
ICCK Transactions on Advanced Computing and Systems
http://dx.doi.org/10.62762/TACS.2025.469136

RESEARCH ARTICLE

Denoising Telerik RadCaptcha: A Comparative
Evaluation of the Effectiveness of Pre-Processing
Techniques and Deep Learning Method Using
a Novel Dataset

Talha Bin Omar1,† , Tahir Sher 2,† , Abdul Rehman 3,* and M. Haroon Khan1

1Department of Creative Technologies, Air University, Islamabad 44000, Pakistan
2Department of Artificial Intelligence, Korea University, Seoul 02842, Republic of Korea
3Human Data Convergence Institute, Jeonju University, Jeonju 55069, Republic of Korea

Abstract
Text-based CAPTCHAs remain a widely deployed
mechanism to distinguish humans from automated
bots. The Telerik RadCaptcha, a component of
the ASP.NET AJAX suite, generates distorted
alphanumeric images with character overlap,
intersecting lines, and dynamic background noise.
This study introduces a novel, real-world dataset
of 3,000 labeled Telerik RadCaptcha images and
proposes a specialized multi-stage preprocessing
pipeline featuring adaptive binarization and
contour-based segmentation to robustly isolate
overlapping and noisy characters—challenges
where conventional methods frequently fail. The
segmented characters are then classified using a
lightweight Convolutional Neural Network (CNN).
Experimental results demonstrate 99.26% training
accuracy, 97.60% character-level test accuracy,

Submitted: 18 May 2025
Accepted: 10 September 2025
Published: 10 February 2026

Vol. 2, No. 2, 2026.
10.62762/TACS.2025.469136

*Corresponding author:
�Abdul Rehman
a.rehman.jj@jj.ac.kr

† These authors contributed equally to this work

and 92.08% full-sequence accuracy on unseen
5-character CAPTCHAs, with stable learning
curves indicating effective generalization and
minimal overfitting. These findings reveal critical
vulnerabilities in traditional text-based CAPTCHA
designs and provide empirical insights to guide
the development of more resilient verification
mechanisms.

Keywords: Convolutional neural network, deep learning,
Telerik RadCaptcha.

1 Introduction
CAPTCHA (Completely Automated Public Turing
test to tell Humans and Computers Apart ), a term
coined by Von et al. [1] is a challenge-response-based
authentication mechanism test that most humans
can pass, but current computer programs cannot
pass [2]. The concept of CAPTCHA was inspired
by the pioneering work of Alan Turing, who in 1950

Citation
Omar, T. B., Sher, T., Rehman, A., & Khan, M. H. (2026). Denoising
Telerik RadCaptcha: A Comparative Evaluation of the Effectiveness
of Pre-Processing Techniques and Deep Learning Method Using
a Novel Dataset. ICCK Transactions on Advanced Computing and
Systems, 2(2), 85–106.

© 2026 by the Authors. Published by Institute of
Central Computation and Knowledge. This is an open
access article under the CC BY license (https://creati
vecommons.org/licenses/by/4.0/).

85

http://dx.doi.org/10.62762/TACS.2025.469136
http://crossmark.crossref.org/dialog/?doi=10.62762/TACS.2025.469136&domain=pdf
https://orcid.org/0000-0002-0705-4947
https://orcid.org/0000-0002-9343-7652
http://dx.doi.org/10.62762/TACS.2025.469136
mailto:a.rehman.jj@jj.ac.kr
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


ICCK Transactions on Advanced Computing and Systems

proposed the idea of the "Imitation Game" as a means
to assess a machine’s ability to exhibit intelligent
behavior indistinguishable from that of a human [3].
This foundational idea has since been built upon and
refined through various iterations, resulting in the
modern CAPTCHA system with diverse types and
forms.
CAPTCHAs are typically employed in web
applications to prevent automated scripts and bots
from accessing or exploiting sensitive resources [4].
There exist several types of CAPTCHAs, including but
not limited to: text-based CAPTCHAs that require
users to type a distorted sequence of characters [5], as
shown in Figure 1, image-based CAPTCHAs that ask
users to identify specific objects within an image [6],
as shown in Figure 2, and audio-based CAPTCHAs
that demand users to listen to an audio clip and
respond accordingly Figure 3 [7]. Furthermore, some
CAPTCHA systems incorporate machine learning
techniques to adapt to evolving threats and improve
their security posture [8].

Figure 1. Text-based CAPTCHA systems employ distorted
characters or alphanumeric sequences designed to

challenge and verify human users, ensuring robust defense
against automated bots. These systems often include noise,

overlapping letters, or variable font styles to enhance
security [9, 10].

To enhance robustness against automated attacks,
CAPTCHA systems frequently incorporate techniques
such as character distortion, rotation, addition of
background noise, or complex image overlays to
challenge machine-based recognition systems. These
measures aim to prevent malicious actors from using
machine learning algorithms to bypass authentication
mechanisms. However, with the advent of advanced
deep learning frameworks, malicious actors have been
able to bypass these authentication mechanisms [15,
16]. Research has shown that deep learning
techniques-based solvers can effectively break even
the most sophisticated CAPTCHAs created by leading
providers [17–19]. In particular, convolutional neural
networks (CNN) alongwith recurrent neural networks
(RNN) show high efficiency in recognizing distorted

Figure 2. Google Image-Based reCAPTCHA: A security
system that verifies users by asking them to identify objects

in images, leveraging human cognition and machine
learning to block bots [11, 12].

Figure 3. Google Audio and Telerik AJAX Audio
CAPTCHA: Audio CAPTCHA systems that verify users by
requiring them to interpret and input spoken characters or

numbers, ensuring accessibility and security against
bots [13, 14].

characters and decoding the intended content [20–22].

Figure 4. Examples of Telerik RadCaptcha from dataset
curated in this study.

Given this context, our research seeks to investigate
the security posture of Telerik RadCaptcha against
such deep learning-based attacks. As a prominent
CAPTCHA system, Telerik RadCaptcha employs a
graphical interface, as shown in Figure 4 that presents
users with a noisy image containing 5 alphanumeric
characters, which theymust correctly identify and type
into the corresponding field [23]. Our study aims to

86



ICCK Transactions on Advanced Computing and Systems

examine the effectiveness of this system in preventing
automated attacks and analyze its design, functionality,
and vulnerabilities.

Despite the numerous studies on CAPTCHA
systems, Telerik RadCaptcha remains understudied.
Characterized by intricacies that demand specialized
attention, it presents a unique set of challenges that
necessitate dedicated research attention. The dataset
exhibits distinct characteristics, including intertwined
patterns overlaid with lines that obscure and overlap
characters; non-linear character alignment; and
dynamic noise distributions, comprising speckles and
irregular shading. These features confound standard
segmentation algorithms. Traditional preprocessing
techniques [24–27], such asmedian filtering, employed
in previous research, are ineffective in separating
characters from the intertwined patterns and noise
lines present in this CAPTCHA. Consequently,
existing methodologies fall short in addressing the
intricacies of Telerik RadCaptcha. Furthermore, the
absence of pre-existing datasets for this CAPTCHA
type demands the creation of a bespoke dataset and
advanced models specifically designed to handle
unique characteristics. In response, this study
introduces two primary contributions: a novel,
labeled dataset curated from live Telerik RadCaptcha
instances, and a specialized preprocessing pipeline
engineered to overcome the specific challenges where
conventional methods fail. This research aims to
systematically analyze these challenges and aims to
evaluate the effectiveness of current pre-processing
and deep learning methods against this complex
format. By evaluating these techniques under different
conditions, we aim to understand the factors that
contribute to their resilience and susceptibility,
ultimately guiding the development and generation of
more robust countermeasures [28–30].

The subsequent sections of this paper will establish a
solid foundation for our research; specifically, Section 2
provides an overview of the state-of-the-art methods
used to evade CAPTCHAs using deep learning
techniques. We highlight the limitations of existing
CAPTCHAs and the potential vulnerabilities that
attackers can exploit. In Section 3, we present our
methodology for evaluating the security posture of
Telerik RadCaptcha, including a detailed description
of our experimental configuration and the evaluation
criteria used. Our findings are detailed in the following
Section 4, where we demonstrate the effectiveness of
deep learning-based attacks on Telerik RadCaptcha
and highlight its vulnerabilities. We conclude this

paper by analyzing the broader implications of our
findings. Finally, Section 7 provides a summary of
our contributions to the field of computer security and
identifies potential areas for future research.

2 Related work
This section provides a review of key studies that
have helped shape our understanding of CAPTCHA
security, highlighting important findings and insights
in the field. Summary of related work is shown in
Table 1.
Literature [31] proposed Deep-CAPTCHA, a deep
learning-based model that leveraged a CNN, to
address the challenges of recognizing distorted
alphanumeric characters amidst complex noise and
overlapping patterns, overcoming limitations of
traditional preprocessing methods. The network
structure consisted of multiple layers, including
Convolutional-MaxPooling pairs with increasing
numbers of neurons (32, 48, and 64), followed by
a dense layer with Rectified Linear Unit (ReLU)
activation and dropout rate, and finally, L separate
Softmax layers for character classification. Notably,
the authors achieved impressive performance on
CAPTCHA samples, with efficacy rates of 98.94% for
numerical and 98.31% for alphanumeric CAPTCHAs.
More recently, Kumar et al. [32] addressed the
challenge of breaking two-color and multi-color Hindi
CAPTCHAs, examining how color variability, noise,
and distortion affect the performance of various
classification models. The author conscientiously
evaluated the performance of the k-nearest neighbors
(k-NN) classifier on both color schemes, utilizing
a range of features including raw pixel, horizontal
projection (HP), scale-invariant feature transform
(SIFT), Speeded up Robust Feature (SURF), and
Oriented FAST and rotated BRIEF (ORB). Their results
indicated segmentation rates ranging from 82% to
98% for two-color CAPTCHAs and 86% to 100% for
multi-color CAPTCHAs, with the k-NN classifier
exhibiting optimal performance when employing raw
pixel features across various parameter settings.
Literature [31] proposed significant advancements
in the field, which were further extended by [32].
Building on these efforts, [33] tackled the challenge
of optimizing CAPTCHA recognition, specifically
focusing on alphanumeric combinations with noise,
rotation, and adhesion, by developing a refined SVM
(Support Vector Machine)-based approach. The
authors’ approach involved image preprocessing

87



ICCK Transactions on Advanced Computing and Systems

through binarization and denoising, followed by
segmentation using projection methods and Color
Filling Segmentation (CFS).

This is then complemented by classification using
an SVM model with a radial basis function (RBF)
kernel, achieving an accuracy of 98.5% in recognizing
pre-processed CAPTCHAs. In recent research,
[34] proposed a CAPTCHA solver framework
based on a skip-connection CNN to tackle modern
text-based CAPTCHAs. Using two public datasets
with 4- and 5-character images, the study employed
5-fold validation, achieving accuracy rates of
98.82% and 85.52%, respectively. The methodology
included preprocessing steps like binarization and
segmentation to normalize input data, followed by a
deep learning model enhanced with skip connections
to improve feature extraction and reduce bias in
prediction. The novel architecture demonstrated
resilience in recognizing circuitous CAPTCHA
features, outperforming traditional CNN approaches.
Similarly, Derea et al. [35] proposed a dual-layer
attention-based CAPTCHA recognition approach
with guided visual attention that integrates CNN
feature extraction and recurrent LSTM networks with
adaptive attention mechanisms to more effectively
handle noise, interference, and character correlation
in complex CAPTCHA images, demonstrating
robust performance on varied real-world datasets.
These works highlight the vulnerability of current
CAPTCHA designs to advanced machine-learning
attacks, emphasizing the need for more secure
CAPTCHA mechanisms.

