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Abstract
The rapid accumulation of large-scale, long-term
meteorological data presents unprecedented
opportunities for data-driven weather modeling
and high-resolution numerical weather prediction.
While various deep learning techniques—such
as Long Short-Term Memory (LSTM), Recurrent
Neural Networks (RNNs), and Graph Neural
Networks (GNNs)—have been explored
for weather forecasting, the complex spatial
dependencies within historical meteorological
data, particularly dynamic spatial correlations,
remain insufficiently addressed. To tackle this
challenge, we propose a Dynamic Spatio-Temporal
Fusion Graph Network (DSTFGN), a novel module
that integrates multivariate time-series analysis
with graph-based causal inference to capture
intricate and time-varying interdependencies
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among weather variables. The DSTFGN
module fuses real-time inputs (e.g., sensor
data, live weather feeds, external events) with
historical records to model the propagation
of disruptions—such as accidents or road
closures—through the meteorological network.
By effectively capturing dynamic spatial-temporal
interactions, our approach significantly enhances
forecasting accuracy and supports adaptive weather
management strategies. Experimental evaluations
on two real-world datasets demonstrate that
DSTFGN consistently outperforms existing
baseline models across short, medium, and
long-term forecasting horizons.

Keywords: intelligent transportation systems, weather
forecasting, causal graph learning, spatio-temporal
attention, GCN.

1 Introduction
The advancement of Intelligent Transportation
Systems (ITS) is closely linked to the accuracy of
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urban weather forecasting, which has emerged as
a critical area of research. Rapid urbanization and
the growing number of vehicles have intensified
urban congestion, adversely impacting the daily lives
and productivity of city residents [1, 2]. Accurate
weather forecasting—particularly in urban settings is
essential, as it influences traffic flow, travel safety, and
infrastructure planning. However, achieving reliable
predictions remains a significant challenge due to
the inherent spatio-temporal complexity of urban
transportation networks and the dynamic interactions
between weather conditions and traffic behavior.

Researchers have increasingly focused on time-series
and spatial correlation analysis techniques to tackle
the challenges of weather forecasting, particularly
in capturing the spatio-temporal dependencies
within urban road networks. Early approaches
primarily relied on statistical time-series models
to extract temporal patterns, such as the Historical
Averaging (HA) model [3] and the Autoregressive
Integrated Moving Average (ARIMA) model [4].
Subsequently, Convolutional Neural Networks
(CNNs) were introduced to model spatial correlations
in grid-based weather and traffic networks [5, 6].
However, these CNN-based methods are limited
to Euclidean space representations and struggle to
accurately model the irregular and non-Euclidean
structure of transportation networks. To better
represent the complex topology of road networks,
Graph Neural Networks (GNNs) have gained
traction, as they provide a more flexible and powerful
framework for capturing intricate spatial relationships
in graph-structured data [7–10]. GNNs enable more
accurate modeling of interactions between road
segments, making them highly suitable for weather
forecasting in urban transportation systems.

Although Graph Neural Network (GNN)-based
approaches have shown promising predictive
performance in weather forecasting, several key
challenges remain. One major challenge is dynamic
spatial dependence: urban road networks are subject
to sudden and inherent changes due to factors such
as turning restrictions, points of interest, accidents,
and road maintenance. These changes can alter the
spatial topology of the network and subsequently
affect weather-related conditions on adjacent roads.
For example, Figure 1 illustrates the propagation of
weather phenomena (e.g., heavy rain, fog) through
an urban road network and their impact on traffic
flow dynamics, depicting a directed graph where
nodes represent intersections or sensor locations,

Figure 1. Weather propagation and impact on traffic flow.

and edges represent road segments, with arrows
indicating traffic flow direction. Adverse weather
conditions, such as heavy rain at Node A and fog
at Node C, propagate across the network, leading
to congestion and traffic slowdowns. Additionally,
road constraints—such as one-way streets and
no-turn zones—further influence these dynamics
by redirecting traffic and amplifying congestion.
Effectively modeling this complex causality requires
an advanced framework capable of capturing dynamic
spatio-temporal interactions, highlighting the need
for a more adaptive and context-aware forecasting
approach.
The need to more accurately capture the intricate
and dynamic nature of weather within urban
transportation networks has motivated the
development of this approach. Traditional forecasting
methods often fall short in modeling the complex
interplay between spatial and temporal factors
that influence urban weather patterns. Urban
road networks are highly susceptible to abrupt
and unpredictable events—such as accidents, road
closures, and evolving weather regulations—that
introduce non-trivial spatio-temporal dependencies.
To address these challenges, we propose an integrated
framework that combines gated dilated convolutions,
spatio-temporal attention mechanisms, and a fusion
graph learning module. The spatio-temporal attention
mechanism selectively emphasizes the most critical
temporal and spatial variations, while the fusion
graph learning module captures fine-grained spatial
interactions among road nodes. Together, these
components enable the model to represent and learn
complex, dynamic relationships across the network.
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This approach provides a more robust and accurate
framework for urban weather forecasting, which is
essential for improving real-time decision-making
in smart cities, enhancing weather-responsive traffic
management, and promoting more efficient urban
mobility. The major contributions of our work are as
follows:
• We propose DSTFGN, a novel model that

combines multivariate time-series analysis with
graph-based causal inference to improve weather
forecasting. Unlike traditional methods, DSTFGN
captures both dynamic spatial correlations and
temporal causality using adaptive graph learning,
Granger causality, and spatio-temporal attention.
This allows the model to adapt to real-time
changes and accurately predict future weather
conditions.

