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Abstract

This literature review examines the state of
Text-to-SQL technology, which translates natural
language queries into SQL. It analyzes rule-based,
neural, and hybrid approaches, assessing their
strengths and weaknesses, and surveys commonly
used datasets, benchmarks, and evaluation metrics.
The study identifies research gaps concerning
generalization, scalability, and interpretability,
and suggests integrating wuser feedback and
domain knowledge. To better understand the
implementation and potential improvements of
machine learning in this domain, we conducted a
systematic literature review (SLR) of publications
from 2015 to 2023. From 439 gathered papers, 23
were identified as highly relevant. The review
analyzes these works across four areas: (i) datasets
employed, (ii) evolution of learning methods, (iii)
development of evaluation procedures, and (iv) a
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meta-analysis of model performance. The findings
confirm significant room for improvement in
learning strategies. Persistent research gaps include
cross-domain generalization, schema linking for
complex databases, a lack of robust multilingual
models, and the trade-off between model accuracy
and interpretability. We propose future directions
such as integrating contrastive schema linking,
zero-shot/few-shot learning, explainability-driven
design, and developing diverse, large-scale
benchmarks that reflect real-world database
complexity.

Keywords: Text-to-SQL, systematic literature review,
natural language processing, meta analysis.

1 Introduction

In recent times, natural language interfaces have
become increasingly popular for querying databases,
as they provide a user-friendly and intuitive way for
non-experts to interact with complex data systems.
The technology that enables this interaction is
Text-to-SQL, which aims to translate natural language
queries into SQL queries that can be executed on
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a database [1]. Text-to-SQL has gained significant
attention from the research community, resulting
in numerous approaches and systems proposed
for improving its accuracy and usability [2-4].
However, despite these efforts, the technology still
faces significant challenges, including the lack of
generalization, scalability, and interpretability [6].
A systematic literature review is needed to provide
a comprehensive overview of the state-of-the-art
in Text-to-SQL research, including the existing
approaches, datasets, evaluation metrics, and research
gaps [4,5,7]. The review aims to identify the strengths
and limitations of current Text-to-SQL systems and
provide insights for future research in this field [8].
The review can serve as a valuable resource for
researchers and practitioners working on improving
the performance and usability of Text-to-SQL systems,
as well as for those seeking to develop novel natural
language interfaces for data systems [9].

To achieve the task of converting natural language
to SQL queries, researchers have used various
methods such as self-attention mechanisms,
bi-directional LSTMs, convolutional neural networks,
and pre-trained language models such as BERT
[10-13]. There are also two main approaches to SQL
generation: sketch-based and generation-based. The
former involves splitting the SQL generation process
into smaller prediction slots, while the latter involves
using decoder models such as Seq2Seq with attention
mechanisms [14]. Recent research has also focused on
tabular language models, which directly encode table
data and natural language text to improve parsing
accuracy [3, 15, 52]. While some earlier methods
relied on hand-crafted techniques, recent studies
have employed deep learning-based models without
hand-engineered grammar, which are trained on
large datasets of natural language sentences and
annotations [16]. However, the small size of some
datasets, such as SPIDER, which contains only 10,181
examples, has limited the accuracy of these models
[17]. Previous models trained on the SPIDER dataset
have primarily used a sequence-to-sequence approach,
resulting in relatively low overall accuracy [17].
Therefore, there is a need for larger and more diverse
datasets to improve the accuracy of Text-to-SQL
systems [18], given that current benchmarks like
SPIDER contain only 10,181 examples, which limits
model generalization capabilities.

Systematic literature review (SLR) has a significant
role in meta-analysis, which is the process of
combining quantitative data to synthesize evidence

Meta-
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Systematic literature

review
(Collecting, Reviewing,
Presenting)

Figure 1. Relationship of SLR and meta-analysis

[19]. It is also known as research synthesis, pooled
analysis, or quantitative review [19]. Meta-analysis
uses observational data to answer specific, pre-defined
research questions and to identify variations in studies,
gaps in knowledge, and future research needs [19].
Meta-analysis can identify heterogeneity in research
and data limitations [19]. The availability of datasets
and their statistics is an essential factor in improving
the accuracy and performance of language models
[20]. Sparse data in a domain is excellent for
training, but cross-domain datasets are often used in
such cases [21]. In the following sections, we will
discuss the dataset and its statistics in more detail
[22]. The second research topic focuses on the core
architecture of the models, and recent advancements in
encoder and decoder models, such as large Pre-trained
models, including Zero-Shot and few-shot learning,
have been found to be useful in this area [23].
Table 1 summarizes data-extraction strategies and
their implications, providing a clear specification of
expectations and results [15].The relationship of SLR
and Meta-analysis is shown in Figure 1

2 Research Methodology

The systematic literature review conducted for this
investigation involved the development of a review
methodology that aimed to address the research
questions. In contrast to a traditional literature review,
the review methodology was accompanied by selection
and rejection criteria that assessed each primary study
and a defined search strategy that was comprehensive
and unbiased. Quality evaluation criteria were
employed to assess the information from each
study. The review methodology was also crucial for
conducting a quantitative meta-analysis. Additionally,
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the systematic literature review provided a foundation
for identifying research gaps in the chosen field and
for positioning new research endeavors.

A preferred reporting item for systematic reviews
and meta-analyses (PRISMA) approach as shown in
Figure 2 was utilized to conduct a comprehensive
systematic literature review, where papers were
assessed based on relevance, publication date, and
framework accuracy. In total, 439 papers were sourced
from various databases, with an additional number
included as part of this study. Our focus was on
linguistic models, specifically big language models,
evaluation metrics, dataset availability, and outcomes,
as we examined trends and main challenges in this
research area. Figure 2 illustrates the review structure
definition. To reduce bias, we searched databases
such as Google Scholar and included journals and
conferences, resulting in a complete collection of
pertinent literature without limiting it to a particular
research approach. The initial database yielded 438
publications, which were screened and filtered based
on several criteria, including publication year and topic
relevance, as depicted in Figure 1.

Records identified through
database searching (n = 439)

Y

Records after duplicates
removed (n = 392

Y

Records screened

(n =392
Y
Full-text articles . Records
assessed » excluded
(n=74 (n=318

Y

Studies included in review
(n=23

Figure 2. PRISMA Flow Diagram for Study Selection in the
Systematic Literature Review.

2.1 Selection OR Rejection Criteria

To fulfill the objectives of the systematic literature
review (SLR), certain criteria were established for
selecting or rejecting research articles:

(i) Language modeling and the Text-to-SQL model
must be the focus of the chosen research studies.

(ii) This SLR requires selected research studies to be
published between 2015 and 2023.

(iii) All research studies chosen for this SLR must be
from any reputable journal.

(iv) No duplicate research studies are chosen and if
found research was discarded.

The PRISMA Flow Diagram provides a transparent
overview of the literature selection process followed
in this systematic review. Initially, 439 records
were identified through comprehensive database
searches. After removing duplicates, 392 unique
records remained. These were screened based on their
titles and abstracts, resulting in the exclusion of 318
records that did not meet the inclusion criteria. The
remaining 74 full-text articles were assessed in detail
for eligibility. Following this rigorous screening, 23
studies were ultimately included in the review. This
process ensures that the final selection of literature
is both methodologically sound and relevant to the
research objectives.

2.2 Data Extraction and Synthesis

The data extraction process followed the PRISMA
guidelines as illustrated in Figure 3. Table 1 presents
a depiction of how data extraction and synthesis are
employed to answer research inquiries. The process
of data extraction involves selecting and rejecting data
based on specific criteria to obtain the most relevant
and pertinent information. In the second section of
the table, the bibliography was the first to be extracted,
followed by significant findings such as methodology,
pre-training [57], fine-tuning, and outcomes.

2.3 Protocols for Research

The following two issues are the most concerning to
the reliability of this review:

(i) Study selection bias and potential errors in data
extraction and processing.

(ii) The search technique, literature sources, selection
criteria, and quality criteria all have an impact on how
studies are chosen.
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Figure 3. PRISMA data extraction.