In their study, Zhang et al. [36] proposed a framework
leveraging Generative Adversarial Networks (GANs)
for breaking text-based CAPTCHAs, particularly those
on dark web platforms with complex background
noise and variable character lengths. The framework
combines GAN-based background removal, an
advanced character segmentation algorithm, andCNN
for character recognition. Their approach achieved a
success rate of over 92.08% on benchmark and dark
web CAPTCHA datasets, significantly surpassing
existing methods. This research contributes to
automated CAPTCHA breaking and supports
large-scale monitoring of dark web activities for
Cyber Threat Intelligence. Kumar et al. [37] employed
MSER descriptors with deep learning for CAPTCHA
recognition, highlighting effectiveness in noisy
environments.

Derea et al. [38] introduced a novel CAPTCHA

recognition method called CNN-based Recognition
with Grouping Strategy (CRNGS), which bypasses
the computationally expensive segmentation step.
This method generates multiple binary images, each
associated with a specific group of characters within
the CAPTCHA. A dedicated softmax layer is then
employed for character classification within each
group. The CRNGS model was evaluated on four
different CAPTCHA schemes: Bank of China, Weibo,
Captha 0.3, and Gregwar. The reported accuracies
reached up to 99.87% for Bank of China, 99.37% for
Weibo, 98.76% for Captha 0.3, and 99.78% for Gregwar.
Compared to existing methods utilizing Recurrent
NeuralNetworks (RNNs) andMultilabel classification,
CRNGS demonstrated superior performance in terms
of accuracy, parameter size, and storage requirements,
making it a more efficient and effective solution for
CAPTCHA recognition. The authors highlight the
flexibility of the CRNGS architecture, allowing for
adjustments to the number of softmax layers based on
the characteristics of the specific CAPTCHA scheme
being targeted.

Wan et al. [39] proposed Adaptive CAPTCHA,
a novel CRNN (Convolutional Recurrent Neural
Network)-based text CAPTCHA solver addressing
the challenges of noise and computational efficiency.
Their key contribution is the Adaptive Fusion Filter
Network (AFFN), which dynamically adjusts filter
weights based on the estimated noise level of the
CAPTCHA image, enabling more effective feature
extraction. Unlike traditional denoising techniques,
the AFFN learns an optimal filtering strategy through
a fusion factor, allowing it to generalize across datasets
with varying noise characteristics. Integrated within
a CRNN architecture incorporating LSTM layers and
residual connections, the AFFN achieved over 99%
accuracy on both the M-CAPTCHA and P-CAPTCHA
datasets. Furthermore, the Adaptive CAPTCHA
significantly reduces the parameter count (by 39% and
70% compared to a baseline CRNN on the respective
datasets), suggesting a more efficient architecture.
However, further investigation is needed to assess the
model’s performance on more complex CAPTCHA
styles and explore potential limitations of the adaptive
filtering approach.

Dankwa et al. [40] developed a novel Depth-Wise
Separable Convolutional Neural Network (DWSCNN)
aimed at assessing vulnerabilities in text-based
CAPTCHAs. Their work addressed the challenges of
CAPTCHA-breaking by leveraging a single-character
extraction (SCE) algorithm, which splits CAPTCHA

88



ICCK Transactions on Advanced Computing and Systems
Ta
bl
e
1.

Su
m
m
ar
yo

fr
ela

ted
wo

rk
s.

R
ef

Ye
ar

M
et
ho

do
lo
gy

La
ng

ua
ge

/S
ch

em
e

A
cc
ur
ac
y

[3
2]

20
23

Ch
ar
ac
te
r

se
gm

en
ta
tio

n
us

in
g

ve
rti

ca
l

an
d

ho
riz

on
ta
l

pr
oje

cti
on

s;
m
or
ph

ol
og

ica
lo

pe
ra
tio

ns
.

H
in
di

(T
wo

-co
lo
ur

&
M
ul
ti-
co
lo
ur
,v

ar
io
us

de
sig

ns
)

k-
N
N

(u
p
to

90
.5%

tw
o-
co
lo
ur
,u

p
to

89
.6%

m
ul
ti-
co
lo
ur
),
SV

M
(u

p
to

91
.4%

bo
th
),
Ra

nd
om

Fo
re
st
(u

p
to

94
.5%

bo
th
)

[3
3]

20
19

SV
M

(w
ith

RB
F

ke
rn
el)

,
Pr
ep

ro
ce
ss
in
g

(B
in
ar
iza

tio
n,

De
no

isi
ng

,
Se

gm
en

ta
tio

n-
Pr
oje

cti
on

an
d
Co

lo
rF

ill
in
g)

.
Al

ph
an

um
er
ic,

Di
sto

rte
d/

Ro
ta
te
d/

Ad
he

re
d,

Ch
in
es
e

Ch
ar
ac
ter

s,
Cu

sto
m

Da
ta
se
t(

10
,00

0i
m
ag

es
pe

rC
AP

TC
H
A

ty
pe

)

Up
to

98
.81

%
(S
VM

),
Up

to
98
.43

%
(V

GG
16
)

[4
2]

20
19

Re
co
ns
tru

cts
CA

PT
CH

A
ge

ne
ra
to
r,
ge

ne
ra
te
st

ra
in
in
g
da

ta
,t
he

n
us

es
pe

ak
se
gm

en
ta
tio

n,
ob

jec
td

ete
cti

on
(T

OD
),
an

d
CN

N
fo
rc

ha
ra
cte

rr
ec
og

ni
tio

n.
Tw

os
elf

-g
en

er
at
ed

da
ta
se
ts
ba

se
d
on

op
en

-so
ur
ce

lib
ra
rie

s
M
or
et

ha
n
75
%

[3
1]

20
20

De
ep

CN
N

w
ith

5c
on

vo
lu
tio

na
ll
ay
er
s,
3m

ax
-p
oo

lin
g
lay

er
s;
op

tim
iza

tio
n

us
in
gA

da
m
/S

GD
.

Pe
rs
ian

Nu
m
er
ica

l,S
yn

th
eti

cD
at
as
et

98
.90

%

[3
6]

20
20

DW
-G

AN
(G

en
er
ati

ve
Ad

ve
rsa

ria
lN

etw
or
k+

Ch
ar
ac
ter

se
gm

en
tat

io
n+

CN
N

re
co
gn

iti
on

),
pr
e-p

ro
ce
ss
in
g(

gr
ay

sc
ale

co
nv

er
sio

n,
Ga

us
sia

ns
m
oo

th
in
g,

pi
xe
l

no
rm

ali
za
tio

n)
.

Te
xt
-b
as
ed

,D
ar
kW

eb
(R

es
ca
to
rt
yp

es
1&

2,
Ye

llo
w

Br
ick

)
92
.08

%
(R

es
ca
to
r

1)
,

97
.50

%
(R

es
ca
to
r2

),
95
.98

%
(Y

ell
ow

Br
ick

)

[4
4]

20
20

Un
su

pe
rv
ise

d
lea

rn
in
g

re
co
ns
tru

cts
th
e

CA
PT

CH
A

ge
ne

ra
tio

n
pr
oc
es
s.

Re
pr
es
en

ta
tio

n
lea

rn
in
gt

ra
in
sa

re
co
gn

ize
ro

n
sy
nt
he

siz
ed

CA
PT

CH
As

w
ith

sim
ul
at
ed

di
sto

rti
on

s.

Sy
nt
he

tic
CA

PT
CH

A
da

ta
ge

ne
ra
te
d
us

in
g
re
co
ns
tru

cte
d

CA
PT

CH
A

alg
or
ith

m
s;
Re

al-
wo

rld
CA

PT
CH

As
fro

m
Bi
ng

,
eB

ay
,M

icr
os
of
t,
W
ik
ip
ed

ia,
an

d
W
eib

o.

Up
to

94
.5%

[4
8]

20
20

CN
N

an
d
LS

TM
fo
rt
ex
t-b

as
ed

CA
PT

CH
A

br
ea
ki
ng

an
d
so
lv
in
g.

Pr
ep

ro
ce
ss
es

CA
PT

CH
As

ba
se
d
on

ty
pe

(R
ot
at
ed

,N
oi
sy

Ar
c,
Co

m
pl
ica

te
d
Ba

ck
gr
ou

nd
)

us
in
gt

ec
hn

iq
ue

sl
ik
ee

ro
sio

n,
di
lat

io
n,

an
d
bi
na

riz
at
io
n.

Ro
ta
te
d

(9
95
5

im
ag

es
),

N
oi
sy

Ar
c

(1
07
0

im
ag

es
),

Co
m
pl
ica

ted
Ba

ck
gr
ou

nd
(1
00
0i

m
ag

es
).

85
.97

%
(R

ot
at
ed

),
84
.52

%
(N

oi
sy

Ar
c)
,

82
.91

%
(C

om
pl
ica

te
d

ba
ck
gr
ou

nd
)

[4
0]

20
21

De
pt
h-
w
ise

Se
pa

ra
bl
eC

on
vo

lu
tio

na
lN

eu
ra
lN

et
wo

rk
(C

N
N
)a

rc
hi
te
ctu

re
fo
r
CA

PT
CH

A
br
ea
ki
ng

.
Th

e
m
od

el
us

es
se
pa

ra
bl
e
co
nv

ol
ut
io
ns

,b
at
ch

no
rm

ali
za
tio

n,
an

d
dr

op
ou

t.

CA
PT

CH
A

Py
th
on

Li
br
ar
yD

at
as
et

10
0%

[4
3]

20
21

Se
m
i-s

up
er
vi
se
d
lea

rn
in
g
ap

pr
oa

ch
by

co
m
bi
ni
ng

ba
sic

se
gm

en
ta
tio

n
w
ith

tra
ns

fer
lea

rn
in
gf

ro
m

as
m
all

,la
be

led
sy
nt
he

tic
da

ta
se
tt
oa

lar
ge

ru
nl
ab

ele
d

re
al-

wo
rld

CA
PT

CH
A

da
ta
se
t.

Sy
nt
he

tic
CA

PT
CH

A
da

ta
se
t
(5
00

im
ag

es
);

Un
lab

ele
d

re
al-

wo
rld

CA
PT

CH
A

da
ta
se
t(

50
,00

0i
m
ag

es
).

Up
to

95
.8%

ov
er
all

;N
um

be
rs

(0
-9
):

94
.78

%
(5

ch
ar
),

Lo
we

rc
as
el

et
te
rs

(a
-z
):

32
.89

%
(5

ch
ar
)

[4
7]

20
21

k-
N
ea
re
st
N
eig

hb
or
s(

k-
N
N
)w

ith
bi
t-b

as
ed

sim
ila

rit
y.

Fr
am

ew
or
ki

nc
lu
de

s
pr
ep

ro
ce
ss
in
g
(b

in
ar
iza

tio
n,

de
no

isi
ng

,s
eg

m
en

ta
tio

n)
,b

ui
ld
in
g
as

ta
nd

ar
d

lib
ra
ry
,a
nd

im
ag

er
ec
og

ni
tio

n.

M
N
IS
T;

Se
lf-
cr
ea
ted

CA
PT

CH
A

da
ta
se
ts.