• Existing methods like RNNs and LSTMs focus
on temporal correlations but lack causal
understanding. We propose a causal graph
learning framework using Granger causality
to capture directionality and latency in
weather propagation. This enhances DSTFGN
accuracy and interpretability over traditional
correlation-based models.

• We evaluate DSTFGN on two real-world weather
datasets, where it outperforms ten state-of-the-art
baselines across MAE, MAPE, and RMSE. The
model excels at capturing long-term temporal
dependencies and dynamic spatial correlations. It
also maintains low computational cost, making it
ideal for real-time forecasting.

The rest of the paper is organized as follows: In
Section 2, we outline andmodel the problem statement.
The GCN model and the proposed DSTFGN method
are discussed in more depth in Section 3. Section 4
contains a discussion of extensive experiments and
comparisons. A detailed literature is provided in
Section 6. Finally, Section 7 concludes this work.

2 Problem Formulation
In this section, we formally present the weather
forecasting problem and provide a mathematical
explanation of the weather network concept.
• Dynamic Spatial Dependencies: Urban weather

networks are influenced by a variety of dynamic
factors, such as road closures, accidents, and
sudden changes in weather conditions. These
factors can alter the spatial structure of the

network, leading to complex and time-varying
interactions between nodes. Traditional GNNs
often rely on static adjacency matrices, which fail
to capture these dynamic spatial dependencies,
resulting in suboptimal predictions.

• Temporal Causality: Weather patterns exhibit
strong temporal causality, where changes in
one node can propagate to downstream nodes
with a time delay. Existing methods, such as
RNNs and Long Short-Term Memory (LSTM)
networks, primarily focus on capturing temporal
correlations rather than causal relationships. This
can lead to incorrect dependencies, as correlations
do not necessarily imply causation. For example,
a sudden drop in temperature at one location may
cause a delayed response in humidity levels at
a downstream location, which is not adequately
captured by correlation-based models.

• Heterogeneity in Spatio-Temporal Data:
Weather data is inherently heterogeneous,
with different nodes exhibiting varying patterns
of temporal and spatial influence. Some nodes
may be more influenced by their historical data,
while others may be more affected by interactions
with neighboring nodes. Existing methods often
treat all nodes uniformly, failing to account for
this heterogeneity, which can lead to inaccurate
forecasts.

We represent the urban weather network as a directed
graph G = (V, E ,A), where V = {v1, v2, . . . , vN}
denotes the set of sensor nodes or road intersection
nodes distributed across the weather network, with N
representing the total number of nodes. E represents
the set of edges connecting these nodes. The adjacency
matrix A ∈ RN×N encodes the relationships or
proximities between each pair of nodes.
Historical weather signal data can be represented as
a weather map feature vector Y ∈ RT×N×D, where
D denotes the feature dimension (e.g., temperature,
humidity, pressure). The historical graph signal at
time t is expressed as Yt ∈ RN×D.
The weather forecasting problem is framed as follows:
based on the graph G = (V, E ,A) and the historical
weather graph signals Y(t−T ):t over T time steps, the
goal is to predict weather signals for the next P time
steps by constructing a model f(·). Specifically, we
have:

[Y(t−T ):t,G] f(·)→ Ẑt,(t+P ), (1)
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where Y(t−T ):t = (Yt−T+1,Yt−T+2, . . . ,Yt) ∈ RT×N×D

and Ẑt,(t+P ) = (Ẑt+1, Ẑt+2, . . . , Ẑt+P ) ∈ RP×N×D.
We define the weather forecasting task as follows:
given a graph G = (V, E ,A) and historical weather
signals Y(t−∆T ):t over ∆T time steps, predict future
weather signals for the next ∆P time steps by learning
the function g(·). This is mathematically represented
as:

[Y(t−∆T ):t,G] g(·)→ Ẑt,(t+∆P ), (2)

where Y(t−∆T ):t = (Yt−∆T+1,Yt−∆T+2, . . . ,Yt) ∈
R∆T×N×D and Ẑt,(t+∆P ) = (Ẑt+1, Ẑt+2, . . . , Ẑt+∆P ) ∈
R∆P×N×D.

3 Model Framework
In this section, we provide a detailed description of the
spatio-temporal causal fusion graph neural network,
as illustrated in Figure 2.

3.1 Modeling Temporal Correlation Module
RNN-based methods have generally been used to
capture temporal correlations in earlier weather
forecasting research. However, these techniques
often face challenges such as gradient explosion
when modeling long-term temporal dependencies
and significant computational costs due to repetitive
processing. In contrast, CNN-based approaches
offer advantages such as gradient stability, parallel
processing, and simpler model architectures. This
research adopts an extended temporal convolution
technique, to address these challenges. By increasing
the depth of convolutional layers and gradually
expanding the receptive field, this approach enhances
the model’s ability to capture long-range temporal
correlations, which is crucial for accurate weather
forecasting. This strategy reduces processing costs
by enabling the temporal convolution to identify
long-term dependencies in weather sequences with
fewer layers. Moreover, non-recursive methods allow
for parallel processing, further decreasing operational
costs and temporal complexity. To improve the
handling of sequential data, we also incorporate a
gating mechanism to regulate the flow of information
into the spatio-temporal convolution. The temporal
gated convolutional network (TGCN) is defined as
follows:

ZTl = tanh(Wa,l ∗Zoutl−1 + b1)�σ(Wb,l ∗Zoutl−1 + b2) (3)

Zoutl = GRU(ZTl , Z
out
l−1) (4)

Y =

L∑
l=1

ZTl (5)

where ZTl ∈ RT×N×D denotes the output of the l-th
layer of the Gated Temporal Convolutional Network
(GatedTCN), where T is the number of time steps, N
is the number of nodes, andD is the feature dimension.
Wa,l andWb,l are the learnable parameters at layer l,
while b1 and b2 are the bias terms. The symbols a and
b represent filters and gates, respectively. The symbol
� denotes the Hadamard product, and ∗ represents
the convolution operator. Finally, σ(·) is the sigmoid
activation function.