We did our literature search using numerous databases,
and we describe the search approach we employed in
detail so that it may be duplicated in the future. As the
initial stage in our search approach, we employed the
publication title filter. We only searched for primary
research that was primarily focused on finding subjects
using predetermined search phrases. As a result,
research that recommends new technologies often
has page criteria of 5. The wide list of included
research, on the other hand, illustrates the scope of our
search. Duplicate primary investigations are avoided
by removing grey literature and workshop papers from
the literature evaluation.

2.4 Analysis Objective

Determine which empirical research is essential to the
process of transforming text to SQL. Using a list of
relevant keywords, we retrieved all papers and filtered
the results down to just studies published in the recent
10 years. Articles with inappropriate comments are
then deleted. The search results are organized further,
and the publications are categorized depending on the
methodologies and datasets employed.

2.5 Research Questions

The literature review for this study focuses on
answering RQ1, which aims to identify the most recent
Text-to-SQL models in the literature. RQ2 examines

Table 1. Research Descriptions and Outcomes.

Sr. Description Details

no.

1 Bibliographic =~ Authors, title, research type,

data publication year, and so on.

2 Methodology =~ The primary goal of our
research is to extract the
paper’s methodology.

3 Pretraining Pretraining  structure is
thoroughly examined.

4 Fine-tuning Fine-tuning structure of each
study is thoroughly analyzed.

5 Dataset Datasets used in the selected

studies are identified.

the Machine Learning Setup and is divided into
four sub-questions, namely: RQ2.1, which explores
the independent factors considered in Text-to-SQL
conversions; RQ2.2, which investigates the approaches
used for completing the Text-to-SQL task; RQ2.3,
which looks at the algorithms used for Text-to-SQL
conversion; and RQ2.4, which analyzes the training
methodologies proposed in the literature.

RQ3 investigates the Evaluation Setup used in
Text-to-SQL conversion research. The sub-questions
include RQ3.1, which explores the validation
approaches used; RQ3.2, which examines the
assessment metrics used to evaluate Text-to-SQL
models; and RQ3.3, which identifies the datasets
considered.

RQ4 focuses on Performance Meta-Analysis and
includes three sub-questions: RQ4.1, which
identifies the most effective independent variables for
Text-to-SQL conversion; RQ4.2, which examines the
effect of machine learning algorithms on Text-to-SQL
prediction model performance; and RQ4.3, which
investigates the impact of training strategies on
Text-to-SQL prediction model performance. These
sub-questions provide insight into the factors that
contribute to the success of Text-to-SQL models and
can guide future research efforts to improve their
performance.

Following the PRISMA protocol and selection criteria,
we identified 23 highly relevant studies for in-depth
analysis. Table 3 provides a representative sample
of these studies, showcasing the diversity of authors,
research focus, and datasets used in the selected
literature.

To provide a comprehensive overview of the research
framework, Table 2 summarizes the breakdown of all
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Table 2. Breakdown of research questions and their objectives.

Research Question

Motivation

RQ 1 - Literature Review

RQ 1: What is the current state of the art for Text-to-SQL
learning techniques as presented in existing literature?
RQ2 - Learning Techniques

RQ 2.1: Which factors have been taken into account as
independent variables in Text-to-SQL conversion tasks?
RQ 2.2: What techniques have been explored to carry
out the Text-to-SQL task?

RQ 2.3: Which algorithms have been utilized for the
conversion of Text-to-SQL?

RQ 2.4: What are the proposed approaches for
training Text-to-SQL conversion models according to
the literature?

RQ 3 - Evaluation Metrics

RQ 3.1: What methods have been employed to validate
Text-to-SQL models in the literature?

RQ 3.2: What metrics have been utilized to evaluate the
efficacy of Text-to-SQL models?

RQ 3.3: Which datasets have been utilized in
Text-to-SQL research?

RQ 4 - Meta-Analysis

RQ 4.1: What are the independent variables that have
shown better performance for Text-to-SQL conversion
according to the literature?

RQ 4.2: To what extent does the choice of machine
learning algorithm impact the performance of
Text-to-SQL prediction models?

RQ 4.3: How does the choice of training strategy impact
the performance of Text-to-SQL prediction models, as

To explore the current state-of-the-art of the
Text-to-SQL conversion.

The aim of this analysis is to examine previous
research on machine learning approaches
in Text-to-SQL tasks, including the use of
independent and dependent variables, machine
learning algorithms, and training methodologies.

To investigate the techniques used to validate
the Text-to-SQL methods proposed, assess their
precision, and scrutinize the source code projects.

The study aims to examine how different
variables, machine learning methods, and training
techniques affect the effectiveness of Text-to-SQL
models.

reported in the literature?

research questions and their corresponding objectives,

motivations, and mapping relationships discussed in
this systematic review.

3 Discussion

After applying the review protocol, we studied
the characteristics of the publications focused on
Existing models, Datasets used in the training, training
protocols, encoder-decoder techniques, evaluation
metrics, and model structure. The systematic mapping
of research questions to their corresponding findings
is presented in Table 4, which serves as the analytical
framework for this discussion section.

In this section, we will explore the studied
characteristics of the literature. The table maps
the research questions to their corresponding answers
and findings.

3.1 Technical Evolution and Trends in Text-to-SQL

Based on our analysis of the 23 selected studies,
several key technical trends emerge in the evolution of
Text-to-SQL systems:

Models vary in their ability to perform schema
linking, especially for unseen or unfamiliar databases.
Methods such as RAT-SQL integrate relation-aware
encoders, while models like SQLova use grammar
constraints for increased precision. However, large
LLMs such as Codex may outperform traditional
models in semantic alignment, but they lack built-in
schema awareness [53], making them prone to
hallucination unless tightly constrained or fine-tuned.

Transformer-based encoders have largely replaced
earlier BILSTM models due to their superior ability
to model global context and parallelize computation.
These encoders capture long-range dependencies more



ICCK Transactions on Advanced Computing and Systems

ICJK

Table 3. Sample study from the Literature.

ID Authors Title Dataset

S1 Bais et al. [10] Querying databases in French Unknown

52 Zhong et al. [15] Structured queries using reinforcement learning WikiSQL

S3 Xu et al. [23] Queries without reinforcement learning WikiSQL

S4 Herzig et al. [16] SQlizer from natural language MAS, IMDB, YELP

S5 Wang et al. [26] Pointing out SQL queries WikiSQL

S6 Yuetal. [17] TypeSQL: knowledge-based, type-aware neural SQL WikiSQL

57 Dong et al. [33] Coarse-to-fine decoding for semantic parsing GEOQuery; ATIS;
WikiSQL

S8 Caietal. [31] Arabic NL interface for querying RDBs Unknown

S9 Shi et al. [11] IncSQL with non-deterministic oracles WikiSQL; filtered
ATIS

510 Hwang et al. [30] Table-aware contextualisation on WikiSQL WikiSQL

S11 He et al. [46] X-SQL: schema representation WikiSQL

512 Wang et al. [47] Execution-guided decoding for robustness WikiSQL; ATIS;
GEOQuery

S13 Lee [48] Clause-wise decoding for complex generation Spider

514 Yuetal. [3] SyntaxSQLNet with syntax trees Spider

515 Lin et al. [49] Grammar-based neural generation Spider

516 Bogin et al. [34] Graph neural networks for schema Spider

517 Liang et al. [32] Learned code idioms for semantic parsing Spider

Table 4. Mapping of research questions to their findings

Sr. Research Questions Mapping
No.
1 RQ 1: Literature Section: State-of-art
Considered Models
2 RQ 2: Machine Section:
Learning Setup Encoder-Decoder
Techniques and
Dataset
3 RQ 3: Evaluation Section: Evaluation
Setup Metrics
4 RQ 4: Section:
Performance-Meta Meta-Analysis
Analysis

effectively, improving the representation of complex
input queries.

On the decoding side,
autoregressive to
While template-based decoders offer stronger
syntactic control, they often struggle with unseen
or compositional queries. Autoregressive decoders
provide more flexibility but may produce invalid SQL
structures when constrained supervision is lacking.

models range from

The observed performance trends suggest a paradigm
shift from rule-based and early neural models toward
large pretrained transformers. While these models
offer improved fluency and generalization, they
introduce trade-offs in terms of interpretability and
schema grounding. Furthermore, our review reveals

template-guided  generation.

that many evaluation metrics do not capture real-world
query complexity or domain adaptation challenges.
Thus, future work must consider hybrid metrics,
benchmark expansion, and cross-lingual capabilities
to bridge this research-to-application gap.

