.2 Improve Swin Transformer V2
This is a superior model that adopts state-of-the-art
technological advances from the Swin Transformer
structure for MRI-based brain tumor classification.
In that way, the input will undergo processing
through the Swin Transformer’s initial stem module,
which supersedes conventional patch partitioning
and embedding modules for better feature extraction.
Instead of the originally implemented Patch Merging
module, this network proposes a novel Dual-Branch
down sampling mechanism, which ensures higher
resolution reduction along with better preservation
of the features of interest. Each stage of the
network uses Swin Transformer blocks, which consist
of a combination of self-attention mechanisms and
convolutional layers that captures both global and
local features. Convolutional networks inside the
transformer block enhance the fine-grained spatial
information extraction capability of the model. The
proposed self-attention mechanism includes average

pooling for better computational efficiency. To
improve local feature encoding, the standard MLP
module in the original Swin Transformer has been
substituted with a convolution-based inverted residual
feed-forward structure. The architecture progresses
through four stages, each progressively downscaling
the input resolution by factors of 4, 8, 16, and 32.
Finally, the classifier generates output probabilities for
tumor types, such as glioma, meningioma, pituitary,
and no-tumor classes. The detailed architecture is
illustrated in Figure 3.
The Swin Transformer Stem addresses the limitations
of standard patch-based methods by introducing
convolutional layers with diverse kernel sizes (1, 3,
and 5) to extract multi-scale local features from input
images. These features are merged to consolidate
spatial information across multiple channel pathways.
A pointwise 1 × 1 convolution is then applied to
refine and strengthen the local feature encoding.
Subsequently, a convolutional layer using a stride
of 2 performs a 4× down sampling operation,
preserving the overall structure of the feature map.
This architecture improves the preservation of local
information and integrates spatial details efficiently, as
depicted in Figure 4.
In the framework as is shown in Figure 5 (a), we
implement a Dual Branch down sampling (DBD)
module along with an Improved AttentionMechanism
which increases efficiency and precision on classifying
brain tumors. The DBD module is a two-branch
architecture that replaces the conventional Patch
Merging module. The first branch applies an average
3×3 pooling followed by a convolutional layer which
retails feature extraction and local augmentation, while
grouped convolutionwith a stride of two is used on the
second branch for parallel down-sampling and feature

Figure 3. The architecture of the improved Swin Transformer V2 framework, featuring enhanced feature extraction, dual
branch down sampling, and convolutional layers for accurate brain tumor classification.
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Figure 4. The Swin Transformer Stem employs multi-scale
convolutional layers with kernel sizes of 1, 3, and 5,

followed by concatenation and down sampling, to enhance
local feature extraction and preserve structural information.

extraction. Outputs from each branch are combined
and undergo a 1 × 1 convolution to efficiently channel
wise merge information, lessening the computational
strain while preserving important details. Based on
the Swin Transformer V2 self-attentions, the Improved
Attention Mechanism integrates average pooling to
the query (Q) and the key (K) matrix to lower the size
to half, which lessens the amount of work required.
Between Q and K, the similarity with respect to each
other is computed using scaled cosine attention after
introducing a learnable scaling factor (τ) and a relative
bias (B) which makes it possible. To the down
monitored Q, a residual link is connected to strengthen
feature representation without using gradients.

All these integrations simultaneously optimize their
computational efficiency, attention accuracy, and
global dependency modeling within the framework,
making it appropriate for efficient resources utilization
in brain tumor classification.

The Inverted Residual Feed-Forward Network
(IRFFN), as depicted in Figure 5 (b), addresses
the Swin Transformer V2’s constraints in effectively
capturing localized features. Situated at the terminal
point of the Swin Transformer block, this module
is designed to reinforce the extraction of essential
information. The IRFFN is composed of a pair of
1×1 convolutional layers, two Dropout layers, and
a 3×3 depth-wise separable convolution layer. The
initial 1×1 convolution increases the number of
feature channels by four times, allowing for more
comprehensive feature representation, which is then

Figure 5. (a) Improved Attention Mechanism with average
pooling, scaled cosine attention, and residual links for
efficient global dependency modeling. (b) Inverted

Residual Feed-Forward Network (IRFFN) for enhanced
local feature extraction and efficiency.

processed through a depth-wise separable convolution
to intensify focus on spatial details while keeping the
computational burden low.

4 Experimental Results
The computational environment used for training and
evaluating our brain tumor classification framework is
detailed in Table 1, which has been updated to include
comprehensive system specifications and resource
requirements. The experiments were conducted
on a system equipped with dual NVIDIA GeForce
RTX 3090 Ti GPUs, each with 24 GB of VRAM,
running Ubuntu 20.04. The model was implemented
using PyTorch 2.0.0 along with supporting libraries
such as NumPy, TensorFlow, Keras, scikit-learn, and
OpenCV. The Table 1 reflects GPU memory usage
and training time, offering readers a clearer picture
of the hardware and software dependencies necessary
for reproducing our results. These additions are
intended to ensure transparency and provide practical
guidance for real-world deployment or replication of
the proposed framework.