3.2 Spatio-Temporal Fusion Graph Learning
The integrated Spatio-Temporal Fusion Graph
Learning (STFGL) is designed to capture the complex
spatial correlations and causal dependencies between
nodes. The STFGL consists of three sub-modules: the
causal graph learning, the adaptive graph learning,
and the spatial gated fusion module. The outputs
from the adaptive graph learning module and causal
graph learning at the l-th layer are represented as ZAGl
and ZCGl , respectively. Following the spatial gating
fusion process, the final output of the l-th layer from
the STFGL is denoted as ZSGl .
In a road network, weather conditions at each
node are influenced by weather information from
neighboring nodes, leading to causal interactions
between weather patterns across different locations.
Specifically, changes in weather at upstream nodes
can affect conditions downstream, potentially leading
to congestion. To accurately capture and quantify
these causal relationships in weather forecasting, we
propose a novel causal graph learning framework
based on Granger Causality Analysis (GCA). In
statistics, the Granger causality test [11] is used to
determine whether one time series can predict another,
revealing causal connections. In this study, we apply
Granger causality analysis to identify and uncover
the causal structure between weather conditions at
different road nodes within transportation time series
data, improving the accuracy of weather forecasts in
urban environments.
Specifically, we construct two regression models: the
partial model Zp and the full model Zf , which predict
the time series values yi and yj , respectively. The
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Figure 2. Framework of the proposed DSTFGN model.

primary difference between the two models is that
the full model includes the historical data from both
time series yi and yj , whereas the partial model only
incorporates the historical data of yj to predict yj(t)
(t = 1, 2, . . . , T). The regression models are defined
as follows:

Zf = α0 +

T∑
i=1

αi · yi(t) + εf (t) (6)

Zp = γ0 +

T∑
j=1

γj · yj(t) + εp(t) (7)

where Zf represent the output of the full regression
model, Zp denotes the partial regression model, yi, yj
represent the weather data at nodes i and j, while T
denote total number of time steps.
Next, by comparing the prediction errors of the
two models (Ep, Ef), we evaluate the impact of
the historical data of variable ai on the prediction
of variable aj . According to the Granger causality
hypothesis, if the lagged values of variable ai help
predict the future values of variable aj , then ai is
considered the Granger cause of aj . We employ
the F-distribution to test the statistical significance of
causal relationships between pairs of nodes as follows:

F =
(Qp −Qf )

(νf − νp)
·

Qf
(T − νf − 1)

(8)

where the variables Qp and Qf represent the degrees
of freedom for the regression parameters in the two
models, which define the number of parameters in
each model.
To reduce the time consumption of the Granger
causality test while preserving the temporal
characteristics of the raw weather data, this study
employs K-means clustering for preprocessing. We
use the raw weather data, after clustering, to perform
the Granger causality test and construct the causal
adjacency matrix AG, which is represented as follows:

AG =

{
1, if p < sig
0, otherwise. (9)

where pdenotes the p-value obtained from theGranger
causality test, which is used to determine whether the
null hypothesis in the hypothesis test can be rejected.
Additionally, sig represents the significance threshold.
In this study, we employ the causal adjacency
matrix AG as a prior graph structure to guide
the Graph Attention Neural Network (GANT) in
effectively utilizing causal insights and identifying
critical relationships between nodes. Additionally,
we incorporate a multi-head attention mechanism to
capture dependencies between nodes from different
subspaces. This approach enhances the model
expressive power by enabling parallel computation,
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which significantly reduces temporal complexity. The
process is outlined as follows:

αij =
exp

(LeakyReLU (aT [hi,hj ]
))∑

k∈Ni
exp (LeakyReLU (aT [hi,hk]))

, (10)

h̃i = σ

 1

K

K∑
k=1

∑
j∈Ni

αkijh
k
j

 , (11)

wherehi andhj represent the feature vectors of nodes i
and j, a is the learnable attention vector,Ni denotes the
neighbors of node i, LeakyReLU(·) is the Leaky ReLU
activation function,K is the number of attention heads,
αkij is the attention coefficient from the k-th attention
head, hkj is the feature vector of node j from the k-th
attention head, σ(·) is a non-linear activation function
(such as ReLU or sigmoid).
The weather states of different road nodes exhibit
significant dynamic interconnections in the spatial
dimension, which are crucial for understanding the
evolution of weather and making accurate predictions.
However, traditional graph neural network methods
typically rely on a predefined adjacency matrix based
on distance computation. While this matrix can
represent the spatial relationships between nodes,
it often overlooks the complex and dynamically
evolving spatial dependencies present in the node
attributes. We propose a node-adaptive learning
mechanism designed to thoroughly investigate and
understand potential associations among road nodes
at a fine-grained level. Specifically, instead of
relying on a fixed graph structure, this mechanism
dynamically adjusts and optimizes the connection
weights between nodes based on their individual
weather data (e.g., flow, speed, weather, density, etc.)
and their interactions. Through this process, we
generate an adaptive adjacency matrix Ãadm, which
more accurately reflects the real-time and dynamic
spatial dependencies between nodes.

Aadm = softmax (ReLU (Z1 · ZT2
)) (12)

where Z1 ∈ RN×d represents the embedding matrix
for the source nodes, while Z2 corresponds to the
embedding matrix for the target nodes. The spatial
dependencyweights between these nodes are obtained
by computing the product ofZ1 andZ2. The activation
function used is ReLU, and softmax is applied for
normalization.