96
.67

%
(M

N
IS
T)

,
95
.65

%
(C

AP
TC

H
AS

),
96
.25

%
(C

N
KI

),
99
.61

%
(C

M
S)

[3
4]

20
22

De
ep

CN
N

w
ith

sk
ip

co
nn

ec
tio

ns
,5

-fo
ld

cr
os
s-v

ali
da

tio
n,

pr
ep

ro
ce
ss
in
g

(b
in
ar
iza

tio
n,

er
os
io
n,

etc
.).

4-
ch

ar
ac
ter

(5
20

0i
m
ag

es
,3
2c

las
se
s)

an
d
5-
ch

ar
ac
ter

(5
20

0
im

ag
es
,1
9c

las
se
s)

pu
bl
icl
ya

va
ila

bl
e

98
.92

%
(4
-ch

ar
),
98
.86

%
(5
-ch

ar
)

[3
8]

20
23

CR
N
N

Gr
ou

pe
d

So
ftm

ax
(C

N
N

w
ith

gr
ou

pe
d

So
ftm

ax
lay

er
s

fo
r

ch
ar
ac
ter

-g
ro
up

re
co
gn

iti
on

),
AB

Is
Al

go
rit

hm
.

Ba
nk

of
Ch

in
a(

4-
ch

ar
CA

PT
CH

As
w
ith

di
sto

rti
on

),
W
eib

o
(4
-ch

ar
w
ith

se
lec

tiv
ee

xc
lu
sio

ns
),
Ca

pt
ch

a0
.3
(4
-ch

ar
w
ith

no
ise

),
Gr

eg
wa

r(
4-
ch

ar
w
ith

no
ise

lin
es

an
d
ro
ta
tio

n)
.

96
.39

%
(B

oC
),

92
.68

%
(W

eib
o)

,
95
.33

%
(C

ap
tch

a
0.3

),
51
.23

%
(G

re
gw

ar
)

[4
1]

20
23

Th
re
e
ta
ilo

re
d

de
ep

lea
rn
in
g
ar
ch

ite
ctu

re
s
us

in
g
CN

N
s
an

d
LS

TM
s
w
ith

at
te
nt
io
n

fo
r
th
re
e
ty
pe

s
of

CA
PT

CH
As

:
Ty

pe
I
(T
ex
t
Ba

se
d)

,
Ty

pe
II

(in
str

uc
tio

ns
+

im
ag

e)
,a

nd
Ty

pe
III

(im
ag

ei
ns
tru

cti
on

s+
im

ag
e)
.D

yn
am

ic
LS

TM
de

co
de

rf
or

Ty
pe

I;
M
ul
ti-
en

co
de

r-d
ec
od

er
fo
rT

yp
es

II
&

III
.

Re
al-

wo
rld

CA
PT

CH
As

fro
m

se
ve

n
In
di
an

go
ve

rn
m
en

t
we

bs
ite

s;
sy
nt
he

tic
da

ta
se
ts
fo
rd

at
aa

ug
m
en

ta
tio

n
Up

to
98
.50

%
(T
yp

eI
)

[4
5]

20
23

CN
N
sa

nd
en

se
m
bl
em

et
ho

ds
w
ith

di
ffe

re
nt

vo
tin

g
sc
he

m
es
,f
or

te
xt
-b
as
ed

CA
PT

CH
A

re
co
gn

iti
on

.P
er
fo
rm

sh
yp

er
pa

ra
m
et
er

op
tim

iza
tio

n
us

in
g
gr
id

se
ar
ch

cr
os
s-v

ali
da

tio
n.

Sy
nt
he

tic
tex

t-b
as
ed

CA
PT

CH
A

da
ta
se
t(

10
70

im
ag

es
).

92
.28

%
(P

lu
ra
lit
yV

ot
in
gF

un
cti

on
),

92
.42

%
(F
uz

zy
Av

er
ag

e
Vo

tin
g

Fu
nc

tio
n)

[3
9]

20
24

AF
FN

to
pr
ep

ro
ce
ss

CA
PT

CH
A

im
ag

es
,r

ed
uc

in
g
no

ise
an

d
in
te
rfe

re
nc

e;
Co

nv
ol
ut
io
na

lR
ec
ur
re
nt

N
eu

ra
lN

et
wo

rk
(C

RN
N
)a

rc
hi
te
ctu

re
co
ns

ist
in
g

of
CN

N,
Bi
-L
ST

M
,a
nd

ac
on

ne
cti

on
ist

tem
po

ra
lc
las

sifi
ca
tio

n
(C

TC
)l
ay
er.

M
-C

AP
TC

H
A,

P-
CA

PT
CH

A
99
%

(M
-C

AP
TC

H
A)

,
99
%

(P
-C

AP
TC

H
A)

89



ICCK Transactions on Advanced Computing and Systems

images into individual characters for efficient training.
The authors generated a dataset of 10,000 CAPTCHA
images with overlapping and rotated characters
designed to simulate real-world CAPTCHA schemes.
Using a SCE algorithm, this dataset was expanded
to 40,000 single-character images and divided into
training, validation, and testing subsets. Ambiguous
characters, such as “O” and “I” were excluded
to improve reliability in model training. The
proposed DWSCNN architecture incorporates six
separable depth-wise convolutional units, seven stages
of batch normalization to stabilize the learning
process, four dropout layers for robust regularization,
three max-pooling operations to capture local spatial
hierarchies, and a single fully connected layer for
predictive inference, resulting in a model with 191,607
trainable parameters and a compact size of 2.36 MB.
The network achieved a testing accuracy of 99.8%,
demonstrating superior performance in breaking
CAPTCHAs with simple backgrounds.

Bhowmick et al. [41] investigated the automated
breaking of CAPTCHAs using deep learning,
focusing on three common types: image-based text,
expression-based text, and combined image-and-text
CAPTCHAs. To address the challenges posed
by diverse CAPTCHA formats, they developed
specialized encoder-decoder architectures for each
type, leveraging lightweight convolutional and
recurrent neural networks with LSTM and attention
mechanisms. Their experimental evaluation, using
a dataset of real CAPTCHAs scraped from seven
Indian government websites, achieved accuracies
between 88% and 98% across the different CAPTCHA
types. Notably, these results were achieved with
relatively small training datasets, in the order of a few
thousand samples, requiring only several hours of
training. This demonstrates the effectiveness of their
approach even with limited data. The paper’s focus on
lightweight architectures and minimal training data
requirements is particularly relevant to research in
deep learning for CAPTCHA breaking, though further
investigation into failure cases and comparisons with
other state-of-the-art techniques would strengthen the
analysis.

Yu et al. [42] proposed a low-cost method for
breaking Python CAPTCHAs using a plain-text-based
attack. By capitalizing on the open-source nature
of CAPTCHA libraries, they developed a synthetic
CAPTCHA generator that replicated the target
system’s functionality, thereby overcoming the
challenge of limited training data without relying on

manual annotation. Their method integrated a peak
segmentation algorithm for character localization
with a CNN for character recognition. The CNN
architecture consisted of two convolutional layers
with filter sizes of 3 × 3, each followed by ReLU
activation and max-pooling layers. These were
followed by a dropout layer to mitigate overfitting,
two fully connected layers with 128 and 64 hidden
units, respectively, and an output layer with 42 classes
activated by a softmax function. Evaluated on two
open-source Python CAPTCHA modules (Claptcha
and Captcha), their approach achieved character-level
accuracies exceeding 90%. Additionally, they tested
their framework on the HashKiller CAPTCHA dataset,
composed of numeric CAPTCHAs, and achieved
a 73% accuracy. While this accuracy is moderate
compared to modern deep learning models trained
on larger and more diverse datasets, their low-cost
approach, relying on synthetic data generation and
minimal computational resources, is particularly
relevant for resource-constrained settings.

Bostik et al. [43] introduced a semi-supervised
method for circumventing text-based CAPTCHA
systems. In addressing the challenges of text-based
CAPTCHAs, including limited labeled data, design
variations, and computational cost, they leveraged
transfer learning to employ a convolutional neural
network initially trained on a limited set of labeled
CAPTCHA images. The model’s performance is
then bolstered by fine-tuning it on a significantly
larger, unlabeled dataset. Experiments demonstrate
the efficacy of this method, achieving a classification
accuracy of up to 98.9% on 5-character CAPTCHAs.
This result represents a significant advancement, as
their semi-supervised strategy requires substantially
fewer labeled samples compared to previous fully
supervised approaches, which often necessitated
thousands of manually annotated CAPTCHAs to
achieve comparable performance levels. Further
investigation revealed variations in the reported
accuracies depending on CAPTCHA length and
character type (numeric vs. alphanumeric), with lower
performance observed for longer CAPTCHAs.

Tian et al. [44] introduced a novel framework to
address the challenges of achieving high accuracy
with limited labeled training data and overcoming
the complexities introduced by diverse CAPTCHA
styles and distortions. Their approach combines
unsupervised representation learning with a
self-supervised recognition model which is centered
on a GAN-based CAPTCHA decomposer trained to

90



ICCK Transactions on Advanced Computing and Systems

separate foreground characters from background
noise and distortion without manual annotation. This
decomposer generates a character layer image and
a corresponding weight mask, effectively isolating
individual characters. A self-supervised recognizer,
trained on synthetically augmented data derived from
a small set of labeled real CAPTCHAs, then processes
these segmented characters. Evaluated on a range
of CAPTCHA schemes, their method demonstrated
high effectiveness. With only 500 labeled samples,
they achieved accuracies of 93.07% and 91.25% on
Bing and Weibo CAPTCHAs, respectively. The
unsupervised decomposer itself demonstrated
notable denoising capabilities, removing up to 75%
of background interference on certain CAPTCHA
schemes. However, the authors acknowledge
limitations with handling severely distorted or
overlapping characters. Specifically, performance on
Google’s reCAPTCHA v2 was limited, highlighting
challenges posed by more advanced CAPTCHA
designs.

Kovács et al. [45] introduce a novel approach by
combining a Convolutional Neural Network (CNN)
architecture with ensemble learning techniques.
They aimed to overcome the challenges posed
by CAPTCHA distortions and variations through
systematic hyperparameter tuning and a rigorous
evaluation framework. Their methodology centers on
a CNN featuring three convolutional layers coupled
with max-pooling for hierarchical feature extraction.
Which is then followed by a dense classification layer
with branched outputs for individual CAPTCHA
character prediction. A key contribution lies in their
systematic hyperparameter optimization via grid
search cross-validation, encompassing batch size,
dropout rate, penultimate dense layer neuron count,
and activation function selection. Furthermore, the
authors explore the efficacy of ensemble methods,
comparing plurality voting and fuzzy average
voting schemes for aggregating predictions from
multiple CNN instances. Experimental evaluations
demonstrate the superiority of the fuzzy average
voting ensemble, yielding accuracies exceeding 92%
on the test set. This work highlights the synergistic
potential of combining optimized CNN architectures
with ensemble strategies for achieving robust and
accurate CAPTCHA decryption. Relatedly, Derea et
al. [46] demonstrated a novel CAPTCHA recognition
system based on refined visual attention, which
substantially improves classification robustness in
noisy environments with overlapping and distorted

characters, aligning well with CAPTCHA decryption
under uncertain conditions.