Table 1. Hardware and software specifications.
Label Name Description
Libraries NumPy, Tensorflow, Keras,

sklearn, Matplotlib, OpenCV
GPU NVIDIA GeForce RTX 3090 Ti

Development
Tools

Ubuntu 20.04, 64 bits,
Python 3.8

VRAM 24 GB
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4.1 Hyperparameters Setting
To ensure optimal model performance, we fine-tuned
key hyperparameters including batch size, optimizer,
learning rate, number of training epochs, and loss
function through extensive empirical experimentation.
All MRI images were resized to 240×240 pixels
and normalized to the [0, 1] range using min-max
normalization. Data augmentation techniques such
as random horizontal and vertical flipping, rotation
(±15°), zooming, and contrast adjustment were
applied to improve generalization and robustness.
For multi-class brain tumor classification (glioma,
meningioma, pituitary, and non-tumor), categorical
cross-entropy was used as the loss function. The
Adam optimizer was selected for its adaptive gradient
capabilities, with an initial learning rate of 0.001. This
rate was dynamically reduced by a factor of 0.3 if
validation accuracy showed no improvement over 5
consecutive epochs. DropConnect regularization with
a drop rate of 0.2was used tomitigate overfitting, while
leveraging ImageNet-pretrained weights for transfer
learning. Models were trained for 50 epochs using a
batch size of 32, with 10% of the training set reserved
for validation. A complete list of hyperparameters is
provided in Table 2.

Table 2. List of hyper-parameters and their respective
values.

Hyper-parameters Values
Input shape (240,240,3)

Drop connect rate 0.2
Output layer activation function Softmax

epoch 50
Batch size 32
Optimizer Adam

Initial learning rate 0.001
Learning rate decay factor 0.3

Patience 5
Validation split 0.1
Loss function Categorical cross-entropy

To further enrich the technical depth of our study,
we have included hardware utilization metrics
recorded during the training process, such as
average GPU utilization, memory usage, and training
throughput (images/second), providing a clearer view
of the system performance under workload. These
metrics offer valuable insights into the computational
efficiency of our proposed framework. Additionally,
we conducted a feature space analysis using both
t-SNE and PCA to visualize the high-dimensional
feature representations learned by the model. These
visualizations demonstrate effective class separability

and themodel’s ability to distinguish between different
tumor types and non-tumor cases. The inclusion of
these analyses adds interpretability and affirms the
model’s capability to learn meaningful representations
from MRI data.

4.2 Evaluation Matrices
The performance of the performance of the proposed
framework was evaluated using multiple metrics,
including accuracy, precision, recall, and F1-score.
These metrics are essential for assessing the
framework’s capability to accurately classify different
types of brain tumors and predict positive outcomes
effectively. The mathematical definitions for these
metrics, as outlined in Equations (1)– (4), describe the
computations used to derive precision, recall, F1-score,
and accuracy, providing a thorough evaluation of the
model’s classification effectiveness.

A =
TP + TN

TP + TN + FP + FN
(1)

P =
TP

TP + FP
(2)

R =
TP

TP + FN
(3)

F =
2×R× P

R+ P
(4)

4.3 Confusion Matrices
We have utilized the Improved Swin Transformer
V2 as the classification algorithm for brain tumor
detection owing to its superior predictive accuracy
and optimal computational efficiency. The confusion
matrix of the model is illustrated in Figure 6, where
classification outcomes are provided graphically. In
this matrix, the columns designate the truth values
(Target Class), and the rows designate the predictions
(Output Class). The correct classifications in the
four classes of tumors glioma, meningioma, pituitary
tumor, and no tumor are represented in the diagonal
elements; the rest are off-diagonal entries, which
appear due to misclassifications. While the model
demonstrates strong performance overall, a closer
examination of the matrix reveals that glioma and
meningioma tumors are occasionally confused (e.g.,
0.6% misclassified), which may be attributed to
overlapping structural characteristics and similar
grayscale intensities in MRI scans. Additionally,
pituitary tumors were misclassified as non-tumor
in 0.4% of cases, likely due to their small size and
anatomical proximity to normal brain structures. This
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Table 3. The assessment differentiating the brain tumor classification performance of the proposed Improved Swin
Transformer V2 model concerning other existing architectures, using metrics such as accuracy, precision, recall, F1-score,
training time, and the model performance graph all highlight in bold show the best results which in this case is the

proposed model.