We employ the GCN method to perform feature
aggregation on adaptive graphs. According to the
literature [31], the graph convolution process can
be accurately approximated in the spectral domain
using the expansion of the first-degree Chebyshev
polynomial. This approximation can also be applied
to GCNs in high-dimensional settings. Therefore, our
graph convolutional network can be represented as
follows:

Hl+1 =
(
IN + Ãadm

)
HlΘ (13)

where H l+1 represent feature matrix, I − N denotes
the identity matrix of sizeN , whileAadm represent the
adjacency matrix.
To select important spatial features more effectively
and enhance the model expressiveness, we employ
a spatially gated fusion mechanism to integrate two
input values, Hl

AG and Hl
CG, which are the outputs

of the AGL and CGL modules in the l-th layer,
respectively. The spatially gated fusion mechanism
is represented as follows:

Hl
S = σ

(
Gl
)
�Hl

AG +
(

1− σ
(
Gl
))
�Hl

CG (14)

Hl+1
S = LayerNorm

(
K∑
k=1

Wk

(
Hl

AG � αk

+(1− αk)�Hl
CG
))

+ BS

(15)

where H l+1
S represent the updated feature matrix at

next layer, H l
AG denotes output feature matrix from

the adaptive graph learning,K represent the number
of attention heads, while H l

CG represent the output
feature matrix from the convolutional graph learning.

3.3 Attention-Based Spatio-Temporal Module
In weather forecasting, we observe significant
variations in how different road nodes are affected
by weather flows across both the temporal and
spatial domains. Specifically, some nodes may be
more influenced by their own historical weather
patterns than by direct interactions with neighboring
nodes. To more accurately capture the unique
temporal and spatial change patterns at each node, we
designed an Attention-Based Spatio-Temporal (ABST)
module. As shown in Figure 3, the overall structure
of the ABST fully considers the individualized
characteristics of each node, enabling the model to
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capture spatio-temporal adaptive trends with high
precision at the node level. This allows for a more
accurate forecasting of weather conditions in urban
transportation networks. Additionally, we employ
the same graph node embedding method in both
HGLM and ABST to ensure consistency in modeling
the weather-related interactions across nodes.

Figure 3. Spatio-temporal attention module.

To obtain the graph node query vectorY = WY ZG, we
first apply a linear transformation to the graph node
embeddings through full connectivity. The weight
matrix WY ∈ Rd×D, and the query vectorQ ∈ RN×D.
Next, the output of the gated temporal convolution
network (TCN) Hl

T is transformed using the formula
Kl
T = Hl

TWkt , where Wkt ∈ RD×D is the weight
matrix that projects the outputHl

T from the gated TCN
into a D-dimensional space, obtaining the node’s key
in the time dimension. Similarly, the spatial dimension
key valuesWks ∈ RD×D are obtained by performing
a linear transformation on Kl

S = WksH
l
S , where Hl

S

is the output of the HGLM. We then compute their
attention scores as follows:

Xl
T =

exp(Xl
T)∑

r∈{T,S} exp(Xl
r)

(16)

Xl
S =

exp(Xl
S)∑

r∈{T,S} exp(Xl
r)

(17)

Hl = Al
S ·Hl

S + Al
T ·Hl

T (18)
where Xl

T ∈ RT×N×1 and Xl
S ∈ RT×N×1 represent

the attention scores of nodes in the spatio-temporal
dimensions, respectively. Both the output of the l-th
layer model and the output of ABST are denoted as
Hl ∈ RT×N×d, where d is the dimensionality of the
feature space.

3.4 Output Layer
To directly connect the output of each layer module
to the output layer, we employ skip connections.
The stacking of model layers expands the temporal
receptive field of the DSTFGN. Higher-layer blocks
capture long-term temporal weather information,
while lower-layer blocks focus on temporally adjacent
aspects. Skip connections are utilized to manage
spatial dependencies at various time scales. The
outputs of each layer in our model, denoted as Hout ∈
RT×N×D, are combined through summation after
applying the skip connections. Additionally, we
apply dimension-specific linear transformations to the
output sequence using two fully connected layers as
the output layers. The output layer is structured as
follows:

Z = ReLU(XoutWa + ba) ·Wb + bb (19)

where the variables W1 ∈ R(T×D)×C and W2 ∈
RC×(M×F ) represent the weight matrices. b1 and b2
are the bias terms. The output of the entire model is Z.
We use the mean absolute error (MAE) as the training
objective to minimize the prediction loss. This metric
evaluates the difference between predicted and actual
values, and is optimized via back-propagation using
the following equation:

loss =
1

N

N∑
i=1

∣∣∣Yi − Ŷi∣∣∣ (20)

where the term Yi represents the ground truth, while
Ŷi denotes the value predicted by our model.

3.5 Training Process of the DSTFGN model
The training procedure for DSTFGN is described in
Algorithm 1. Back-propagation is used to randomly
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initialize and optimize the trainable parameters of
the DSTFGN model. We apply a stochastic gradient
descent method to minimize the model loss function
through back-propagation. Furthermore, the dropout
technique is incorporated to enhance the efficiency and
overall performance of the proposed approach.