Lin et al. [47] developed a configurable image
recognition framework targeting text-based
CAPTCHAs and handwritten digits, employing
k-NN classification and a novel bit-based similarity
metric. Their research sought to overcome the
limitations of rigid, CAPTCHA-specific solutions by
developing a configurable framework based on k-NN
and bit-based similarity measures, thereby allowing
for adjustable parameters. The framework involved
preprocessing steps such as binarization, denoising,
and segmentation, followed by the construction of
a standard library of known characters. The core of
their approach is a bit-based similarity model, which
computes the ratio of bitwise AND and OR operations
between the binary representations of the input
image and the standard library images. Experimental
evaluation on MNIST, synthetic CAPTCHAs, CNKI
website CAPTCHAs, and PHP DedeCMS CAPTCHAs
yielded an average accuracy of 97.05%, showcasing
the framework’s effectiveness and adaptability
across diverse datasets. The authors highlight the
framework’s potential for broader application through
customizable preprocessing and the integration of
additional recognition algorithms.

UmaMaheswari et al. [48] investigated the breakability
of text-based CAPTCHAs employing various defense
mechanisms, such as rotations, noise arcs, and complex
backgrounds by proposing a deep learning-based
approach utilizing a blend of Convolutional Neural
Networks (CNN) and Long Short-Term Memory
(LSTM) networks. Their approach preprocesses
CAPTCHAs based on their type (Rotated, Noisy
Arc, Complicated Background) using techniques like
erosion, dilation, and binarization. The CNN extracts
features which are then fed to the LSTM to predict
the character sequence. They evaluated their model
on datasets of 9,955 Rotated, 1,070 Noisy Arc, and
1,000 Complicated BackgroundCAPTCHAs, achieving
accuracies of 85.97%, 84.52%, and 82.91% respectively.
Our work complements recent advancements in
intelligent system design and user-centered evaluation
frameworks, such as expertise-based recommendation
systems in global software development contexts
[49] and UX enhancement models in open-source
environments [50], by addressing robustness and
accuracy in human-computer interaction through
CAPTCHA denoising.

Existing CAPTCHA-breaking methodologies, often

91



ICCK Transactions on Advanced Computing and Systems

relying on CNNs, SVMs, or k-NN classifiers coupled
with binarization and segmentation and utilizing
synthetic captcha datasets which frequently falter
when applied to real-world CAPTCHAs. This
research is motivated by the significant limitations
of existing approaches when applied to real-world
CAPTCHAs, which, as evidenced by our novel
dataset, exhibit substantial noise, character distortions,
overlapping characters and which often prove
insurmountable for existing techniques. Furthermore,
the scarcity of labeled real-world data necessitates
the exploration of alternative approaches. This
work addresses these limitations by focusing on a
novel, real-world dataset and developing a more
sophisticated CAPTCHA-breaking methodology. Our
objective is to enhance the practical feasibility of
CAPTCHA decryption in real-world deployments,
explicitly addressing the diversity and complexity
encountered in practical applications.

3 Methodology
3.1 Dataset Collection and Overview
This study utilizes a novel dataset containing 3000
images for training and an additional 580 images
for testing which were obtained by scraping data
from the official website of the [51]. The source for
scraping CAPTCHA images is available at: https://ugad
missions.nust.edu.pk/result/meritsearch.aspx. The scraping
process involved using an automated script written
in Python utilizing libraries such as BeautifulSoup
and requests to download the images. This
dataset comprises CAPTCHA images generated by
Telerik RadCaptcha, featuring a consistent width
(w) of 180 pixels and height (h) of 50 pixels.
Each image contains 5 alphanumeric characters,
accompanied by visual noise elements such as lines
and background distortions. Following the collection
phase, each Telerik RadCaptcha image was manually
annotated by the authors. This annotation process
involved overcoming several challenges inherent to
the RadCaptcha’s design. A primary difficulty was
handling visual noise, which included random lines
and background distortions that often cut through or
obscured parts of the characters. Careful inspection
was required to distinguish character strokes from
this noise. Another significant challenge was the
presence of overlapping and touching characters.
The characters were often warped and positioned
in close proximity, making it difficult to delineate
individual glyphs and determine their correct order.
Finally, ambiguity between similar-looking glyphs

(e.g., ’O’ and ’0’, ’1’ and ’I’) required establishing
a consistent labeling protocol. The annotator
carefully examined these ambiguous cases, sometimes
referencing clearer instances from other images, to
ensure high-quality and reliable ground-truth labels
for the dataset. Given the novelty of this dataset,
it represents a significant contribution to Text-Based
CAPTCHA research. Based on existing available
information, there is no prior publicly available dataset
of Telerik RadCaptcha. To promote further research
and innovation in the field, the dataset has been
made publicly available on Kaggle [52] to enable
researchers to replicate experiments and build upon
the foundation established in this work.

3.2 Preprocessing
Our proposed methodology is founded on the
efficacy of character segmentation in enabling accurate
image-to-text analysis. Specifically, we will leverage
this technique to facilitate the accurate analysis,
segmentation, and prediction of text from Telerik
RadCaptcha images.
• The dataset images are initially converted to

grayscale format using OpenCV’s read function,
thereby eliminating color channel information
and retaining only the luminance values of
each pixel, which significantly diminishes
computational complexity and facilitates
subsequent processing. According to the ITU-R
BT.601 standard [53], the transformation from
RGB to grayscale is computed as:

Y = 0.299R+ 0.587G+ 0.114B (1)

• The adaptive thresholding method is then used to
effectively mitigate the impact of local variations
in illumination on image contrast as defined in
Equation 2. By dynamically adjusting threshold
values for each region of interest, the algorithm
compensates for varying lighting conditions
and subtle textural nuances, ensuring accurate
binary representation. The resultant binary
images exhibit enhanced text contrast, with
characters prominently highlighted against a dark
background.

B(x, y) =

{
0 if I(x, y) > T (x, y)

1 otherwise (2)

• A subsequent inversion operation is executed on
the thresholded images, as defined in Equation

92

https://ugadmissions.nust.edu.pk/result/meritsearch.aspx
https://ugadmissions.nust.edu.pk/result/meritsearch.aspx


ICCK Transactions on Advanced Computing and Systems

3, which yields a binary representation with
white characters prominently displayed against a
black background, thereby facilitating enhanced
character recognition and image quality.

Iinv(x, y) = 255−B(x, y) (3)

• Following the inversion of the images, a thorough
examination of a representative sample of
CAPTCHA images revealed that the upper and
lower regions of each image were predominantly
composed of noise and irrelevant information,
whereas the central section contained the actual
characters of interest (see Figure 5). Consequently,

Figure 5. Region of Interest Identification: CAPTCHA
image overlaid with a pixel-based grid. Red horizontal
lines mark the top and bottom boundaries of the region
containing relevant character data, effectively excluding

noisy or irrelevant upper and lower areas.

a preprocessing step was implemented to isolate
the region of interest (ROI) by converting the
top and bottom portions of the image to a
black background, thereby eliminating borders
and extraneous features. The resulting image
displayed pronounced noise manifestations
in various forms, including isolated pixel
clusters, disconnected fragments, and curved
line artifacts that often intersected or overlapped
character strokes, introducing fragmentation
or spurious connections between characters.
These anomalous elements, distinct from the
actual character strokes, presented a significant
challenge for accurate character segmentation.
Consequently, the image quality at this stage
remained suboptimal for reliable character
recognition, necessitating further refinement
through morphological operations.

• To address the image noise artifacts described
previously, a sequence of morphological
operations was implemented. The first step
involved the application of a morphological
closing operation using a 1×1 kernel to the
thresholded image. This operation, performed
before any further transformations, helped

reconnect fragmented character strokes and is
mathematically defined as:

A •B = (A⊕B)	B (4)

where A represents the binary image, B is
the structuring element, ⊕ denotes dilation, 	
denotes erosion, and • represents the closing
operation and bridges small gaps caused by noise,
without significantly altering the overall character
shapes. The selection of a small kernel ensured
that only immediate neighboring pixels were
considered, minimizing the unintended merging
of adjacent characters. Following this, a 2 × 2
kernel was employed for two iterations of erosion,
followed by two iterations of dilation. This step
effectively removed isolated noise pixels and
thinned the character strokes, while the dilation
step restored the original stroke thickness without
reintroducing the previously removed noise. This
sequence can be mathematically expressed as:

A′ = ((A	B)	B)⊕B)⊕B (5)

where A is the input binary image, B is the 2× 2
structuring element,	 denotes erosion,⊕ denotes
dilation, and A′ represents the resulting image
after refinement.

• Next, a second morphological closing operation
was performed using a 3×3 kernel, designed to
fill in any remaining small holes or gaps in the
character shapes, reinforcing the continuity of the
character strokes. In the final step, a slimming
operation was applied using a 1×1 kernel for
erosion. This erosion step further thinned out any
remaining unwanted pixels which ensured that
only the most prominent parts of the characters
were zealously preserved. All preprocessing steps
are visualized in Figure 6.

3.3 Character Segmentation
The pre-processing stage, comprising binarization,
noise reduction, and morphological transformations,
were instrumental in rendering the CAPTCHA images
into a format that facilitated accurate segmentation.
This comprehensive treatment significantly enhanced
character-background separation and mitigated the
adverse effects of artifacts such as spurious noise
and distortions. The resulting processed image
(morph_image) served as input to the segmentation
pipeline.

93



ICCK Transactions on Advanced Computing and Systems

Figure 6. Preprocessing Steps Visualized: A graphical representation of the key preprocessing stages, showcasing
techniques used to prepare data for analysis or model input.

The segmentation pipeline demonstrated resilience
across a diverse set of images, effectively handling
variations in character spacing, inherent image
generation noise, and character irregularities,
including overlapping or distorted glyphs. Connected
component analysis provided a foundational
framework for precise character region extraction,
isolating potential character regions while excluding
irrelevant artifacts and spurious background
connections. Subsequent refinement steps, notably
bounding box analysis and splitting, further enhanced
segmentation accuracy by addressing challenging
edge cases such as merged or excessively wide
bounding boxes, thereby ensuring the accurate
delineation of individual characters.
In this stage of character segmentation,
connected components were identified in the
binarized and morphologically processed image
(referred to as slimmed_image) using the
cv2.connectedComponentsWithStats function to
segment individual characters. To isolate components
representing valid characters, a filtering criterion
based on the area was applied. Components were
retained if their area fell within a predefined range
(min_area=100 and max_area=800). This range was
empirically chosen to exclude components that were
either too small (representing background noise) or
too large (noisy lines or merged character regions).
The bounding boxes of the valid components were

then adjusted by adding padding. Specifically,
padding was introduced around the bounding
boxes to address issues observed during resizing,
where characters like ‘O’ and ‘0’ became stretched,
leading to misclassification. This additional space
ensured that the aspect ratio of such characters was
preserved, preventing distortion and misclassification
of characters. A constant padding size of 4 was added
to the left, right, top, and bottom of the bounding boxes.
The adjusted bounding boxes were then used to extract
the character regions from the image.
Once the padding was applied, the bounding boxes of
the valid componentswere sorted by their x-coordinate
tomaintain a left-to-right order, consistentwith natural
reading sequences.
To address instances ofmerged characters (2 characters
joined by noise), an additional step was implemented:
wide bounding boxes where the width exceeded twice
the height (w > h * 2) were split into two separate
components to handle cases where two adjacent
characters were connected, leading to a single merged
bounding box with twice the width. After splitting,
the number of valid components was checked again. If
fewer than five components were detected, indicating
an incorrect segmentation, the image was discarded.
This safeguard prevented erroneous segmentation
from proceeding to subsequent stages of character
recognition and prediction. Finally, the extracted
character regions, adjusted for padding and split, were

94



ICCK Transactions on Advanced Computing and Systems

adjusted to a consistent size dimension of 40×50 pixels
using cv2.resize function to standardize the input
size for subsequent stages. However, the pipeline
also exhibited certain limitations. For instance, it
was highly dependent on predefined thresholds for
area filtering (min_area and max_area), which, while
effective in most cases, could fail in multiple scenarios
that could involve characters with exceptionally
large or small areas due to extreme distortions.
Similarly, in instances where even after bounding
box splitting, fewer than five valid components could
be identified—the image was discarded. This strict
criterion ensured the quality of segmented characters
but led to a higher rejection rate for CAPTCHA
images that deviated significantly from the thresholds.
Examples of Failed Images are shown in Figure 7.