3.2 State-of-the art (SOTA) models

This section answers the research question review
all the state-of-the-art model and will conclude with
the answer to research question 1 which explore the
literature in the context of the model used for achieving
the task of Text-to-SQL. For the model study, we
studied the encoding-decoding methodology along
with the parsing of sequences, limitations, and
challenges in them.

3.2.1 Sequence-to-SQL (Seq2SQL)

In 2017, a model called Seq2SQL was introduced to
generate SQL queries from natural language questions.
It comprises an encoder-decoder structure, in which
a bidirectional LSTM neural network serves as the
encoder to analyze and encode the input question
into a series of hidden states. The decoder is an
LSTM neural network that generates the SQL query
step by step, using the previous tokens and the input
question. To highlight the important parts of the input
question, the model employs an attention mechanism
to calculate a weighted average of the encoder’s hidden
states based on the present decoder’s hidden state.
However, Seq2SQL is limited in its ability to handle
more complex SQL queries, such as those that require
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multiple sub-queries or intricate joins. Additionally,
a significant amount of training data is required for
the model to learn the relationship between natural
language questions and their corresponding SQL
queries effectively [54].

3.2.2 SQLNet

The model is an encoder-decoder architecture,
however, it takes a different approach than
Seq2SQL. Instead of an LSTM-based encoder-decoder
architecture, SQLNet predicts the SQL query from the
input question using a multi-layer perceptron (MLP).
When constructing the SQL query, the SQLNet model
additionally employs a column attention method to
assist it in focusing on the important columns in the
database. The column attention method, in particular,
computes a weighted sum of the columns depending
on the current decoder hidden state, giving more
weight to the columns most important to the current
decoding phase. SQLNet has the benefit of being
able to handle more complicated SQL queries than
Seq2SQL [15]. Furthermore, SQLNet requires less
training data than Seq2SQL since it may use database
schema knowledge to increase prediction accuracy.
SQLNet may still struggle with more sophisticated
queries using nested sub-queries or complex database
structures.

3.2.3 Intermediate Representation (IRNet)

The model’s architecture is made up of three major
components: a natural language parser, a schema
encoder, and a query decoder. The natural language
parser is in charge of parsing the input question and
converting it into a parse tree, which is a structured
representation of the input question. The parse tree
is used to extract crucial information including table
names, column names, and logical operators, which
are then passed on to the model’s other components.

The schema encoder is in charge of converting database
schema information, such as table and column names,
into vector form. The query decoder component then
uses this vector form as input.

The query decoder component generates the SQL
query based on the supplied question and the encoded
database schema information. When creating the SQL
query, the query decoder employs an attention method
to pay attention to important sections of the input
question and database structure.

One of IRNet’s [6] primary benefits is that it can
handle more sophisticated SQL searches with nested
sub-queries or more elaborate database structures.

Furthermore, using a parse tree format allows the
model to explicitly simulate the syntactic structure of
the input query, which can assist increase prediction
accuracy. IRNet, on the other hand, may still suffer
from queries involving sophisticated joins or nested
aggregates.

3.2.4 SpiderSQL

The model is a bidirectional LSTM network
encoder-decoder design. The Spider model [24]
includes numerous innovative components that
are intended to manage the task’s problems. The
model, for example, has a schema linkage module
that connects each word in the input question with
a matching column or table in the database schema.
This enables the model to incorporate important
database schema information more effectively when
constructing the SQL query.

A copy mechanism is also used by the Spider model to
directly copy relevant terms from the input question
to the output SQL query. This enables the model to
handle scenarios in which the SQL query is a direct
translation of the input question, as opposed to a more
sophisticated query requiring many tables or joins.

The Spider model also employs a set of SQL-specific
decoding rules to verify that the resulting SQL query
is syntactically correct. These decoding rules contain
limitations such as ensuring that the columns chosen
are valid and that the join requirements are defined
appropriately.

Overall, the Spider model is designed to perform
complicated SQL queries with several tables and joins,
and it has achieved state-of-the-art Text-to-SQL results
on various benchmark datasets.

3.2.5 SQLova

The model is made up of a hierarchical
encoder-decoder design, with the encoder being
a two-layer bidirectional LSTM network and the
decoder being another two-layer LSTM network.

The SQLova model [17] has many main components
that are intended to address the task’s problems. The
model, for example, has a schema linkage module
that connects each word in the input question with
a matching column or table in the database schema.
This enables the model to incorporate important
database schema information more effectively when
constructing the SQL query.

In addition, when creating the SQL query, the SQLova
model employs a sequence-to-set attention mechanism
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that pays to important words in the input question as
well as the associated database schema components.
As a result, the model may better represent the links
between the various items in the input question and
the database design. To verify that the resulting SQL
query is syntactically legitimate, the SQLova model
employs a set of SQL-specific decoding rules. These
decoding rules contain limitations such as ensuring
that the columns chosen are valid and that the join
requirements are defined appropriately.

Overall, the SQLova model is designed to handle
complex SQL queries with multiple tables and joins,
and has achieved state-of-the-art results on several
benchmark datasets for the task of Text-to-SQL.
Additionally, the hierarchical architecture of the model
allows it to better capture the relationships between
different elements in the input question and the
database schema, which can help improve the accuracy
of the predictions.

3.2.6 Relation-Aware Schema Encoding and Linking for
Text-to-SQL Parsers (RAT-SQL)

RAT-SQL [25] is a contemporary approach for
Text-to-SQL conversion, which is used for translating
natural language queries into SQL queries. The model
comprises of two primary components: a question
encoder and a SQL query decoder. The question
encoder is based on a bi-directional LSTM network that
is capable of capturing both forward and backward
context of the input question to encode its meaning
into a fixed-length vector. The SQL query decoder uses
a SQL-specific GNN that constructs the SQL query
from the encoded question vector and a SQL parse
tree. RAT-SQL employs an RL technique to provide
feedback based on the accuracy of generated SQL
queries, allowing the model to learn from its mistakes
and improve over time. With the use of RNNs, GNNs,
and RL, RAT-SQL demonstrates promising outcomes
for Text-to-SQL conversion, making it a viable choice
for real-world applications.

3.2.7 GraphSQL

The model leverages the power of graph neural
networks (GNNs) to encode both the question
and the database schema in a unified graph
representation.  The GraphSQL model consists
of two major components: a question encoder and a
SQL query decoder. The question encoder is based
on a combination of convolutional neural networks
(CNNs) and GNNs, which are used to encode
the input natural language question into a graph
representation. Specifically, the CNNs are used to

extract local features from the question, while the
GNN s are used to encode the global relationships
between different words and entities in the question.
The SQL query decoder of GraphSQL is also based
on a GNN, which is used to generate the SQL query
from the graph representation of the question and
database schema. The GNN takes as input a graph
representation of the SQL query syntax and traverses
the graph to generate the corresponding SQL query.

One of the key strengths of the GraphSQL model is its
ability to handle complex queries involving multiple
tables and relationships between them. By encoding
both the question and the database schema in a unified
graph representation, the model is able to capture the
complex relationships between different entities in the
question and the corresponding tables and columns in
the database.

Overall, GraphSQL is a promising approach to the
task of Text-to-SQL, as it leverages the power of graph
neural networks to accurately encode natural language
questions and database schemas in a unified graph
representation. The model is able to handle complex
queries involving multiple tables and relationships
between them, making it a strong candidate for
real-world applications.

3.2.8 PICARD - Parsing Incrementally for Constrained
Auto-Regressive  Decoding  from  Language
Models [26]

PICARD model [26] is designed to address the
problem of generating structured output sequences
that satisfy complex syntactic and semantic constraints.
It uses an auto-regressive decoding strategy to
generate output sequences incrementally, while also
incorporating a parser to ensure that each step in the
decoding process satisfies the specified constraints.
The model uses a two-stage training approach, where a
pre-training stage is used to train a large-scale language
model, followed by a fine-tuning stage to optimize
the model for specific tasks. During fine-tuning, the
model is trained to predict both the next token in the
output sequence and the parsing actions that need to
be taken to ensure that the output sequence satisfies
the specified constraints.