Algorithm 1: Training the DSTFGNModel
Input: Training dataX, labelsY, learning rate η,

epochs E, batches B, dropout rate p
Output: Optimized parameters θ
Initialize θ randomly;
for epoch = 1 to E do

for batch = 1 to B do
Forward pass:
Ŷ = ReLU(HoutW1 + b1)W2 + b2;

Apply dropout with rate p;
Loss: loss = 1

N

∑N
i=1 |Yi − Ŷi|;

Back-propagation: Compute gradients∇θ
of the loss;
Update: θ ← θ − η∇θloss;

end
end
return Optimized θ

4 Experiment
We evaluated the performance of our DSTFGN model
using real-world weather network data obtained from
Kaggle. This dataset includes weather data from 30
regions across the United States and Canada, covering
various parameters such as temperature, humidity, and
atmospheric pressure, with a sampling frequency of
one hour. As a result, there are 24 data samples per
day for each region. To standardize the input data, we
applied Z-score normalization. In our experiments,
we used 48 hours of historical data to predict the next
24 hours, meaning we leveraged the past 48 time steps
to forecast the next 24 time steps. Specifically, we used
humidity and temperature as the primary features
to assess the model performance. The training set
consisted of data from July to August 2017, while the
test set was derived from data from September 2017.
The details of the datasets are presented in Table 1.
Table 2 provides the system specifications used in our
experiments.
We use three widely recognized evaluation metrics
root mean square error (RMSE), mean absolute error
(MAE), and mean absolute percentage error (MAPE)
to assess the model performance. The formulas for
these metrics are provided below:

Table 1. Dataset details for DSTFGN evaluation.
Information Details
Source Kaggle
Regions 30 (US and Canada)
Parameters Temperature, Humidity, Pressure
Sampling 1 hour (24 samples/day)
Normalization Z-score
Training July-Aug 2017
Testing Sept 2017
Features Humidity, Temperature
Prediction 48 hours history, 24 hours forecast

MAPE =
1

T

T∑
t=1

∣∣∣∣yt − ŷtyt

∣∣∣∣ (21)

MAE =
1

T

T∑
t=1

|yt − ŷt| (22)

RMSE =

√√√√ 1

T

T∑
t=1

(yt − ŷt)2 (23)

where T represents the observed sample index, and
we have set T = 12 for our experiment.

Table 2. System specifications.

Component Specification

CPU 8x Intel Xeon E5-2680 v4 @ 3.80GHz
CUDA 12.0
cuDNN 8.0
RAM 512 GB
GPU 4x NVIDIA Tesla P100

4.1 Baselines Comparison
To conduct a comparative analysis of the proposed
model, we incorporated the following state-of-the-art
baseline methods into the evaluation.
• FC-LSTM [12]: Fully-Connected LSTM (FC-LSTM)

is a variant of the LSTM that incorporates
fully-connected layers, making it highly effective
for time series prediction tasks. By utilizing
a structure of fully-connected hidden units,
FC-LSTM improves the model’s memory and
expressive capabilities.

• DHSTNet [13]: This model proposed a unique
dynamic deep spatio-temporal neural network
model, called DHSTNet, which combines
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convolutional neural networks and long
short-term memory to simultaneously predict
crowd flows across different regions of a city.

• Transformer [14]: Due to its impressive sequence
modeling ability, the Transformer can also be
applied to time series forecasting tasks. By
utilizing self-attentionmechanisms and positional
encoding, the Transformer effectively captures
long-range dependencies in time series, resulting
in outstanding performance in time series
prediction.

• STGCN [15]: Spatial-Temporal Graph
Convolutional Networks (STGCN) are specifically
designed for weather prediction.

• DMFGNet: The objective of the proposed
DMFGNet model is to capture dynamic
spatio-temporal relationships between different
regions.

• Att-DHSTNet [16]: It addresses the dynamic
spatio-temporal dependencies of weather flows.
Temporal attention is employed to capture
the dynamic temporal aspects across various
time steps, while spatial attention is used to
emphasize the spatial relationships between
different locations.

• STSGCN [17]: Spatial-Temporal Synchronous
Graph Convolutional Networks (STSGCN) is a
model that combines data from multiple time
steps simultaneously and uses graph convolution
networks to effectively capture spatial and
temporal correlations in graph-structured data.

• DSTAGNN [18]: Dynamic Spatial-Temporal Aware
Graph Neural Network (DSTAGNN) is a model
that uses a data-driven dynamic spatial-temporal
perception graph, replacing the traditional static
graph typically used in conventional graph
convolutions. Furthermore, the model introduces
an improved multi-head attention mechanism,
integrated with multi-scale gated convolutional
layers, to capture both temporal and spatial
dependencies.

• STGSA [19]: The Spatial-Temporal Graph
Synchronous Aggregation (STGSA) model
is an innovative deep learning approach that
effectively captures both localized and long-term
dependencies through a specialized graph
aggregation method, improving the extraction
of spatial-temporal features. Additionally,

STGSA utilizes a multi-stream module to
process information from various representation
projections, aggregating the most relevant
features for precise forecasting

• AAtt-DHSTNet [20]: This model proposes a
method for aggregating data to anticipate weather
flows over the whole city in real-time.

• DSTFGN: This study proposes a model that
combines multivariate time-series analysis
and graph-based fusion causal inference to
reveal complex interdependencies between
weatherpatterns.

4.2 Hyper-parameters Settings
The PyCharm packages (version 3.1.0) are
implemented using the Keras library. Moreover,
all convolutions, fully connected layers are initialized
using the Xavier initialization. We also used batch
normalization and selected 64 as the mini-batch size.
There is a fixed learning rate (LR) of 0.001. To lessen
the issue of overfitting, the dropout rate is set at
0.25. To enhance the optimization of the proposed
method, we employ the renowned Adam optimization
technique to minimize the Euclidean loss. In addition,
70% of these datasets are divided into training sets,
10% into validation sets, and the remaining 20%
are used for test sets. We also select the optimal
model parameters based on their performance on the
validation set and subsequently apply them to the test
set to obtain the final prediction results. The training
process aimed for maximum accuracy, but without
validation data, there is a risk of overfitting.