Figure 7. Contour Examples: Instances where contour
detection algorithms fail, highlighting inaccuracies due to

noise, incomplete edges, or complex shapes.

3.4 Image Augmentation
The initial dataset consisted of 3,000 CAPTCHA
images, which after preprocessing was followed
by character segmentation and low-quality sample
elimination to produce a refined dataset of 14,480
individual character images. In particular, this size
of the data set had inherent limitations in capturing
diverse patterns, thereby leading to overfitting and
poor generalization on out-of-sample data. In contrast,
larger datasets such as MNIST [54] (60,000 samples)
have highlighted the critical role of extensive and
diverse training data in enabling models to generalize
effectively to new and varied scenarios.
To mitigate this limitation, an image augmentation
pipeline was designed and implemented to enrich the
dataset with diverse variations, thereby preserving
its fundamental characteristics. This process entailed
generating additional variations of each character
through controlled transformations, including random
tilts (±6° rotation) and translations (up to ±3 pixels).
The resulting augmentation lead to a significant
increase in dataset size to 101,345 images. By
systematically augmenting our dataset with greater
diversity, we sought to mitigate the risk of overfitting

and improve the model’s generalization capacity. The
Character frequency distribution after augmentation
is shown in Figure 8

3.5 Balancing Dataset Disparities
Following augmentation, the character class
distribution was evaluated as presented in
Figure 7, revealing a significant class imbalance.
Characters such as ’I’ and ’O’ demonstrated a marked
over-representation, and notably the digit ’0’, character
’F’, ’A’, ’R’, and ’P’, exhibited a substantially lower
prevalence revealing a non-uniform distribution
across character classes. With fewer examples of the
digit ’0’ and other under-represented characters, the
model risked becoming biased towards the more
prevalent classes. To counter this potential bias,
a targeted augmentation strategy was employed.
Under-represented characters were augmented
by minor geometric transformations, comprising
rotations within a ±6° range. Conversely, for
over-represented classes, a subset of augmented
samples was removed from the training set with the
goal of achieving a more balanced class distribution.
By implementing this approach, we have increased
the dataset size to 102,669. Figure 9 shows the
frequency of the character distribution before and
after balancing.

3.6 CNNModel Architecture
The design of our model architecture was inspired by
the striking similarities between CAPTCHA images
and handwritten digits in MNIST. Nevertheless, the
very large character set involved presented significant
challenges associated with traditional classification
methods. Therefore, careful consideration was given
to developing a deep learning approach that could
accurately classify these complex images. As a
result, we selected a deep learning approach using
a Convolutional Neural Network (CNN) as the most
appropriatemodel for this study. CNNs excel at spatial
feature extraction, making them well-suited for this
task [55]. The architecture was attentively designed to
balance accuracy with computational efficiency.
The core of the CNN consists of three convolutional
blocks, each composed of a convolutional layer and a
max-pooling layer. The consistent use of 3x3 kernels
in all convolutional layers was motivated by their
effectiveness in capturing local spatial features while
minimizing computational overhead. ReLU activation
functions were chosen for their non-linearity and
ability to mitigate the vanishing gradient problem,

95



ICCK Transactions on Advanced Computing and Systems

Figure 8. Character Frequency Heatmap: This heatmap illustrates the frequency distribution of characters within the
dataset, enabling visual analysis of data imbalance and underlying textual trends.

Figure 9. Radar chart of character frequency before and
after balancing: A comparative visualization showcasing
the distribution of character occurrences in the dataset
before and after balancing. The radial layout highlights
relative changes in frequency across all character classes.

which can hinder training of deeper networks. The
increasing number of filters in each convolutional layer
(32, 64, and 128, respectively) allows the network to
learn a hierarchical representation of features, from
simple edges and textures in the initial layers to
more complex character-specific patterns in deeper
layers. This hierarchical approach is inspired by
the success of similar designs in image recognition
tasks. Max-pooling, with a 2x2 pool size, is employed
after each convolutional layer to downsample the
feature maps. This reduces the dimensionality of the
data, decreasing computational cost and increasing
robustness to minor spatial variations. The specific
choice of 2x2 pooling was determined empirically
through cross-validation on a held-out portion of the
training data, balancing information retention with
dimensionality reduction.

Formally, the operations within each convolutional
block are defined as:

• Convolutional Layer: The 2D convolution
operation on an input feature map F with a kernel
K produces an output feature map G. The value
at position (i, j) is:

G(i, j) = (F ∗K)(i, j)

=
∑
m

∑
n

F (i−m, j − n)K(m,n) + b

(6)

where b is a learnable bias term.
• ReLU Activation: The Rectified Linear

Unit (ReLU) activation function is applied
element-wise to the output of the convolutional
layer:

ReLU(x) = max(0, x) (7)

• Max-Pooling Layer: The max-pooling operation
reduces the spatial dimensions of the feature map.
For a pooling windowW of size 2× 2, the output
is:

P (i, j) = max
(m,n)∈Wij

F (m,n) (8)

Following the output of convolutional blocks in
the proposed model yield multiple two-dimensional
feature maps, which encode specific spatial hierarchies
extracted from the character images. These feature
maps are rich in localized information, and have
captured essential patterns such as edges, textures,
and shapes at varying levels of abstraction. However,
for this spatial information to inform classification
effectively, it has to be transformed into a format
compatible with the fully connected layers which
require one-dimensional vector inputs. For which a
flattening operation to reshape the multi-dimensional
feature maps into a single concatenated vector was
performed. This flattening operation maintains the
spatial context learned by the convolutional layers
while transforming the data into a format suitable for
input to the fully connected layers. Mathematically,
a feature map tensor T ∈ RH′×W ′×C is reshaped into

96



ICCK Transactions on Advanced Computing and Systems

Figure 10. CNN Architecture: A deep learning model designed to automatically and adaptively learn spatial hierarchies
of features from input data, primarily used for image and video recognition tasks.

a vector V ∈ RH′·W ′·C , where H ′, W ′, and C are the
height, width, and number of channels of the final
feature map.
A fully connected layer of 128 units then refines
this representation. This layer size was determined
through extensive cross-validation that balancesmodel
capacity and generalization performance, preventing
overfittingwhile ensuring that the network can capture
the complex spatial relationships inherent in character
images. This fully connected layer serves two key
purposes. Integrates the localized features extracted
by the convolutional layers into a global representation,
allowing the model to analyze relationships between
features throughout the image, regardless of their
original spatial location. Furthermore, it captures
non-linear dependencies within this integrated feature
space, enabling discrimination between visually
similar characters, which is a critical part of our
research. The transformation is described by:

a = σ(Wv + b) (9)

where v is the input vector from the flattening layer,
W is the weight matrix, b is the bias vector, σ is the
activation function (ReLU in this case), and a is the
output vector of activations.

ReLU activationwas chosen for this layer over themore
traditional sigmoid and tanh functions. Although
sigmoid and tanh have been historically prevalent
in neural networks, their susceptibility to vanishing
gradients in deeper architectures hinder’s training.
ReLU’s ability to mitigate this issue and facilitate faster
convergence made it a more suitable choice for the
fully connected layer.

To further amplify generalization and mitigate the
risk of overfitting, a dropout layer is introduced after
the fully connected layer to randomly deactivate a
portion of the neurons during each training epoch.
This stochastic deactivation forces the network to learn
more robust features, preventing over-reliance on any
single neuron. A dropout rate of 0.5was selected based
on empirical evaluation across different rates. This rate,
determined through cross-validation on a held-out set,
provided the optimal balance between regularization
strength (preventing overfitting) and retention of
learned information. During training, a binary mask r
is generated from a Bernoulli distribution, where each
element ri has a probability p of being 0 (the dropout
rate). The output a′ is:

a′ = a� r (10)

97



ICCK Transactions on Advanced Computing and Systems

where � denotes element-wise multiplication. During
inference, the activations are scaled by (1 − p) to
compensate for the dropped units.
Finally, the network culminates in a dense output
layer with 36 units, directly corresponding to the 36
character classes (0-9 and A-Z) within the CAPTCHA
images. This layer provides the final classification
scores for each character. To convert these scores into
probabilities, a softmax activation function is applied.
Softmax transforms the output into a probability
distribution over all character classes. This enables
the model to express varying degrees of confidence
in its predictions. For a vector of raw output scores
(logits) z = (z1, z2, ..., zK) for K = 36 classes, the
softmax function computes the probability P (y = i|z)
for each class i as:

P (y = i|z) = ezi∑K
j=1 e

zj
(11)

For model compilation, the Adam optimizer was
selected due to its adaptive learning rate capabilities,
demonstrably effective in training CNNs. To enhance
the model convergence and to avoid premature
plateauing, an exponential learning rate decay was
implemented. The learning rate was initially set to
0.001, with a decay rate of 0.96, using a staircase
schedule.

αt = 0.001× 0.96

⌊ global_step
10000

⌋
(12)

This approach allows for larger initial weight changes
in the early stages of training resulting in faster
convergence, with progressively smaller adjustments
as the model approaches optimal performance.
Categorical cross-entropy serves as the loss function,
as it is appropriate for multi-class classification. Model
performance was monitored during training using
accuracy on a validation set, and early stopping was
employed to prevent over-fitting. The final model
selectionwas based on achieving the highest validation
accuracy. The Model architecture is visualized in
Figure 10 and parameters summary is given in Table 2.

3.7 Model Training
Themodelwas trained using a dataset of split character
images from Telerik RadCaptcha, containing 36 classes:
10 digits and 26 uppercase letters. This dataset closely
resembles the structure of the MNIST dataset, which
is commonly used for digit classification, but with
the addition of uppercase letters. The training was
conducted using the Keras library, with TensorFlow

Table 2. Model architecture and parameter summary.
Layer (Type) Output Shape Number of Params
Conv2D (None, 38, 48, 32) 320
MaxPooling2D (None, 19, 24, 32) 0
Conv2D_1 (None, 17, 22, 64) 18,496
MaxPooling2D_1 (None, 8, 11, 64) 0
Conv2D_2 (None, 6, 9, 128) 73,856
MaxPooling2D_2 (None, 3, 4, 128) 0
Flatten (None, 1536) 0
Dense (None, 128) 196,736
Dropout (None, 128) 0
Dense_1 (None, 36) 4,644
Total Parameters 882,158
Trainable Parameters 294,052
Non-Trainable Parameters 0
Optimizer Parameters 588,106

as the backend, and was executed on a MacBook Air
M1 with 8gb ram. We employed a data partitioning
strategy that allocated 70% of the dataset to training,
15% to validation testing and 15% to test dataset to
ensure reliable evaluation and mitigate over-fitting.
For training, the Adam optimizer was utilized, with
categorical cross-entropy serving as the loss function
and accuracy, F1 score and recall scores being used
to assess model performance. Training process was
conducted over 8 epochs with a batch size of 32.