Model Precision Recall F1-Score Accuracy Training
Time (s)

ResNet50 [29] 90.00 90.05 90.10 90.39 1220.38
DenseNet121 [30] 92.95 92.75 92.85 93.20 614.08
MobileNetV3 [31] 91.28 91.07 91.24 92.15 968.35

VIT [32] 95.77 95.34 95.51 96.07 1064.75
MobileVITV2 [33] 97.67 97.18 97.54 97.96 576.17

Proposed 98.75 98.51 98.63 98.97 476.07

information illustrates the accuracy of the model
and its limitations, highlighting areas that require
further refinement through multi-modal input or
attention-guided focus enhancement.

Figure 6. The confusion matrix highlights the classification
results for each category, which include glioma,

meningioma, and pituitary tumor, as well as the ‘no tumor’
category, using the Improved Swin Transformer V2 model.

Diagonal values indicate correct classifications;
off-diagonal entries reflect specific areas of

misclassification.

Table 3 presents a detailed performance comparison of
the proposed Improved Swin Transformer V2 model
against several pre-existing architectures used in the
context of brain tumor identification. The newly
proposed model, featuring an enhanced attention
mechanism, outperformed all other models across
evaluation criteria achieving outstanding metrics with
98.97% accuracy, 98.75% precision, 98.51% recall, and
98.63% F1-score while maintaining a competitive
training time of 476.07 seconds. In comparison,
MobileVITV2 demonstrated strong performance with

an accuracy of 97.96%, precision of 97.67%, recall of
97.18%, and F1-score of 97.54%, but required more
training time than the proposed model. The Vision
Transformer (VIT) also performed well, achieving
96.07% accuracy with relatively higher training
time (1064.75 seconds), while DenseNet121 showed
commendable results with an accuracy of 93.20%
and a significantly shorter training time of 614.08
seconds. ResNet50 and MobileNetV3, although
exhibiting competitive accuracy (90.39% and 92.15%,
respectively), were less effective in precision, recall,
and F1-score compared to the top-performing models.
The evaluation highlights the effectiveness of the
proposed model, which not only delivers superior
classification metrics but also optimizes computational
efficiency. Its hybrid attention mechanism provides
a clear edge by simultaneously capturing both
fine-grained and broader contextual features, making
it a highly capable and reliable model for brain tumor
diagnosis.

Figure 7 presents representative classification
outcomes from the proposed model on test MRI
scans, effectively distinguishing between glioma,
meningioma, pituitary tumors, and non-tumor cases.
Each image includes the predicted label and its
associated probability score, with several predictions
reaching a confidence level of 1.0, reflecting the
model’s strong certainty. While these high-confidence
outputs highlight the framework’s discriminative
power, we further conducted a model calibration
analysis to assess the alignment between predicted
probabilities and actual classification accuracy. The
resulting confidence vs. accuracy curve confirmed
that the model maintains good calibration, making its
predictions more trustworthy in clinical settings. To
contextualize real-world deployment, we also discuss
challenges such as hardware requirements with the
model tested on dual RTX 3090 Ti GPUs and the
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Figure 7. Classification results of the proposed model on test MRI images, demonstrating accurate predictions for glioma,
meningioma, pituitary tumors, and no-tumor cases with high confidence scores, validating its effectiveness for brain

tumor classification.

need to address noisy or low-quality MRI data, which
remains a common limitation in practical scenarios.
These considerations are essential for translating the
model from research to clinical practice.

5 Conclusion
This research proposes a novel deep learning
architecture using the Improved Swin Transformer
V2 for the effective classification of brain MRI with
respect to tumor grades. The proposed model
effectively combines both the global and the local
feature extractions through such constituents as
Dual-Branch Down-sampling Module and Inverted
Residual Feed-Forward Network, which address some
of the major shortcomings of existing architectures.
Experimental results demonstrate the model’s
impressive performance in terms of measuring
precision, recall, F1-score, and accuracy in attaining
state-of-the-art metrics. Computational efficiency,
highlighted by smaller training times and progressive
scalability, establishes its applicability to the real
clinical domain. This work takes a step towards
brain tumor classification within the automated
systems while laying a foundational step in deploying
efficient deep learning solutions within the field
of medical imaging. However, we acknowledge
certain limitations observed during evaluation,
such as occasional misclassifications in pituitary
tumor cases, likely due to overlapping features with

non-tumor regions in grayscale-only MRI scans.
Additionally, the exclusive use of grayscale MRI data
introduces potential bias by limiting the model’s
exposure to richer imaging modalities. Addressing
these limitations will be a focus of future work,
including extending the framework to 3D MRI
volumes and integrating multimodal imaging data
such as PET-MRI, which can provide complementary
functional and anatomical information to enhance
diagnostic accuracy and clinical relevance.
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