4.3 Performance Comparison
Table 3 presents a comparison of the performance of
our DSTFGN model against several baseline models
in forecasting temperature and humidity data for the
next 24 hours using 48 hours of historical data. The
experimental results demonstrate that the DSTFGN
model outperforms the baseline models across the
temperature and humidity datasets, consistently
achieving lower MAE, MAPE, and RMSE values, as
indicated by the Improvement column (relative to
the best baseline AAtt-DHSTNet). For temperature
forecasting, these represent improvements of 8.18%
(MAE), 10.58% (MAPE), and 5.31% (RMSE). For
the humidity dataset, the DSTFGN model similarly
shows superior performance, with improvements
of 0.19% (MAE), 5.22% (MAPE), and 8.88%
(RMSE). These results highlight the DSTFGN model’s
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significant advantage in capturing the spatial-temporal
dependencies within weather time series data.

Additionally, the experimental results show that
baseline models like Transformer and FC-LSTM,
which only consider temporal connections without
taking advantage of a spatio-temporal network spatial
dependencies, have worse predictive accuracy on
the temperature and humidity datasets. Table 3
illustrates that baseline models that take spatial
dependencies into account, such STGCN and STSGCN,
perform better than the FC-LSTM and Transformer
models, which have higher values for MAE, MAPE,
and RMSE. In terms of experimental performance,
models with spatial awareness outperform models
that merely capture temporal dependencies because
they can capture the spatio-temporal linkages within
the data. Furthermore, FC-LSTM has drawbacks,
including the incapacity to identify spatial links in the
data, which limits its precision in situations where
spatial dependencies are essential, like as weather
forecasting. When working with long-term series data,
its performance may be impacted by its sensitivity
to input sequence length. Additionally, when
processing large datasets, FC-LSTM models often
have a high computational complexity. Conversely,
the Transformer model has its own set of difficulties.
The self-attention mechanism quadratic scaling with
sequence length causes it to struggle with excessive
memory consumption, despite its superior ability to
capture long-range temporal relationships. When
working with huge datasets or long-term series, this
reduces its effectiveness. Furthermore, Transformer
models application in tasks requiring both spatial
and temporal knowledge is limited since, like
FC-LSTM, they are not naturally able to record
spatial relationships. Finally, transformers are less
appropriate for issues with sparse or limited data since
they frequently need big datasets for efficient training.

Figure 4 visualizes the performance of eight models
across three standard metrics (MAE, MAPE, and
RMSE) for temperature forecasting. Each group of
bars represents a model, and each bar shows the
corresponding error or accuracy metric. It is evident
that DSTFGN consistently achieves the lowest errors
across all metrics, demonstrating its superiority in
capturing both spatio-temporal patterns. This clear
visualization helps in comparing model robustness
and selecting the most effective one for deployment in
real-time weather forecasting systems.

The results demonstrate that although the Transformer

Figure 4. Comparison of different models.

and FC-LSTM models are excellent at capturing
temporal dependencies, their predictive capabilities
are constrained when spatial connections are not taken
into account. However, models that combine temporal
and spatial information, such as STGCN and STSGCN,
are more equipped to identify intricate patterns in
the data, which improves the accuracy of practical
forecasting. This emphasizes how important it is to
take into account the geographical dependencies of
the monitoring station when forecasting time series.
The observed performance discrepancy underscores
the potential of spatio-temporal networks to increase
forecasting accuracy and the need to include spatial
dependencies when creating weather forecasting
models. Furthermore, FC-LSTM has drawbacks,
such as its inability to account for spatial links in
data, which might impair performance in tasks that
need both spatio-temporal knowledge. Furthermore,
FC-LSTM is sensitive to input sequence length, making
it less effective for handling long-term relationships
in big datasets. The Transformer model is effective at
capturing long-range temporal dependencies, but it
consumes a lot of memory due to the self-attention
mechanism, which scales quadratically with sequence
length. This can be especially challenging for
large-scale datasets. Furthermore, like FC-LSTM, the
Transformer does not capture spatial relationships by
default, limiting its efficacy in tasks requiring both
spatial and temporal awareness. Lastly, Transformer
models typically need large datasets to perform well,
making them less suitable for applicationswith limited
or sparse data.

While STSGCN generates spatio-temporal
synchronized networks to capture spatial-temporal
connections concurrently, it only considers local
spatial-temporal dependencies and ignores long-term
temporal dependencies. In contrast, our DSTFGN
model takes into account both short-term and
long-term temporal dependencies. Furthermore, our
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Table 3. Performance comparison of different models on the dataset (Improvement indicates % improvement of DSTFGN
over the best baseline AAtt-DHSTNet).

Dataset Metric FC-LSTM DHSTNet Transformer STGCN DMFGNet Att-DHSTNet STSGCN AAtt-DHSTNet Improvement (%)

Temperature
MAE 2.882 2.653 2.201 2.090 1.879 1.564 1.473 1.235 8.18
MAPE (%) 1.231 0.897 0.568 0.473 0.424 0.394 0.332 0.293 10.58
RMSE 3.604 2.894 2.456 1.892 1.587 1.475 1.398 1.338 5.31

Humidity
MAE 11.298 10.219 10.165 9.904 9.542 9.186 8.673 7.921 0.19
MAPE (%) 23.899 26.981 15.867 11.508 20.987 13.764 12.660 15.234 5.22
RMSE 14.247 11.349 11.955 10.321 9.998 9.887 9.657 9.432 8.88

model shows an enhanced construction of both the
static spatial adjacency matrix and the fusion graph
adjacency matrix. As a result, the experimental results
suggest that our DSTFGNmodel is strong and effective
at representing spatio-temporal interdependence.