4 Results and Discussion
This section presents the performance analysis of the
proposed CNN architecture for Telerik RadCaptcha
character recognition. We evaluate the model’s ability
to classify segmented character images across 36
classes, encompassing numerical digits (0-9) and
uppercase letters (A-Z). After training for 8 epochs, the
proposedmodel achieved a training accuracy of 99.26%
and a validation accuracy of 99.37%. This remarkably
high and consistent performance across both datasets
demonstrates the model’s exceptional ability to learn
discriminative features from the character images and
generalize effectively to unseen data. The negligible
difference between training and validation accuracy
indicates that the model is not over-fitting and that
the dropout regularization technique employed, was
successful in preventing over-reliance on the training
data.
Figure 11 depicts the training and validation
performance of the model over 8 epochs, showcasing
accuracy metrics. The accuracy curves show a
corresponding rapid increase in both the training
and validation accuracy. Notably, both training and
validation accuracies reach high levels early in the
training process and plateau near their peak values.

98



ICCK Transactions on Advanced Computing and Systems

Figure 11. Training and Validation Accuracy.

The close tracking of the validation accuracy with the
training accuracy throughout the training process
reveals the absence of significant over-fitting and
indicates that the model is learning original patterns
from the data rather than memorizing the training
examples.

Figure 12. Training and Validation Loss

The loss curves in Figure 12 demonstrate a rapid
decrease in both training and validation loss during
the initial epochs, indicating effective learning. By the
4th epoch, the loss stabilizes and plateaus, showing
negligible further reduction. The close alignment
between training and validation loss throughout the
training process reflects the strong generalization of
the model to unseen data, without observable signs of
over-fitting in the presented results.
The character prediction model was evaluated on a
test dataset of 580 unseen Telerik RadCaptcha-labeled
images. The initial stage of our methodology is a

preprocessing step where individual characters are
segmented from each CAPTCHA image. To quantify
the performance of this stage, we define preprocessing
accuracy as the percentage of CAPTCHA images that
are correctly segmented. A CAPTCHA is considered
correctly segmented if the number of characters
isolated by our algorithm exactly matches the known
number of characters in its ground truth label. This
accuracy is calculated using the following formula:

Preprocessing Accuracy =

Number of Correctly Segmented Images
Total Number of Images × 100

(13)

Following this protocol, our algorithm processed
all 580 images and successfully segmented 577 of
them, resulting in a preprocessing accuracy of 99.48%.
These 577 correctly processed images yielded the 2,881
individual character instances that formed the final
test set. This test set was then used to evaluate the
performance of the character prediction model. The
explicit definitions for the performance metrics used
are provided below.
For evaluating segmented characters, we used the
following standard metrics. Accuracy is the ratio of
correctly predicted characters to the total number of
characters. Precision is the ratio of true positives to the
sum of true and false positives, measuring prediction
exactness. Recall is the ratio of true positives to the
sum of true positives and false negatives, measuring
the model’s ability to find all relevant instances. The
F1-score is the harmonic mean of precision and recall.

Precision =
TP

TP + FP
(14)

Recall = TP

TP + FN
(15)

F1-score = 2× Precision× Recall
Precision+ Recall (16)

Here, TP, FP, and FN represent the counts of
True Positives, False Positives, and False Negatives,
respectively, aggregated across all character classes.
For full CAPTCHA sequences, the overall accuracy
was computed as the percentage of entire CAPTCHA
strings where every character was correctly predicted.
Table 3 summarizes the model’s performance on the
held-out test set. We achieved 97.60% test accuracy,

99



ICCK Transactions on Advanced Computing and Systems

Figure 13. Confusion matrix on test data: A tool to evaluate model accuracy by comparing predicted and true labels in the
test dataset.

Table 3. Evaluation metrics for the model.
Metric Value
Test Accuracy 0.9760
Precision 0.9784
Recall 0.9760
F1 Score 0.9764

slightly below the training (99.26%) and validation
(99.37%) accuracies and indicates minimal overfitting.
The 97.84% precision and 97.60% recall contribute
to a balanced F1-score of 97.64% which highlights
the model’s ability to generalize to new, unseen
data. We consider the minor difference between
training, validation, and test accuracy to be a small
but acceptable generalization gap.
While the preceding analysis and Table 3 detailed
the model’s efficacy at the character level, practical
CAPTCHA breaking required accurate decryption
of the entire sequence of characters for which we
conducted further evaluation on test set of 580
complete Telerik RadCaptcha images in which each
image comprised of five characters, demanding
successful prediction of the entire sequence for
a positive outcome. This holistic evaluation
methodology differs from assessing individual

character accuracy, providing a direct measure of the
model’s real-world CAPTCHA breaking capability.
The results showed that our model achieved 92.08%
accuracy in correctly predicting all five characters
within each RadCaptcha, albeit lower than the
individual character accuracy. Notably, this accuracy
is based on raw, unprocessed RadCaptcha images that
undergo several stages of processing - preprocessing,
character segmentation, and final character recognition
by the model. Errors introduced at any stage of this
pipeline can compound and contribute to the lower
overall CAPTCHA-solving accuracy. For instance,
imperfect character segmentation could lead to
misclassification even if the character recognition
model performs well in isolation. This evaluation
method offers a more informed assessment of
the model’s performance, taking into account the
complexities of real-world CAPTCHA images.

Theoretical vs. Empirical Performance
A theoretical baseline for sequence-level accuracy can
be established bymodeling the character predictions as
independent Bernoulli trials. Given a single-character
recognition accuracy of pc = 0.9760, the probability of
correctly identifying a sequence of five independent

100



ICCK Transactions on Advanced Computing and Systems

characters is:

P (Sequence Success) = p5c = (0.9760)5 ≈ 0.8858
(17)

This model predicts a theoretical accuracy of 88.58%.
Our empirically observed accuracy of 92.08% is
substantially higher, which suggests that character
recognition errors may not be perfectly independent
and necessitates a more granular, two-stage analysis
of the processing pipeline.

Quantitative Error Attribution
The accuracy of the final system is conditional
on the success of two sequential stages: character
segmentation and character recognition. The overall
probability of solving a CAPTCHA can be formally
expressed as follows.

P (Solve) = P (Recog Success | Seg Success)
× P (Seg Success) (18)

We decomposed the 46 unsolved CAPTCHAs to
attribute failures to each stage.

1. Segmentation Failures This constitutes the first
potential source of error. Of the 580 total images, 3were
incorrectly segmented by our preprocessing algorithm.
The probability of successful segmentation is therefore:

P (Seg Success) = 580− 3

580
=

577

580
≈ 0.9948 (19)

These segmentation failures represent an upper bound
on system performance and account for 6.5% (3/46)
of total CAPTCHA-level errors.

2. Character Recognition Failures This second error
category applies to the 577 correctly segmented images,
of which 43 contained at least one misclassified
character. The conditional probability of recognition
success, given a successful segmentation, is:

P (Recog Success | Seg Success) = 577− 43

577

=
534

577
≈ 0.9255 (20)

Consequently, recognition failures constitute the
predominant error source, accounting for 93.5%
(43/46) of all unsolved CAPTCHAs.

Synthesis and Conclusion
The product of these observed probabilities confirms
our empirical measurements.

P (Solve) ≈ 0.9255× 0.9948 ≈ 0.9209 (21)

This result aligns perfectly with our observed system
accuracy of 92.08%, thereby validating our two-stage
error attribution model.
In conclusion, our analysis yields two primary findings.
First, a simple probabilistic model assuming error
independence provides a conservative baseline but
fails to capture the system’s full dynamics. Second,
our quantitative pipeline analysis demonstrates that
while the segmentation stage is highly reliable
(99.48%), the principal contributor to performance
degradation is character recognition error within
correctly segmented images. A qualitative review
identified the misclassification of visually ambiguous
characters (e.g., ’O’ vs. ’0’, ’l’ vs. ’I’) as the primary
cause. Therefore, future research should prioritize
enhancing the model’s discriminative capabilities for
these challenging cases to mitigate the discrepancy
between character- and sequence-level accuracy.
This performance, while achieving a complete
CAPTCHA solution accuracy of 92.08%, compares
with related works. [31] report higher accuracies,
up to 98.94%, using a CNN architecture; however,
their model benefited from training on a substantially
larger dataset of synthetic CAPTCHAs, potentially
lacking the diversity and noise characteristics inherent
in real-world examples like Telerik RadCaptchas.
Similarly, [40] achieve an impressive 99.8% accuracy
with a DWSCNN, but their focus is on simpler
CAPTCHAs with no noise and distortion than those
presented by Telerik’s implementation. The work
of [34], using a skip-connection CNN on 5-character
CAPTCHAs, is a closer comparison. However, they
achieve a lower overall accuracy of 85.52%. This
reduced performance may be attributed to the nature
of their dataset, which exhibits a horizontal line
artifact bisecting characters which thereby significantly
increases segmentation difficulty. This artifact,
unlike the thinner lines present in our Telerik
RadCaptcha dataset, introduces a systematic challenge
that likely hinders their character segmentation and
subsequent recognition performance, regardless of
model architecture. Our approach, while employing
a moderately sized dataset, still achieves moderate
performance. In essence, the inherent complexity of
Telerik RadCaptchas presents a more demanding test

101



ICCK Transactions on Advanced Computing and Systems

scenario, making direct accuracy comparisons less
meaningful without acknowledging the differences
in CAPTCHA complexity across these studies.
Figure 13 represents the confusionmatrix of ourmodel
predictions on test set and the detailed classification
performance on all the 36 character classes identified
in the dataset. The strong diagonal dominance of
the matrix visually confirms the high overall accuracy,
with themajority of predictions correctly aligningwith
the true labels. While most of the off-diagonal entries
that represent misclassifications are negligible, the
most prominent errors occur between the characters
‘O’, with 19 instances of ’O’ being misclassified as
’0’. This confusion arises from the significant visual
similarity between the characters ‘0’ and ‘O’, which is
challenging even for human annotators and users to
distinguish in certain cases. All othermisclassifications
are negligible which indicates that our model can
effectively discriminates between character classes on
unseen data.

5 Practical Deployment and Security
Implications

Beyond theoretical performance metrics, the true
measure of our proposed CAPTCHA-breaking
framework lies in its practical applicability against
live systems. To demonstrate its applied relevance,
we outline a deployment scenario targeting the
Telerik RadCaptcha implementation on the NUST
Merit Portal. This portal protects sensitive student
admission data, making it a prime example of a
system where automated attacks can be executed.
The practical deployment of our framework would
follow the following workflow:
1. Automated Navigation and Image Acquisition:

A script, using a web automation tool like
Selenium or Puppeteer, navigates to the portal’s
page containing the Telerik RadCaptcha. The
script then isolates the CAPTCHA image element
and downloads the image.

2. Preprocessing and Segmentation: The captured
image is passed directly to our specialized
preprocessing pipeline. This crucial stage applies
the tailored algorithms used in this study to isolate
the individual characters, overcoming the specific
noise and character merging defenses used by
Telerik RadCaptcha.

3. Character Recognition and Submission: Each
segmented character image is fed into our trained

CNN model for prediction. The resulting
character predictions are concatenated to form
the complete CAPTCHA string. The automation
script then submits this string into the web form.