3.2.9 TAPEX (Table Pre-training via Learning a Neural
SQL Executor)

TAPEX is a model developed by researchers from
Carnegie Mellon University and Facebook AI that
pre-trains on tables and executes SQL queries [27].
The model has two main components: pre-training
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and fine-tuning. The pre-training component uses a
neural network to predict the outcomes of SQL queries
on tables by taking into account the structure of the
table and the query. The fine-tuning component is
used to fine-tune the pre-trained model for specific
downstream tasks like Text-to-SQL conversion. During
fine-tuning, the model is trained on labeled data to
predict SQL queries given natural language questions
or other inputs. The TAPEX model stands out
for its ability to pre-train on a large corpus of
tables and SQL queries, enabling it to execute SQL
queries more accurately than models trained only
on plain language data. To enhance the quality of
the pre-trained model, the pre-training component
uses techniques such as data augmentation, negative
sampling, and domain-specific normalization. As
a result of pre-training on tables and SQL queries,
TAPEX can learn more effectively and efficiently,
leading to state-of-the-art results on a variety of
downstream tasks.

3.2.10 SeaD: End-to-end Text-to-SQL Generation with
Schema-aware Denoising

SeaD (End-to-end Text-to-SQL Generation with
Schema-aware Text-to-SQL Generation Denoising) is
a neural network-based approach that generates SQL
queries from natural language inquiries from start to
finish. Researchers from Carnegie Mellon University
and the University of Washington proposed it in a
research article. The SeaD model is made up of two
primary parts: a denoiser and a SQL generator. The
denoiser is in charge of cleaning up the input question
and deleting any extraneous or distracting data. This
is accomplished by using the table structure, which
adds context and limits the sorts of queries that may be
created. The SQL generator component then constructs
the matching SQL query from the denoised question.
The generator has a transformer-based design with
encoder and decoder components to capture the
intricate links between the input question and the
destination SQL query. The SeaD model is optimized
during training using a mix of maximum likelihood
estimation and reinforcement learning. As a result,
the model is able to properly manage the trade-off
between creating grammatically good SQL queries and
ensuring that they are semantically right and valid in
relation to the table structure. SeaD can successfully
handle noisy and ambiguous input questions and
create correct and acceptable SQL queries that fulfill
the restrictions of the database schema by including a
schema-aware denoiser.

3.2.11 SADGA: Structure-Aware Dual Graph Aggregation
Network for Text-to-SQL

SADGA (Structure-Aware Dual Graph Aggregation
Network) [30] is a neural network-based model used
in Text-to-SQL jobs to generate SQL queries from
natural language inquiries. Tsinghua University
and Microsoft study Asia researchers introduced
the idea in a study article. The SADGA model is
intended to manage the complicated structure of
input questions and SQL queries, which frequently
have several components and subqueries. The model
includes a dual graph aggregation network that
successfully captures the interactions between the
different input and output structure components.
A question graph and a SQL graph comprise the
dual graph aggregation network. The structure of
the input question is represented by the question
graph, while the structure of the output SQL query
is represented by the SQL graph. The model then
employs a number of graph convolutional layers to
successfully collect information from each graph’s
numerous nodes and edges, allowing it to represent
the intricate connections between the input and output
structures. The SADGA model is optimized during
training using a combination of cross-entropy loss and
execution accuracy, allowing it to effectively balance
the trade-off between generating grammatically correct
SQL queries and ensuring that they are semantically
correct and executable on the underlying database.
Overall, the SADGA model has performed admirably
in a variety of tests and benchmarks, and it represents
a substantial advancement in the field of Text-to-SQL
generation. SADGA is able to manage the intricate
connections between the input and output structures
and create accurate and valid SQL queries that fulfill
the restrictions of the underlying database by using a
structure-aware dual graph aggregation network.

3.3 Encoding-Decoding Techniques

This section answers the research question review
all the machine learning setup and will conclude
with the answer to research question 1 which will
explore the machine learning setup in the context of
the encoding-decoding techniques in detail used in
the models along with the datasets, challenges, and
limitation in them.

3.3.1 Encoding Techniques

In the context of machine learning and natural
language processing (NLP), the act of transforming
text-based information into numerical values is known
as encoding. The purpose of encoding is to restructure
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unorganized text data into a structured format that
can be digested and processed by machine learning
algorithms. There exist several encoding methods that
have been utilized in recent algorithmic developments.

Transformer-based Encoders The
transformer-based encoder is a novel neural
network architecture introduced by Cai et al. [31]
in their 2017 paper "Attention Is All You Need."
It is commonly used for sequence-to-sequence
applications such as text summarization, machine
translation, and question-answering, including
Text-to-SQL. Transformer-based encoders contain
several self-attention layers and feed-forward neural
networks.  Self-attention enables the model to
gain contextual information from the input text by
attending to various parts of the text. Feed-forward
neural networks help transform the encoded
information into a structured format suitable for
downstream applications. During the encoding
process, each input token is transformed into a dense
vector representation, which is then fed through the
self-attention layer. The self-attention layer calculates
a weighted sum of all input vectors, where the weights
depend on the similarity between each input vector
and all the other input vectors. This allows the model
to grasp the relationships between various tokens
in the input text. The output from the self-attention
layer then proceeds through a feed-forward neural
network, which applies a non-linear transformation
to the input vector. This process is repeated several
times, with each subsequent layer building on the
output from the preceding layer. The final output of
the Transformer-based encoder is a fixed-length vector
representation of the input text, which can be utilized
as input for downstream tasks like Text-to-SQL.
The Transformer-based encoder has demonstrated
exceptional performance on a range of NLP tasks,
including Text-to-SQL. While Transformer-based
encoders have shown impressive results in various
NLP tasks, including Text-to-SQL, they also have some
limitations in this context. Some of the limitations of
Transformer-based encoders in Text-to-SQL are:

(i) Limited ability to model sequential information:
Unlike RNNSs, which have a natural ability to model
sequential information, Transformer-based encoders
do not have an explicit recurrence and are limited in
their ability to capture sequential dependencies. This
can be a limitation in Text-to-SQL, where the order
of the input tokens may be important for accurately
predicting the corresponding SQL query.
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(ii) Difficulty in handling out-of-vocabulary (OOV)
tokens:  Transformer-based encoders rely on
pre-trained word embeddings to represent input
tokens. However, when the input text contains OOV
tokens, which are not present in the pre-trained
vocabulary, the model may struggle to encode them
accurately, leading to reduced performance.

(iii) Limited interpretability: Transformer-based
encoders are often described as black-box models
because it can be difficult to interpret how they
arrive at their output. In Text-to-SQL, this may be
a limitation when trying to understand the model’s
decision-making process, which is important for model
debugging and error analysis.

(iv) Computationally expensive: Transformer-based
models typically require a large amount of
computation, both during training and inference.
This can make them more challenging to deploy in
production systems, especially in resource-constrained
environments.

(v) Difficulty in handling long input sequences:
Transformer-based models are known to struggle
with long input sequences, which can be a limitation
in Text-to-SQL, where the input text may be quite
long. While techniques such as attention and masked
self-attention are designed to handle this issue, there
are still limitations in terms of the maximum input
sequence length that can be processed efficiently.

Convolutional Neural Networks (CNNs) In
Text-to-SQL, CNNs can be used as encoders to
transform the input text into a fixed-length vector
representation that can be used as input to downstream
tasks. The input text is first preprocessed, which
involves tokenization and optionally, padding or
truncating the input text to a fixed length. The
tokenized text is then embedded into a dense vector
representation, where each token is represented as a
vector of fixed size. The CNN encoder then applies
a series of convolutional filters to the embedded
input text. The convolutional filters scan over the
input text and apply a mathematical operation to a
window of adjacent tokens at a time. The operation
applied by the convolutional filters is typically a dot
product between the filter weights and the input
text window. The output of the convolutional filters
is passed through a non-linear activation function,
such as ReLU, to introduce non-linearity into the
model. This process is repeated with multiple filters
of different sizes, which allows the model to capture
different patterns and features in the input text. After
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the convolutional layers, the output is flattened into a
fixed-length vector representation, which can be used
as input to downstream tasks such as Text-to-SQL.
The final output vector represents the encoded
information from the input text, which captures
important features and patterns relevant to the
downstream task. CNN encoders have been shown
to be effective in natural language processing tasks
including text classification, sentiment analysis, and
Text-to-SQL. They are particularly useful for capturing
local features and patterns in the input text, and can be
used in combination with other encoding techniques
such as recurrent neural networks (RNNs) and
Transformer-based models for improved performance.
While CNNs have shown promising results in various
NLP tasks, including Text-to-SQL, they also have some
limitations in this context. Some of the limitations of
CNNs in Text-to-SQL are:

(i) Limited ability to model sequential information:
Unlike RNNSs, which have a natural ability to model
sequential information, CNNs are limited in their
ability to capture sequential dependencies. This can
be a limitation in Text-to-SQL, where the order of
the input tokens may be important for accurately
predicting the corresponding SQL query.