4.4 Ablation Study
To better demonstrate the usefulness of each
component in our DSTFGN model, we conducted a
comparative analysis with different variation models
using a series of experimental assessments. The
settings for each variant are described in Table 4.
• Case 1: This variant does not use the maximum

information coefficient (MIC) to construct the
static spatial adjacency matrix. Instead, it solely
relies on Euclidean distance to build the adjacency
matrix.

• Case 2: This variant does not use the
Transformer-based self-attention mechanism
to capture short-term temporal dependencies
(STD).

• Case 3: This form creates a spatial-temporal
function graph without using the dynamic
time warping (DTW) technique. Specifically,
the spatial-temporal fusion graph is unique.
The structure is based on both the temporal
self-connection matrix and the static spatial
adjacency matrix.

• Case 4: This variant does not use spatial-temporal
graph fusion (STGF) to capture spatial-temporal
dependencies simultaneously.

• Case 5: This approach avoids using graph attention
networks to capture spatial dependencies (SD)
between individual nodes.

• Case 6: Our DSTFGN model includes all the
aforementioned modules.

According to the experimental results provided in
Table 4, eachmodule helps to improve the effectiveness
of our approach. This is further confirmed by the
visual representations in Figures 5 and 6, which

show a graphical study of the model performance
across various configurations. Figure 5 depicts the
ablation study findings for the temperature dataset,
highlighting the effect of each component on themodel
predicted accuracy. Figure 6 is a thorough graphical
representation of the ablation study results for the
humidity dataset.
When comparing different cases, particularly between
Case 2 andCase 5, it is observed that in the temperature
dataset, Case 2 outperforms Case 5 despite not
accounting for long-term temporal dependencies,
while Case 5 neglects spatial dependencies. This
suggests that, for temperature forecasting, the
importance of spatial dependencies for accurate
predictions outweighs that of long-term temporal
dependencies. When comparing multiple situations,
particularly Case 2 and 5, it is clear that, while
Case 2 does not account for long-term temporal
dependencies, it outperforms Case 5, which does not
include geographical connections, on the temperature
dataset. This shows that local dependencies are more
important for accurate temperature forecasting than
long-term temporal dependencies.
Case 3 significantly outperforms Case 4 in all
parameters, with lower MAE, MAPE, and RMSE
values. Using spatio-temporal fusion graphs can
help the model capture spatio-temporal relationships
and improve prediction performance. Based on
the results above, the following conclusions can
be drawn: When considering the construction
of the spatial adjacency matrix using MIC, the
Transformer-based self-attention mechanism, the
creation of the spatial-temporal fusion graph with
the DTW algorithm, and the use of graph attention
networks, our DSTFGN model delivers the best
performance in terms of prediction accuracy, achieving
the lowest MAE, MAPE, and RMSE values. This
demonstrates the effectiveness of incorporating these
modules to capture spatio-temporal dependencies
and enhance prediction performance. In contrast,
models that rely solely on Euclidean distance, ignore
long-term temporal dependencies, do not use the DTW
algorithm, or overlook spatial dependencies perform
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Table 4. Ablation experiment on different configurations of modules.

Name MIC STD DTW STGF SD Temperature Humidity

MAE MAPE (%) RMSE MAE MAPE (%) RMSE

case1 7 3 3 3 3 1.492 0.487 1.794 10.198 14.998 10.986
case2 3 7 3 3 3 1.693 0.487 1.986 9.982 17.189 11.197
case3 3 3 7 3 3 1.582 0.435 0.998 7.957 14.975 9.983
case4 3 3 3 7 3 1.701 0.542 1.992 8.967 17.992 10.893
case5 3 3 3 3 7 1.896 0.567 1.984 11.091 15.987 11.991
case6 3 3 3 3 3 0.923 1.061 1.476 7.982 13.994 8.897

poorly. Therefore, our DSTFGN model proves to be a
promising and effective choice for weather forecasting
tasks.

5 Discussion
5.1 Application Scenarios
The DSTFGN model, with its innovative approach
to weather forecasting, holds significant potential
for application across various industries. Its ability
to capture complex spatio-temporal relationships
makes it especially valuable in the agricultural sector,
where accurate weather forecasts are essential for
crop planting, growth, and harvesting. Farmers
can leverage this information to make informed
decisions about irrigation management and harvest
scheduling. Additionally, precise temperature and
humidity forecasts are crucial for energy demand
forecasting, as they enable energy companies to
optimize energy distribution and manage supply in
the heating, cooling, and power sectors.

5.2 Limitations
Despite its great potential, the DSTFGN model has
certain limitations. The performance of the model
heavily depends on the quality of the meteorological
data it receives. If the data contains numerous outliers
or missing values, its predictive capabilities can be
significantly compromised. In regions with sparse
distribution of monitoring stations, the model may
struggle to accurately capture spatial correlations
of weather features and may fail to reflect local
weather patterns with precision. Additionally, due
to the complexity of its self-attention and graph
attention network components, the model may require
significant computational resources, which could be a
constraint in resource-limited environments.

6 Related Work
We have divided this section into two sections: (i)
spatio-temporal prediction approaches, (ii) Causal
discovery.