The high success rates achieved in our experiments,
specifically the accuracy of 92. 08% on full unseen
CAPTCHA sequences, directly translates into a high
probability of successfully bypassing the portal’s
security on any given attempt. An attacker could
deploy this framework at scale, making thousands of
attempts in a short period to scrape sensitivemerit lists,
test stolen user credentials, or access other private data
not intended for public or automated access.
This practical scenario underscores a critical security
vulnerability. The effectiveness of our framework
demonstrates that conventional static image-based
CAPTCHAs like Telerik RadCaptcha are no longer
a reliable defense mechanism against determined,
automated threats. This highlights the urgent need for
websites to migrate towards more dynamic and robust
security measures, such as interactive challenges,
risk-based analysis, or behavioral biometrics.

6 Limitations
Despite our model’s high accuracy, there are several
inherent limitations in scenarios where CAPTCHA
images contains intermingled lines of similar thickness
to the characters appearing close together, the
preprocessing step may fail, leading to incomplete
predictions. Additionally, this model is designed
specifically for Telerik RadCaptcha and does not
generalize to other CAPTCHA systems. Another
limitation is the confusion between visually similar
characters, such as the letter ‘O’ and the digit ‘0’, which
can be challenging even for human observers under
certain conditions. Thus, the model’s applicability is
limited to Telerik RadCaptcha and may not perform
effectively on other CAPTCHA formats.

7 Conclusion
This study introduces a novel dataset of 3,000
CAPTCHA images, laying the groundwork
for advancing character recognition research in
challenging real-world contexts. Our CNN achieved
a commendable accuracy of 97.67% on segmented
characters but faced a notable drop to 92.08% when
tested on full CAPTCHA images, emphasizing the
critical dependency on effective preprocessing.
This outcome highlights a fundamental challenge:
the entire system hinges on accurate segmentation.

102



ICCK Transactions on Advanced Computing and Systems

Even minor segmentation errors or character
ambiguities—such as distinguishing ‘O’ from ‘0’—can
cascade into significant performance degradation.
These limitations expose the fragility of current
approaches when applied to real-world scenarios with
noisy and variable data.
Despite these challenges, our findings reveal
promising directions for improvement. Future
research should prioritize the development of
a versatile, one-size-fits-all CAPTCHA-solving
approach capable of handling a wide variety of
CAPTCHA types, whether noisy, clean, segmented,
or unsegmented. By moving beyond reliance on
precise preprocessing and segmentation, researchers
can aim to design systems that adapt to real-world
variability and perform reliably in diverse scenarios.
Incorporating error correction mechanisms and
rigorous testing on broader, more diverse datasets will
be key to advancing the practicality and effectiveness
of CAPTCHA solvers.
Moreover, our work raises questions about the broader
resilience of CAPTCHA-solving systems. Addressing
vulnerabilities to adversarial attacks and expanding
the scope to handle varied CAPTCHA designs will
be key steps toward creating adaptable and practical
solutions.

Data Availability Statement
Data will be made available on request.

Funding
This work was supported without any funding.

Conflicts of Interest
The authors declare no conflicts of interest.

AI Use Statement
The authors declare that no generative AI was used in
the preparation of this manuscript.

Ethical Approval and Consent to Participate
Not applicable.

References
[1] Von Ahn, L., Blum, M., & Langford, J. (2004).

Telling humans and computers apart automatically.
Communications of the ACM, 47(2), 56-60. [CrossRef]

[2] Reddy, A., & Cheng, Y. (2024). User Perception
of CAPTCHAs: A Comparative Study between
University and Internet Users. arXiv preprint
arXiv:2405.18547.

[3] Turing, A. M. (2007). Computing machinery and
intelligence. In Parsing the Turing test: Philosophical and
methodological issues in the quest for the thinking computer
(pp. 23-65). Dordrecht: Springer Netherlands.
[CrossRef]

[4] Singh, T., Kumar, A., & Goel, P. (2024, September).
Analysis of Text-CAPTCHA Using Machine Learning.
In 2024 International Conference on Communication,
Computing and Energy Efficient Technologies (I3CEET)
(pp. 238-243). IEEE. [CrossRef]

[5] Guerar, M., Verderame, L., Migliardi, M., Palmieri, F.,
& Merlo, A. (2021). Gotta CAPTCHA’Em all: a survey
of 20 Years of the human-or-computer Dilemma. ACM
Computing Surveys (CSUR), 54(9), 1-33. [CrossRef]

[6] Udoidiok, I., & Zhang, J. (2024, October). When
XAI Meets CAPTCHA: A Case Study. In 2024 Cyber
Awareness and Research Symposium (CARS) (pp. 1-6).
IEEE. [CrossRef]

[7] Kumar, M., Jindal, M. K., & Kumar, M. (2022).
A systematic survey on CAPTCHA recognition:
types, creation and breaking techniques. Archives of
Computational Methods in Engineering, 29(2), 1107-1136.
[CrossRef]

[8] Sharma, S., & Singh, D. (2024, March). Captcha in
web security and deep-captcha configuration based on
machine learning. In 2024 3rd International Conference
for Innovation in Technology (INOCON) (pp. 1-6). IEEE.
[CrossRef]

[9] Bursztein, E., Martin, M., & Mitchell, J. (2011,
October). Text-based CAPTCHA strengths and
weaknesses. In Proceedings of the 18th ACM conference
on Computer and communications security (pp. 125-138).
[CrossRef]

[10] Chellapilla, K., & Simard, P. (2004). Using machine
learning to break visual human interaction proofs
(HIPs). Advances in neural information processing
systems, 17.

[11] Sivakorn, S., Polakis, J., & Keromytis, A. D. (2016). I’m
not a human: Breaking the Google reCAPTCHA. Black
Hat, 14, 1-12.

[12] Bursztein, E., Beauxis, R., Paskov, H., Perito, D.,
Fabry, C., & Mitchell, J. (2011, May). The failure of
noise-based non-continuous audio captchas. In 2011
IEEE symposium on security and privacy (pp. 19-31).
IEEE. [CrossRef]

[13] ASP.NET AJAX Captcha - RadControls for web forms
| Telerik UI for ASP.NET AJAX. (n.d.). Telerik.com.
Retrieved from https://www.telerik.com/products/aspnet-aj
ax/captcha.aspx

[14] Holman, J., Lazar, J., Feng, J. H., & D’Arcy, J. (2007,
October). Developing usable CAPTCHAs for blind
users. In Proceedings of the 9th international ACM

103

https://doi.org/10.1145/966389.966390
https://doi.org/10.1007/978-1-4020-6710-5_3
https://doi.org/10.1109/I3CEET61722.2024.10994005
https://doi.org/10.1145/3477142
https://doi.org/10.1109/CARS61786.2024.10778641
https://doi.org/10.1007/s11831-021-09608-4
https://doi.org/10.1109/INOCON60754.2024.10511373
https://doi.org/10.1145/2046707.2046724
https://doi.org/10.1109/SP.2011.14
https://www.telerik.com/products/aspnet-ajax/captcha.aspx
https://www.telerik.com/products/aspnet-ajax/captcha.aspx


ICCK Transactions on Advanced Computing and Systems

SIGACCESS conference on Computers and accessibility
(pp. 245-246). [CrossRef]

[15] Xing, W., Mohd, M. R. S., Johari, J., & Ruslan, F. A.
(2023, June). A Review on Text-based CAPTCHA
Breaking Based on Deep Learning Methods. In
2023 International Conference on Computer Engineering
and Distance Learning (CEDL) (pp. 171-175). IEEE.
[CrossRef]

[16] Deng, X., Zhao, R., Xue, Z., Liu, M., Chen, L.,
& Wang, Y. (2021, October). A Semi-supervised
Deep Learning-Based Solver for Breaking Text-Based
CAPTCHAs. In 2021 IEEE 20th International Conference
on Trust, Security and Privacy in Computing and
Communications (TrustCom) (pp. 614-619). IEEE.
[CrossRef]

[17] Mistry, R., Thatte, G., Waghela, A., Srinivasan, G.,
& Mali, S. (2021, October). DeCaptcha: Cracking
captcha using Deep Learning Techniques. In 2021
5th International Conference on Information Systems
and Computer Networks (ISCON) (pp. 1-6). IEEE.
[CrossRef]

[18] Aiken, W., & Kim, H. (2018, May). POSTER:
DeepCRACk: Using deep learning to automatically
crack audio CAPTCHAs. In Proceedings of the 2018 on
Asia conference on computer and communications security
(pp. 797-799). [CrossRef]

[19] Sivakorn, S., Polakis, I., & Keromytis, A. D. (2016,
March). I am robot:(deep) learning to break semantic
image captchas. In 2016 IEEE European Symposium on
Security and Privacy (EuroS&P) (pp. 388-403). IEEE.
[CrossRef]

[20] Dou, Z. (2021, June). The text captcha solver:
A convolutional recurrent neural network-based
approach. In 2021 International Conference on Big Data
Analysis and Computer Science (BDACS) (pp. 273-283).
IEEE. [CrossRef]

[21] Pattabiraman, V., & Maheswari, R. (2022). Image to
Text Processing Using Convolution Neural Networks.
In Recurrent Neural Networks (pp. 43-52). CRC Press.

[22] Goodfellow, I. J., Bulatov, Y., Ibarz, J., Arnoud, S., &
Shet, V. (2013). Multi-digit number recognition from
street view imagery using deep convolutional neural
networks. arXiv preprint arXiv:1312.6082.

[23] Telerik web forms Captcha overview - Telerik UI
for ASP.NET AJAX. (n.d.). Telerik & Kendo UI -
.NET Components Suites & JavaScript UI Libraries.
Retrieved from https://www.telerik.com/products/aspnet-aj
ax/documentation/controls/captcha/overview

[24] Jähne, B. (2005). Digital image processing. Berlin,
Heidelberg: Springer Berlin Heidelberg.

[25] Gao, H., Wang, W., Qi, J., Wang, X., Liu, X., &
Yan, J. (2013, November). The robustness of hollow
CAPTCHAs. In Proceedings of the 2013 ACM SIGSAC
conference on Computer & communications security (pp.
1075-1086). [CrossRef]

[26] Cireşan, D. C., Meier, U., Gambardella, L. M., &

Schmidhuber, J. (2010). Deep, big, simple neural nets
for handwritten digit recognition. Neural computation,
22(12), 3207-3220. [CrossRef]

[27] Shirali-Shahreza, M., & Shirali-Shahreza, S. (2007,
December). CAPTCHA for blind people. In 2007
IEEE international symposium on signal processing
and information technology (pp. 995-998). IEEE.
[CrossRef]

[28] Wang, T., Wu, D. J., Coates, A., & Ng, A. Y.
(2012, November). End-to-end text recognition with
convolutional neural networks. In Proceedings of
the 21st international conference on pattern recognition
(ICPR2012) (pp. 3304-3308). IEEE.

[29] Zhu, B. B., Yan, J., Li, Q., Yang, C., Liu, J., Xu, N., ... &
Cai, K. (2010, October). Attacks and design of image
recognition CAPTCHAs. In Proceedings of the 17th ACM
conference on Computer and communications security (pp.
187-200). [CrossRef]

[30] Aguilar, D., Riofrío, D., Benítez, D., Pérez, N., &
Moyano, R. F. (2021, October). Text-based CAPTCHA
vulnerability assessment using a deep learning-based
solver. In 2021 IEEE Fifth Ecuador Technical Chapters
Meeting (ETCM) (pp. 1-6). IEEE. [CrossRef]

[31] Noury, Z., & Rezaei, M. (2020). Deep-CAPTCHA:
a deep learning based CAPTCHA solver
for vulnerability assessment. arXiv preprint
arXiv:2006.08296.