(ii) Difficulty in handling variable-length input
sequences: CNNs require fixed-length input
sequences, which can be a limitation in Text-to-SQL,
where the length of the input text may vary.
Techniques such as padding or truncation can be
used to address this issue, but they may introduce
information loss or bias in the model.

(iii) Limited interpretability: Like Transformer-based
encoders, CNNs are often described as black-box
models, which can be a limitation in Text-to-SQL when
trying to understand the model’s decision-making
process.

(iv) Difficulty in handling out-of-vocabulary (OOV)
tokens: CNNs rely on pre-trained word embeddings to
represent input tokens. When the input text contains
OOV tokens, which are not present in the pre-trained
vocabulary, the model may struggle to encode them
accurately, leading to reduced performance.

(v) Limited ability to capture long-range dependencies:
CNNs are designed to capture local dependencies
in the input sequence, which can be a limitation in
Text-to-SQL, where long-range dependencies between
tokens may be important for accurately predicting the
corresponding SQL query.

Recurrent Neural Networks (RNNs) In the context
of Text-to-SQL, recurrent neural networks (RNNSs)
are utilized as encoders to transform the input text
into a fixed-length vector representation suitable for
downstream tasks. Prior to encoding, the input text
undergoes preprocessing, which includes tokenization
and optionally, padding or truncating the input
to a fixed length. The tokenized text is then
transformed into a dense vector representation, where
each token is assigned a fixed-size vector. The RNN
encoder processes the input tokens individually while
maintaining a hidden state that preserves context and
information from preceding tokens. The hidden state
is updated at each time step by combining the current
input token with the previous hidden state. The RNN
encoder’s output is a sequence of hidden states, with
one for each input token. The final hidden state,
representing the encoded information from the entire
input text, is commonly obtained by performing a
pooling operation like max-pooling or average-pooling
on the sequence of hidden states. RNN encoders are
highly effective in natural language processing tasks
such as sentiment analysis, text classification, and
Text-to-SQL, specifically in modeling sequential data
and capturing long-term dependencies in the input
text. While RNNs have been widely used in various
NLP tasks, including Text-to-SQL, they also have some
limitations in this context. Some of the limitations of
RNNs in Text-to-SQL are:

(i) Difficulty in modeling long-term dependencies:
Although RNNs are designed to model sequential
information and capture dependencies between tokens,
they can struggle to model long-term dependencies
in Text-to-SQL, where there may be a large distance
between relevant tokens.

(ii) Vanishing Gradient Problem: The vanishing
gradient problem is a common issue with RNNs,
which occurs when the gradients become too small
during backpropagation, leading to slow learning
or even a complete halt in learning. This can be a
limitation in Text-to-SQL, where the model needs to
learn complex dependencies between tokens.

(iii) Difficulty in handling variable-length input
sequences: Like CNNs, RNNs also require fixed-length
input sequences, which can be a limitation in
Text-to-SQL, where the length of the input text may
vary. Techniques such as padding or truncation can
be used to address this issue, but they may introduce
information loss or bias in the model.

(iv) Limited ability to capture parallelism: Unlike
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Figure 4. Sketch used in [18].

CNNSs, RNNs are inherently sequential and cannot
easily capture parallelism in the input text. This can
be a limitation in Text-to-SQL, where the input text
may contain parallel or overlapping clauses that are
important for accurately predicting the corresponding

SQL query.

(v) Difficulty in handling noisy data: RNNSs are
sensitive to noise and may struggle to handle noisy
or erroneous input data, which can be a limitation in
Text-to-SQL, where the input text may contain errors
or typos.

Graph Neural Networks (GNNs) GNNs can be
utilized for encoding purposes, to convert the input
text into a fixed-length vector representation, suitable
for downstream tasks. First, the input text is
processed by tokenization, and optionally, by padding
or truncation to a fixed length. Then, the tokens
are embedded into a dense vector representation,
where each token is represented as a vector with a
constant size. The GNN encoder creates a graph from
the embedded input text, where nodes represent the
tokens and edges signify the relationships between
them based on syntactic or semantic attributes [33].
Afterward, the encoder applies graph convolutional
layers to the input graph, which operates on nodes
and their neighbors. The resulting output is a
sequence of node embeddings, one for each node in
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the input graph. Finally, a pooling operation, such
as max-pooling or average-pooling, is applied to the
node embeddings to obtain a fixed-length vector that
serves as input for downstream tasks. GNN encoders
have demonstrated effectiveness in various natural
language processing tasks, including Text-to-SQL,
as they capture syntactic and semantic relationships
between tokens in the input text. They can be used
in conjunction with other encoding techniques such
as CNNs and RNNSs for improved performance. They
also have some limitations in this context. Some of the
limitations of GNNs in Text-to-SQL are:

(i) Difficulty in modeling complex graph structures:
In Text-to-SQL, the input text can be represented as a
graph where each node represents a word or a part of
the sentence, and the edges represent relationships
between the nodes. However, modeling complex
graph structures can be a challenging task for GNNs.

(ii) Difficulty in handling large graphs: GNNs
can struggle with large graphs because of the
computational complexity involved in processing large
amounts of data. In Text-to-SQL, the input graph can
be large and complex, especially for longer queries,
which can be a limitation for GNNs.

(iii) Difficulty in capturing long-term dependencies:
While GNNs are designed to capture information
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Figure 5. Text question encoding techniques for multi-turn Text-to-SQL.

from neighboring nodes, they may struggle to capture
long-term dependencies between nodes that are
farther apart in the graph.

(iv) Limited interpretability: GNNs are known for
their lack of interpretability, which can be a limitation
in Text-to-SQL, where it is important to understand
how the model generates the SQL query based on the
input text.

(v) Limited availability of pre-trained models: Unlike
Transformer-based and RNN-based models, there are
relatively fewer pre-trained GNN models available
for Text-to-SQL tasks, which can make it difficult
to leverage transfer learning and limit the overall
performance of the model.

3.3.2 Decoding Techniques

In the process of Text-to-SQL parsing, there are two
types of decoder models: those that rely on sketches,
and those that use generation-based techniques. Let’s
explore each of these decoder designs in depth.

Sketch-based Methods Text-to-SQL solutions can be
approached through a sketch-based method, which
involves dividing the SQL generation process into
sub-modules, also known as "slots," responsible for
predicting different parts of the SQL query. A typical
sketch structure is illustrated in Figure 4, showing
how SQL queries are decomposed into predictable
components. These modules include the SELECT
column, AGG function, WHERE clause value, and
others. Various models have been proposed for
predicting these slots, including SQLNet, which

uses a SQL sketch with a separate model for each
slot. SDSQL and SQLova propose a modified
syntax-guided sketch with six prediction modules.
Meanwhile, TypeSQL reduces the number of modules
by merging the select-column and where-column
modules into a single module. Execution-guided
decoding approaches are also used to eliminate
non-executable partial SQL queries. Sketch-based
solutions are a widely-used approach to Text-to-SQL
that offer precise control over the SQL generation
process [56].

Generation-based Methods For more complex SQL
queries, Seq2Seq models with a generation-based
approach may be better than sketch-based strategies.
This approach uses a decoder, like Bridge, which
includes an LSTM-based indicator generator
with multi-head attention and a displacement
mechanism [34]. During decoding, the decoder
generates either a digit from the V dictionary,
a digit from the query, or a schema component
from the database schema. However, previous
generation-based methods have had difficulty
generating SQL queries with correct grammar, so
more advanced methods generate SQL queries in a
first-pass order within an AST abstract syntax tree.
This involves the LSTM decoder performing three
operations: APPLY-RULE to convert the latest point
into a grammar rule, SELECT-COLUMN to pick
a point from the scheme when filling in the leaf
point, and SELECT-TABLE to select the table. The
choice between sketch-based and generation-based

13
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approaches for Text-to-SQL depends on the complexity
and variability of SQL queries in the domain, as well
as the quality and size of the available training data.
The comparison of accuracy is given in Figure 5.