6.1 Spatio-temporal models for weather forecasting
Weather forecasting involves analyzing atmospheric
data, such as temperature, wind speed, and humidity
[34]. Due to the significant temporal and regional
fluctuations in atmospheric conditions, weather
forecasting has always been a critical task [35].
Traditional forecasting methods rely on numerical
weather prediction (NWP), which uses complex
equations to model the atmospheric environment.
NWP requires large amounts of data and substantial
computational resources, and its ability to predict rare
events is limited [36]. Furthermore, NWP has shown
suboptimal performance in predicting short-term
weather conditions [37]. Today, weather forecasting is
primarily driven by computational methods, reducing
the labor-intensive nature of earlier approaches [38].
In recent years, artificial intelligence-based data-driven
models have been widely used in weather forecasting
[39].

Recently, the task of urban weather forecasting
has garnered significant attention and has been
widely researched [21, 22, 40]. Early studies used
convolutional neural networks (CNN) and recurrent
neural networks (RNN) to independently analyze the
spatial and temporal dependencies of road networks.
Later works have sought to integrate these methods
to capture the overall dynamics of weather flow.
For instance, [5] employed a spatio-temporal feature
selectionmethod to extract weather flow features, with
CNNsused for learning andprediction tasks. Similarly,
[23] combined convolutional LSTMs and bidirectional
LSTMs to adaptively capture the dynamic evolution of

269



ICCK Transactions on Advanced Computing and Systems

Figure 5. Results of ablation experiment on the temperature
dataset.

weather flow. However, these approachesmainly focus
on local spatio-temporal features and may not fully
capture the complex spatio-temporal dependencies
inherent in transportation network structures. In [1],
this work proposes a model with four components: (i)
closeness, (ii) period influence, (iii) weekly influence,
and (iv) external branch, each with varying weights,
which are fused to predict weather flow.
Recently, Spatio-Temporal Graph Neural Networks
(STGNNs) have shown exceptional effectiveness
in capturing intricate spatio-temporal correlations,
significantly advancing research inweather forecasting.

Figure 6. Results of ablation experiment on the humidity
dataset.

Li et al. [24] used diffusion convolution to accurately
capture spatio-temporal correlations and introduced
the STGCN, which applies spatial graph convolution
and temporal convolution to capture neighborhood
relationships between nodes and time-varying
trends. However, these methods are designed for
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predefined static adjacencymatrices and fail to capture
complex, dynamic spatio-temporal dependencies. To
address this limitation [25] developed the Dynamic
Graph Convolutional Recurrent Network (DGCRN),
which uses a super network to generate dynamic
graphs and combines them with static graphs to
dynamically represent the road network structure.
Similarly, [26] designed a spatial sentinel module
that dynamically adjusts information extraction by
reducing the influence of irrelevant road data based
on temporal and spatial attention mechanisms. In [27]
proposed the Randomized Graph Diffusion Attention
Network (RGDAN), which incorporates a graph
diffusion attention module to dynamically adjust
spatial relationship weights and a temporal attention
mechanism to extract temporal relationship weights.
While existing studies have yielded promising results,
they do not simultaneously address the influences of
temporal causal relationships and spatial dynamics in
the propagation of weather between road nodes.

6.2 Causal discovery
The subject of causal discovery has received great
interest, with pioneering contributions from multiple
disciplines. This includes statistical approaches
based on apriori knowledge and data-driven
correlation-based modeling. Granger causality testing
[11] is a well-established method for examining causal
relationships between variables through time series
forecasting. In [28] provided a summary of various
algorithmic variants used in Granger causality studies
in recent years, and outlined potential future research
directions. In weather forecasting, [29] introduced a
transmission mechanism based on spatio-temporal
Granger causality and a spatio-temporal arrangement
algorithm to model global transmission causal
relationships (TCR). Another noteworthy algorithm
is the PC algorithm [30], which uses independently
and identically distributed data for causal discovery.
PCMCI [31] extends this approach to large, nonlinear
time-series datasets by incorporating nonlinear
conditional independence tests. More recently, TCDF
[32] combined attention mechanisms with temporal
convolutional neural networks for data-driven causal
analysis. Causal analysis has been widely studied
across various fields [33]. However, few studies
have integrated causal analysis results into models
to enhance their performance. There is still a need
to develop effective methodologies for utilizing and
analyzing the results of causal discovery.

7 Conclusions and Future Work
In this paper, we introduce a Spatio-Temporal
Dynamic Fusion Graph Network (DSTFGN) model,
which leverages causal analysis to address urban
weather forecasting challenges. To tackle the
dynamic spatial dependencies and the temporal
causal effects present in weather scenarios, DSTFGN
integrates Granger causality theory with deep
learning techniques. This allows the model to
effectively capture spatial correlations and causal
relationships between road nodes using node attribute
features. Specifically, DSTFGN learns the causal graph
structure through Granger causality testing with
historical node lags, while concurrently learning the
adaptive graph structure based on node embeddings.
Additionally, the model addresses the heterogeneity
of road nodes through a spatial-temporal attention
module. Experimental results show that our model
performs exceptionally well on real-world datasets,
demonstrating its effectiveness in predicting complex
weather. In comparison to existing spatio-temporal
graph models utilizing graph neural networks, our
approach not only reduces the reliance on predefined
adjacency matrices but also explores dynamic
characteristics embedded in node data via dynamic
causal analysis, resulting in more accurate predictions.
Our future research could focus on improving
the model adaptability to real-time data, allowing
it to dynamically respond to emerging weather
patterns. This would be particularly beneficial
for generating more accurate short-term forecasts.
Additionally, exploring the application of the model
in other spatial-temporal forecasting domains, such
as public health, could be valuable. In this context,
spatial-temporal predictions could help forecast the
spread and velocity of infectious diseases, thus aiding
in the development of disease prevention and control
strategies. By addressing current limitations and
expanding into new application areas, the DSTFGN
model could evolve further to meet the changing
demands of various industries and contribute to a
broader range of fields.
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