[32] Kumar, M., Jindal, M. K., & Kumar, M. (2023). An
efficient technique for breaking of coloured Hindi
CAPTCHA. Soft Computing, 27(16), 11661-11686.
[CrossRef]

[33] Wei, L., Li, X., Cao, T., Zhang, Q., Zhou, L., & Wang,
W. (2019, February). Research on optimization of
CAPTCHA recognition algorithm based on SVM. In
Proceedings of the 2019 11th International Conference
on Machine Learning and Computing (pp. 236-240).
[CrossRef]

[34] Lu, S., Huang, K., Meraj, T., & Rauf, H. T.
(2022). A novel CAPTCHA solver framework using
deep skipping Convolutional Neural Networks. PeerJ
Computer Science, 8, e879. [CrossRef]

[35] Derea, Z., Zou, B., Kui, X., Thobhani, A., &
Abdussalam, A. (2025). A Dual-Layer Attention
Based CAPTCHARecognition Approachwith Guided
Visual Attention. Computer Modeling in Engineering &
Sciences (CMES), 142(3). [CrossRef]

[36] Zhang, N., Ebrahimi, M., Li, W., & Chen, H.
(2020, November). A generative adversarial learning
framework for breaking text-based captcha in the
dark web. In 2020 IEEE International conference on
intelligence and security informatics (ISI) (pp. 1-6). IEEE.
[CrossRef]

[37] Kumar, D., Singh, R., & Bamber, S. S. (2022). Your
CAPTCHA Recognition Method Based on DEEP
Learning UsingMSERDescriptor. Computers, Materials
& Continua, 72(2). [CrossRef]

104

https://doi.org/10.1145/1296843.1296894
https://doi.org/10.1109/CEDL60560.2023.00040
https://doi.org/10.1109/TrustCom53373.2021.00092
https://doi.org/10.1109/ISCON52037.2021.9702512
https://doi.org/10.1145/3196494.3201581
https://doi.org/10.1109/EuroSP.2016.37
https://doi.org/10.1109/BDACS53596.2021.00067
https://www.telerik.com/products/aspnet-ajax/documentation/controls/captcha/overview
https://www.telerik.com/products/aspnet-ajax/documentation/controls/captcha/overview
https://doi.org/10.1145/2508859.2516732
https://doi.org/10.1162/NECO_a_00052
https://doi.org/10.1109/ISSPIT.2007.4458048
https://doi.org/10.1145/1866307.1866329
https://doi.org/10.1109/ETCM53643.2021.9590750
https://doi.org/10.1007/s00500-023-07844-3
https://doi.org/10.1145/3318299.3318355
https://doi.org/10.7717/peerj-cs.879
https://doi.org/10.32604/cmes.2025.059586
https://doi.org/10.1109/ISI49825.2020.9280537
https://doi.org/10.32604/cmc.2022.024221


ICCK Transactions on Advanced Computing and Systems

[38] Derea, Z., Zou, B., Al-Shargabi, A. A., Thobhani,
A., & Abdussalam, A. (2023). Deep Learning Based
CAPTCHA Recognition Network with Grouping
Strategy. Sensors, 23(23), 9487. [CrossRef]

[39] Wan, X., Johari, J., & Ruslan, F. A. (2024). Adaptive
captcha: a CRNN-based text captcha solver with
adaptive fusion filter networks. Applied Sciences,
14(12), 5016. [CrossRef]

[40] Dankwa, S., & Yang, L. (2021). An efficient and
accurate depth-wise separable convolutional neural
network for cybersecurity vulnerability assessment
based on CAPTCHA breaking. Electronics, 10(4), 480.
[CrossRef]

[41] Bhowmick, R. S., Indra, R., Ganguli, I., Paul, J., & Sil,
J. (2023). Breaking CAPTCHA system with minimal
exertion through deep learning: Real-time risk
assessment on Indian government websites. Digital
Threats: Research and Practice, 4(2), 1-24. [CrossRef]

[42] Yu, N., & Darling, K. (2019). A low-cost approach
to crack python CAPTCHAs using AI-based
chosen-plaintext attack. Applied sciences, 9(10), 2010.
[CrossRef]

[43] Bostik, O., Horak, K., Kratochvila, L., Zemcik, T.,
& Bilik, S. (2021). Semi-supervised deep learning
approach to break common CAPTCHAs. Neural
Computing and Applications, 33(20), 13333-13343.
[CrossRef]

[44] Tian, S., & Xiong, T. (2020, April). A generic solver
combining unsupervised learning and representation
learning for breaking text-based captchas. In
Proceedings of The Web Conference 2020 (pp.
860-871). [CrossRef]

[45] Kovács, Á., & Tajti, T. CAPTCHA recognition using
machine learning algorithms with various techniques.
In Annales Mathematicae et Informaticae (pp. 81-91).
[CrossRef]

[46] Derea, Z., Zou, B., Kui, X., Abdullah, M., Thobhani,
A., & Abdussalam, A. (2025). A Novel CAPTCHA
Recognition SystemBased onRefinedVisual Attention.
Computers, Materials & Continua, 83(1). [CrossRef]

[47] Lin, G., Liang, Y., Chen, Y., & Pan, W. (2022, May).
Configurable image recognition framework design
based on KNN and bit-based similarity model. In
International Conference on Computer Application and
Information Security (ICCAIS 2021) (Vol. 12260, pp.
396-402). SPIE. [CrossRef]

[48] UmaMaheswari, P., Ezhilarasi, S., Harish, P.,
Gowrishankar, B., & Sanjiv, S. (2020, December).
Designing a text-based CAPTCHA breaker and solver
by using deep learning techniques. In 2020 IEEE
international conference on advances and developments
in electrical and electronics engineering (ICADEE) (pp.
1-6). IEEE. [CrossRef]

[49] Dietterich, T. G. (2000, June). Ensemble methods
in machine learning. In International workshop on
multiple classifier systems (pp. 1-15). Berlin, Heidelberg:

Springer Berlin Heidelberg. [CrossRef]
[50] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I.,

& Salakhutdinov, R. (2014). Dropout: a simple way to
prevent neural networks from overfitting. The journal
of machine learning research, 15(1), 1929-1958.

[51] National University of Sciences and Technology
(NUST). (2024). Merit Search. Retrieved from https:
//ugadmissions.nust.edu.pk/result/meritsearch.aspx

[52] Tbogamer22. (2024). 5-Characters CAPTCHALabeled
Dataset. Retrieved from https://www.kaggle.com/datasets/
tbogamer22/5characters-captcha-labeled-dataset

[53] Brweb. (n.d.). BT.601 : Studio encoding parameters
of digital television for standard 4:3 and wide screen
16:9 aspect ratios. Retrieved from https://www.itu.int/rec/
R-REC-BT.601

[54] LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P.
(2002). Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11), 2278-2324.
[CrossRef]

[55] Yamashita, R., Nishio, M., Do, R. K. G., & Togashi, K.
(2018). Convolutional neural networks: an overview
and application in radiology. Insights into imaging, 9(4),
611-629. [CrossRef]

Mr. Talha Bin Omar is a Data Science student
at Air University Islamabad, Pakistan. His
research interests include data analytics, deep
learning, artificial intelligence, and applying
data-driven methodologies to solve complex
real-world problems.

Mr. Tahir Sher pursuing his PhD in Artificial
Intelligence from Korea University, Seoul
Campus, Korea. He completed MS in Data
Science from Air University and bachelor’s
degree in mathematics from the International
Islamic University, Islamabad, where he
graduated with a gold medal and received
both distinction and position certificates. With
extensive teaching experience across various
institutions, Mr. Sher specializes in delivering

courses such as Calculus, Ordinary and Partial Differential
Equations, Numerical Analysis, Linear Algebra, and Statistical
& Mathematical Methods for Data Science. His students hail
from Pakistan and allied countries. As a research scholar
in the Explainable AI Research Group at Air University, his
areas of interest include the Internet of Things (IoT), Social IoT,
Machine Learning, Deep Learning, Natural Language Processing
(NLP), Data Analysis, Time Series Analysis, Mathematical
Modeling for Decision-Making, Social Media Analysis, Federated
Learning, and Computer Vision. Committed to advancing
interdisciplinary research, Mr. Tahir Sher strives to bridge the
fields of computer science andhuman-centereddisciplines. (Email:
2025010294@korea.ac.kr)

105

https://doi.org/10.3390/s23239487
https://doi.org/10.3390/app14125016
https://doi.org/10.3390/electronics10040480
https://doi.org/10.1145/3584974
https://doi.org/10.3390/app9102010
https://doi.org/10.1007/s00521-021-05957-0
https://doi.org/10.1145/3366423.3380166
https://doi.org/10.33039/ami.2023.11.002
https://doi.org/10.32604/10.32604/cmc.2025.062729
https://doi.org/10.1117/12.2637494
https://doi.org/10.1109/ICADEE51157.2020.9368949
https://doi.org/10.1007/3-540-45014-9_1
https://ugadmissions.nust.edu.pk/result/meritsearch.aspx
https://ugadmissions.nust.edu.pk/result/meritsearch.aspx
https://www.kaggle.com/datasets/tbogamer22/5characters-captcha-labeled-dataset
https://www.kaggle.com/datasets/tbogamer22/5characters-captcha-labeled-dataset
https://www.itu.int/rec/R-REC-BT.601
https://www.itu.int/rec/R-REC-BT.601
https://doi.org/10.1109/5.726791
https://doi.org/10.1007/s13244-018-0639-9


ICCK Transactions on Advanced Computing and Systems

Dr. Abdul Rehman is currently a Research
Professor at the Human Data Convergence
Institute, Jeonju University, South Korea.
He previously worked as a Postdoctoral
Research Associate at the Hyper-Connectivity
Convergence Technology Research Center,
Kyungpook National University (KNU),
Daegu, South Korea, and served as an
Assistant Professor at the University of
Central Punjab, Lahore, Pakistan. He holds

a bachelor’s degree in Mathematics from the International
Islamic University, Islamabad, Pakistan, and an Integrated
Ph.D. in Computer Science and Engineering from KNU. His
research interests include Deep Learning, Machine Learning, Data
Science, and their applications in Computer Vision, Smart IoT
(S-IoT), and Data Analysis. He also explores Complex Network
Navigation, Mathematical Modeling, and Big Data Analytics. Dr.
Rehman received the KINGS Scholarship for his Ph.D. studies

and was honored with the “Outstanding Researcher” Award
from the School of Computer Science and Engineering at KNU.
He serves as a guest editor and editorial board member for
several international journals and has contributed to numerous
international conferences as a session chair and publication
chair. More information on Dr. A. Rehman is available at
https://sites.google.com/view/drrehman/home.

Mr. M.HaroonKhan is a Data Science student
at Air University Islamabad, Pakistan. His
research interests focus on data analytics, deep
learning, and Natural Language Processing.

106

https://sites.google.com/view/drrehman/home

	Introduction
	Related work
	Methodology
	Dataset Collection and Overview
	Preprocessing
	Character Segmentation
	Image Augmentation
	Balancing Dataset Disparities
	CNN Model Architecture
	Model Training

	Results and Discussion
	Practical Deployment and Security Implications
	Limitations
	Conclusion
	Mr. Talha Bin Omar
	Mr. Tahir Sher
	Dr. Abdul Rehman
	Mr. M. Haroon Khan