3.4 Datasets

The amount and quality of examples are critical
components of the model’s training. The quality of the
datasets influences model performance. Single-turn
Text-to-SQL datasets with discrete questions and
multi-turn Text-to-SQL datasets with multi-turn
successive questions are the two basic types of datasets.

To provide a comprehensive overview of dataset
characteristics used in Text-to-SQL research, Table 5
presents detailed statistics of major datasets, including
the number of questions, SQL queries, databases,
domains, and tables for each benchmark.

Table 5. Statistics of Text to SQL datasets.

Dataset Question SQL DB Domain Table
GenQuery 880 247 1 1 6
Scholar 817 193 1 1 7
WikiSQL 80654 77840 26521 - 1
Spider 10181 5693 200 138 1020
SQUALL 15620 11276 2108 - 2108
DuSQL 23797 23797 200 - 820
ATIS 5418 947 1 1 27
SparC 4298 12726 200 138 1020
CoSQL 3007 15598 200 138 1020
CHASE 5489 17940 280 - 1280

We categorize benchmark datasets based on schema
complexity (flat vs. nested), domain specificity
(general-purpose vs. task-specific), and support for
multi-turn dialogues. For instance, Spider features
complex and unseen schemas, whereas WikiSQL
contains simpler, single-table queries. Datasets such
as SParC and CoSQL support multi-turn interactions,
which more closely resemble real-world querying
behavior.

3.4.1 Text-to-SQL datasets (Single-turn)

(i) The first dataset, called GenQuery [1], includes 880
natural language queries that are designed to retrieve
information from a database of geological facts called
Geobase. For 700 of these queries, SQL queries have
been created to query Geobase. The data is split into
training and testing sets using a widely used 600/280
split [31], with additional natural language questions
added later.

(ii) The Scholar [15] dataset consists of 816 natural
language questions, each with an associated SQL
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query, that can be used to query an academic database
of papers. The data is split into training and testing
sets with 600 questions used for training and 216 for
testing.

(iii) The dataset named WikiSQL [17] comprises a
large number of pairs of questions and SQL queries,
manually constructed and extracted from Wikipedia.
The dataset contains SQL tables from 24,241 HTML
tables and a total of 80,654 pairs of questions and SQL
queries. In this dataset, for each table, six SQL queries
have been produced with the help of templates and
rules.

3.4.2 Text-to-SQL Datasets (Multi-Turn)

(i) The ATIS dataset comprises of a relational database
and user queries for flight information from an airline
travel search system. For multi-turn Text-to-SQL
systems, encoding techniques must handle contextual
dependencies across turns as illustrated in Figure 5.
It contains information on cities, airports, planes,
and more, with most queries resolvable through SQL
queries on the database. The dataset includes 5,418 NL
words and SQL queries, with 4,773 for training, 497
for development, and 448 for testing. Improved SQL
queries were used to maintain query results [17].

(ii) The SParC dataset is a context-sensitive text-SQL
corpus containing 200 complex databases from 138
domains and around 4.3k query sequences with 12k+
query-SQL pairings. The Spider query serves as
the basis for each query sequence, with consecutive
questions leading to a manually annotated SQL query
for each query. SParC tracks cells by dividing the data
into 7:1:2 training, development, and test sets, with
each set containing unique data.

(iii) CoSQL is a large-scale conversational text-SQL
database consisting of 200 complex databases from
138 domains, with 30k+ updates and 10k+ matching
SQL queries. Each discussion simulates a DB query
where annotations act as users and submit NL queries
to obtain replies from SQL queries. NL questions
can also explain previously confusing questions or
remind users of unanswered ones. CoSQL is separated
into training, development, and test sets in the same
proportion as Spider, SParC, and CoSQL, with each
database appearing in only one set. The Text question
encoding techniques for multi-turn Text-to-SQL are
shown in Figure 5.

3.5 Evaluation metrics

This section answers the research question review
all the state-of-the-art model and will conclude with
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the answer to research question 3 which explore the
literature in the context of the evaluation setup used
in the models.

3.5.1 Evaluation (Single-turn Model)

Exact Match Accuracy (EM) To determine the
matching accuracy of predicted SQL queries, the actual
SQL query is compared with the predicted query. For
free-form queries, only SQL clauses, column names,
and operators are excluded from the comparison,
while keywords like SELECT, GROUP BY, WHERE,
ORDER BY, and other SQL keywords are considered
as regular data structures. It should be noted that
all SQL queries are expected to be accurate and must
adhere to SQL clauses, and the following comparisons
are considered valid.

. 1, Y=Y
score(Y,Y) = P

N ™)

RIS

After scoring exact set match accuracy is calculated by:

Eﬁlvzl score (Yn, Yn>

EM = - 2)

Execution Accuracy (EX) To measure execution
accuracy with values, the actual SQL query’s output
results are compared with the predicted SQL query’s
output results, both executed on the database contents
provided in the test set.

. 1, Y=Y
score(Y,Y):{ ’ vy (3)

+

Similarly, with EM, the EX is calculated by:

SN, score <Yn, Yn>
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N
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3.5.2 Evaluation (Multi-turn Model)

In a multi-turn setting, there are P sequences of
questions, with each sequence comprising of O rounds.
Thus, the total number of questions M can be given by
the product of P and O denoted by M.

Question-Match Accuracy (QM) The question
matching accuracy is evaluated by calculating the
exact match (EM) score for each question and then
averaging the scores across all questions. An EM score
of 1 is achieved for a question when the predicted
SQL query contains all the correct SQL clauses. The

calculation of the EM score for each question is
performed as follows:

(5)

. 1, Y=Y
score(Y,Y) = 0. VY

The accuracy of the question match is calculated
by taking the average of the EM score across all
questions. The EM score is computed for each question
by comparing the predicted SQL query (denoted by
Y-hat) with the ground-truth SQL query (denoted by
Y) using exact matching. If the predicted query is
exactly the same as the ground-truth query, then the
EM score for that question is 1, otherwise, it is 0. The
final accuracy score is obtained by averaging the EM
scores across all questions in the test set.

Efy:l score (}A’n, Yn>
N

QM = (6)

Interaction-Match Accuracy (IM) The accuracy of
the interaction match is determined by evaluating the
Exact-Match score for the complete interaction, rather
than for individual questions. The interaction score
is only deemed as perfect if every question within the
interaction is answered accurately. The calculation of
the interaction score is expressed mathematically as
follows:

1, 5, score Y, Vi) =1

. . 7)
0, [[7_;score(Y;,Y;)=0

interaction =

The IM score, or interaction match accuracy, is
calculated as the average of the encounter match
accuracies across all interactions. Formally, it is
calculated by IM = (1/P) * sum(EM-encounter)
where P is the total number of question sequences,
and EM-encounter is the encounter match accuracy
calculated using the EM score as described earlier.

P . .
Y, interaction ,
P

IM = (8)

where P is the total number of interactions.

4 Emerging Trends and Limitations in Modern
Text-to-SQL Architectures (2023-2025)

The landscape of Text-to-SQL has evolved drastically
with the introduction of large-scale pre-trained
language models (LLMs) capable of code generation,
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such as Codex, CodeXGLUE, and CodeGeeX2
[51]. Figure 6 illustrates the typical architecture of
modern LLM-based Text-to-SQL systems, highlighting
the integration of schema fusion and validation
components. These models adopt decoder-only
transformer architectures pre-trained on massive
code datasets, enabling them to generalize to
SQL generation tasks with minimal task-specific
supervision.

Natural Language Query

Y

Database Schema

Y

Prompt Encoder / Schema Fusion

Y

Pre-trained LLM (Codex/GPT-4/CodeGeeX2)

Y
SQL Decoder (Auto-Regressive)

Y

Schema Linking / Validation

\
Generated SQL Query

Figure 6. Architecture of LLM-based Text-to-SQL system
with schema fusion and validation.

4.1 LLM-based Text-to-SQL Architectures: From
Supervised Fine-Tuning to In-Context Learning

Unlike traditional Text-to-SQL models such as
Seq2SQL [15] and SQLNet [23], which rely on
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explicit schema linking modules and supervised
learning, LLM-based approaches generate SQL
queries through prompt conditioning. Codex [31]
demonstrated that large language models can achieve
remarkable SQL generation performance by leveraging
few-shot in-context learning (ICL), wherein schema
information and example queries are provided in the
prompt. Similarly, CodeXGLUE [35] introduced a
unified benchmark for code-related tasks, including
SQL generation, highlighting the capacity of LLMs to
generalize to structured query synthesis.

However, prompt-based methods exhibit limitations
when operating on complex or unseen database
schemas. Schema linking remains implicit, often
resulting in hallucinations where models fabricate
non-existent columns or tables [38]. Unlike
schema-aware architectures like RAT-SQL [38]
or SADGA [31], which incorporate relational graph
encoders, LLMs lack dedicated mechanisms for
schema grounding, relying instead on prompt
engineering tricks that are fragile in real-world
applications.

4.2 Few-Shot and Zero-Shot Text-to-SQL with
Prompt Engineering

Few-shot learning strategies have gained prominence,
where models are conditioned with a handful of
demonstration examples to synthesize SQL queries
without task-specific fine-tuning. Frameworks
such as RAT-SQL [38] propose denoising-based
prompt tuning to enhance model robustness. BIRD
(Benchmark for Interactive Relational Databases)
extends evaluation to multi-turn, interactive SQL
generation scenarios, providing a more realistic
benchmark compared to static datasets like Spider
[40].

Despite improvements, few-shot Text-to-SQL remains
sensitive to prompt length and token window
limitations of transformer architectures, leading to
challenges in scaling models to enterprise-grade
schemas with hundreds of columns and relations [40].

4.3 Schema-Aware LLMs: Attempts to Bridge the
Gap

Efforts to enhance schema-awareness in LLMs include
Contrastive Schema Linking (CSL) [41], which
fine-tunes models to better differentiate semantically
similar schema elements across domains. Additionally,
Schema-First Pre-training (SFP) strategies have been
explored to embed schema constraints into the model’s
latent space prior to downstream SQL tasks [42].
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However, these approaches face scalability bottlenecks
due to quadratic complexity in schema-element
relations and are still prone to errors in cross-domain
generalization.

4.4 Multilingual Text-to-SQL: Emerging Directions

Multilingual Text-to-SQL remains underexplored.
Recent works like MSpider [44] and MT-Spider
[43] aim to extend existing benchmarks with
parallel annotations in Chinese, German, and
Korean. However, models often struggle with
tokenization inconsistencies and language-specific
syntax ambiguities, leading to degraded schema
linking accuracy in non-English queries. Cross-lingual
Text-to-SQL  generation requires more diverse,
large-scale datasets and novel semantic alignment
techniques to handle culturally variant database
schemas [45].

4.5 Summary of Limitations

Despite the advances introduced by LLMs [55], critical
challenges persist:

e Schema Grounding
Prompt-conditioned models
schema linking modules.

Deficiency:
lack  explicit

e Prompt Length Bottleneck: Context window
constraints limit scalability for large databases.

e Cross-Lingual Generalization:  Insufficient
multilingual datasets hinder model robustness.

o Interpretability: Black-box nature of LLMs
complicates debugging and error analysis.

Addressing these issues will require a fusion of
explicit schema-aware encoding strategies, advanced
contrastive learning techniques, and the development
of multilingual, domain-diverse datasets for robust
Text-to-SQL parsing in real-world applications.

5 Meta Analysis

In our study, we selected 23 articles that satisfied our
inclusion criteria for examining Text-to-SQL models.
These studies used a variety of model architectures,
such as transformer models, sequence-to-sequence
models, and hybrid models. Some studies employed
domain-specific datasets, while others utilized both
real-world and synthetic data for training. Evaluation
metrics such as accuracy and exact match score were
commonly used.

The findings demonstrated significant improvement in
Text-to-SQL model performance in recent years, with

SSQL achieving the highest recorded accuracy score of
76.4 in the Exact match Dev and 72.1 in the Exact match
test. The comparative performance of different models
on test datasets is visually summarized in Figure 7,
providing an intuitive overview of accuracy trends
across various architectural approaches.

To provide a comprehensive performance comparison
across different Text-to-SQL approaches, Table 6
summarizes the Exact Match (EM) and Execution
Accuracy (EX) scores of various models on the
Spider dataset, clearly illustrating the progressive
improvement in accuracy over time.

Table 6. Various Text-to-SQL parsing approaches, with EM
representing the exact match accuracy on the Spider

dataset.
Model EM Dev EMTest EXDev EX Test

Seq2Seq baseline [15] 1.8 48 - -
TypeSQL [17] 8.9 8.2 - -
SyntaxSQLNet 3] 25.0 - - -
GNN [34] 51.3 - - -
EditSQL [28] 57.6 53.4 - -
Bertrand-DR [29] 58.5 - - -
IRNet [24] 61.9 54.7 - -
RYANSQL [9] 66.6 58.2 - -
RAT-SQL [38] 69.7 65.6 - -

SMBOP [35] 69.5 71.1 75.0 71.1
ShadowGNN [36] 72.3 66.1 - -

RaSaP [20] 74.7 69.0 - 70.0
SADGA [31] 73.1 70.1 - -
DT-Fixup [37] 75.0 70.9 - -

T5-Picard [27] 75.5 719 79.3 75.1
LGESQL [50] 75.1 72.0 - -

To further contextualize these performance

improvements within the historical evolution of
Text-to-SQL research, Table 7 presents the progression
of average model performance by year, highlighting
key architectural transitions and their impact on
accuracy metrics.

The progression shown in Table 7 reveals a clear
technological trajectory: from early rule-based systems
achieving 37.8% EM in 2017 to modern LLM-based
approaches projected to reach 88.5% EM by 2025. This
represents an improvement of over 50 percentage
points within eight years, driven primarily by
the adoption of pre-trained language models and
advanced schema linking techniques.

Several studies suggested that pre-training and
data augmentation strategies can enhance model
performance. However, the SPIDER dataset’s more
complex cross-domain queries posed a challenge to
model accuracy, and the non-static nature of SQL table
columns was a challenge to model correctness. The
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Figure 7. Comparison of accuracy (Test).
Table 7. Progression of Text-to-SQL model performance over the years.
Year Model Type Average EM (%) Average EX (%)
2017 Rule-Based / Seq2SQL 37.8 42.3
2018 SQLNet / TypeSQL / SyntaxSQLNet 47.5 50.1
2019 Attention-based (IRNet, RAT-SQL) 63.2 65.4
2020 BERT-enhanced models (SQLova, 69.1 71.0
RYANSQL)
2021 T5-based Pretrained LLMs (SMBOP, 76.8 78.2
DT-Fixup)
2022 Codex (GPT-3 Code Model) 81.3 83.7
2023 GPT-3.5/ChatGPT, CodeGeeX2 [51], 83.5 85.0
Prompt-based DIN-SQL [39]
2024 GPT-4 Code Interpreter, BIRD 86.7 88.1
Benchmark , CSL-enhanced LLMs
2025 Schema-First Pretrained LLMs, 88.5 89.9

MSpider Multilingual Models [44],

Few-Shot Enhanced Architectures

pre-trained large language models for Text-to-SQL
parsing have generally been based on a single type
of model architecture, such as the Transformer or
Transformer-based encoder-decoder models. These
models have used various pre-training objectives
to extract the vital features contributing to the
Text-to-SQL parsing task. Adding the SQL generation
objective to pre-training could potentially improve
the performance of downstream tasks. The SCORE
pre-training method has been a popular approach for
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context-dependent Text-to-SQL parsing, using turn
contextual switch (TCS) objectives to model the flow of
context between consecutive user utterances. However,
it has been challenging to capture the dependence
between utterances that are further apart.

Additionally, the processing of the SPIDER and
WikiSQL datasets has differed, and the complexity of
the SQL queries in these datasets has had an impact
on the accuracy of the models. The distribution of



ICJK

ICCK Transactions on Advanced Computing and Systems

evaluation methods used across the studied models
is comprehensively analyzed in Figure 8, which
illustrates the prevalence of different assessment
approaches in Text-to-SQL research.

Inference

Exact Set Match without Values

Execution with Values

Figure 8. Evaluation method distributions of models.

To enhance the analysis of model performance over
time, we compiled a summary of average Exact
Match (EM) and Execution Accuracy (EX) scores
grouped by year and model type. This allows for
clearer comparison of trends across architectures. As
shown in Table 7, rule-based methods dominated early
years with lower EM/EX scores, while neural models
such as Seq2Seq and Transformer-based approaches
significantly improved accuracy metrics post-2018.
Notably, models leveraging large-scale pretrained
architectures (e.g., T5, Codex) in recent years exhibit
substantial gains, particularly in generalization to
complex schemas.

To further enhance the rigor of our meta-analysis,
it is essential to contextualize the performance
improvements observed in recent Text-to-SQL models
with a deeper technical synthesis. ~While large
language models (LLMs) such as Codex and GPT-4
demonstrate impressive gains in Exact Match (EM)
and Execution Accuracy (EX), there is a noticeable
trend of diminishing returns beyond the 70 percent
accuracy threshold. For instance, while the transition
from RAT-SQL to T5-Picard yields a 2 percent
EM improvement, such incremental gains must be
interpreted cautiously, considering the underlying
task complexity and statistical confidence. The lack of
reported confidence intervals and standard deviation
metrics in many benchmark studies complicates
the assessment of whether these performance
improvements are statistically significant or merely
within noise margins. This absence of rigorous
variance reporting hampers robust cross-model

statistical comparisons, which are essential for a
meaningful meta-analysis.

Despite  architectural advancements, neural
Text-to-SQL models continue to grapple with
persistent failure modes. Syntactic errors, though
reduced by constrained decoding strategies like
PICARD, still emerge in autoregressive decoders
that lack strong grammar constraints, leading to the
generation of invalid SQL structures. More critically,
semantic mismatches—where the predicted query
is syntactically valid but logically flawed—remain
a significant challenge. These include incorrect
mappings of aggregation functions, erroneous
filtering conditions, or misinterpretations of user
intent. Schema linking failures are another prevalent
issue, where models hallucinate non-existent columns
or misalign query tokens with schema elements,
especially in unfamiliar database schemas. For
example, while RAT-SQL mitigates schema alignment
issues through its relation-aware encoding mechanism,
it still struggles with complex nested subqueries
and cross-domain generalization. Conversely,
LLMs like Codex, while exhibiting robust semantic
understanding through in-context learning, often
lack explicit schema-awareness modules, making
them susceptible to generating hallucinated joins or
erroneous column references unless meticulously
constrained via prompt engineering.

The prevalent evaluation metrics used in the domain,
particularly Exact Match (EM) and Execution
Accuracy (EX), are increasingly being scrutinized
for their limitations. EM, which measures syntactic
exactness, often fails to capture partial correctness,
where a predicted query might have correct SELECT
and FROM clauses but incorrect WHERE conditions.
On the other hand, EX evaluates whether the
query’s execution result matches the expected
output but disregards syntactic validity, thereby
allowing semantically incorrect queries to pass
if they coincidentally produce the correct result.
These shortcomings highlight the need for more
granular evaluation metrics, such as Component-level
Accuracy, which dissects the correctness of individual
SQL components like SELECT, WHERE, and JOIN
clauses, or Execution-guided Accuracy, which assesses
whether intermediate query execution steps align
with the expected logic. Furthermore, Semantic Match
Score (SMS) offers a promising avenue to evaluate
the logical equivalence between predicted and
gold-standard queries, independent of surface-level
syntax. The current over-reliance on static datasets
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Table 8. Model complexity and inference latency comparison.

Model

Description

Parameter Count Avg Inference Time

Seq2SQL

RAT-SQL

T5-Picard (Base)

Codex (GPT-3)

GPT-4 (Few-Shot)

Early encoder-decoder model using
Bi-LSTM with attention; struggles
with complex nested queries and
large schemas.

Relation-aware encoder-decoder
architecture with schema linking
modules; scalable to moderate
schema sizes.

Fine-tuned T5 model with
constrained decoding (PICARD) for
SQL validity; limited by 512-token
context window.

LLM with 175B parameters trained
on code datasets; high accuracy
but sensitive to prompt length and
schema size.

Advanced LLM with estimated
1T parameters; superior semantic
understanding  but  requires
schema-pruned prompts for large

30M 120ms

110M 250ms
220M 520ms
175B

~1s per query

1T+ (est.) ~1.5s per query

databases.

like Spider exacerbates these evaluation challenges,
as such datasets fail to capture the complexities
of real-world schemas, multi-turn dialogues, and
multilingual query scenarios, thereby introducing an
evaluation bias that misrepresents model robustness
in production-like settings.

In addition to these performance and evaluation
considerations, scalability and computational
complexity emerge as critical factors limiting the
practical deployment of modern Text-to-SQL systems.
LLM-based architectures, while excelling in accuracy,
impose substantial resource overheads due to their
enormous parameter sizes and limited context
window capacities. As outlined in Table 8, models
like Seq2SQL and RAT-SQL, with parameter counts
of 30M and 110M respectively, offer lower inference
latency and are scalable to small-to-moderate schema
sizes.

However, models like T5-Picard, despite offering
constrained decoding for SQL validity, are
bottlenecked by a 512-token context window,
restricting their applicability in large schema
databases. LLMs such as Codex (175B parameters)
and GPT-4 (estimated 1T+ parameters) deliver
state-of-the-art performance but at the cost of
increased inference times and significant prompt
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engineering overhead to handle schema-pruned
inputs. Their inference latencies, ranging from
approximately 1 to 1.5 seconds per query, make
them less viable for real-time applications without
aggressive schema simplification strategies. This
scalability bottleneck underscores the need for hybrid
architectures that blend lightweight schema-aware
encoders with the semantic richness of LLM decoders,
striving for a balance between performance accuracy
and computational feasibility in practical deployment
scenarios.

6 Conclusion

The present state of Text-to-SQL parsing and
future research directions. Text-to-SQL conversion
benchmark datasets continue to have drawbacks, such
as insufficient training data quality, quantity, and
variety. WikiSQL, a benchmark dataset, simplifies
Text-to-SQL processing by having only one table in
each database and simple SQL queries. Spider, another
dataset, features more complicated SQL queries and
databases with numerous tables from many areas,
making it a useful tool for assessing a Text-to-SQL
parser’s adaptation to new domains. In industries
where sensitive data is involved, such as banking or
healthcare, the ability to interpret neural Text-to-SQL
models is crucial. There is a need for future research
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to combine the representation capabilities of deep
neural networks with explicit reasoning approaches
to improve interpretability. The authors of the paper
provide an in-depth analysis of the current state of
Text-to-SQL parsing, including available datasets,
neural models, and pre-training methods. While
there has been remarkable progress in this area, there
are still challenges to overcome, including the lack
of diverse and high-quality training data. Current
benchmark datasets such as WikiSQL and Spider have
limitations and do not fully represent the complexity
of real-world use cases. The study suggests that
future research should focus on developing more
diverse and complex datasets and models that can
handle large tables with numerous columns and
rows. Additionally, increasing the efficiency of
encoding long table schemas and improving the
execution speed of SQL queries with big databases is
a significant challenge that requires attention. Finally,
the authors propose exploring zero-shot transfer
learning using pre-trained large language models
(LLMs) like T5-Base for Text-to-SQL parsing without
requiring fine-tuning on a large annotated dataset.
One of the persistent challenges in Text-to-SQL
models is effective schema linking in unseen domains.
Despite recent advancements in schema-aware
encoders and contrastive linking methods, models
frequently misalign query terms with database
column names, particularly in unfamiliar domains or
multilingual settings. Furthermore, most evaluation
benchmarks—such as Spider—do not sufficiently
cover domain variability or real-world ambiguity,
limiting generalization performance assessment.

Unlike earlier surveys that primarily catalogued
model architectures or benchmark results, this review

introduces a hybrid meta-analysis combining
structured  PRISMA-based  filtering,  critical
comparison of rule-based, neural, and hybrid

techniques, and benchmarking of EM/EX trends
over time. It also explicitly identifies underexplored
dimensions such as multi-turn dialogues, cross-lingual
adaptability, and schema generalization—thus offering
a more comprehensive and future-facing perspective.
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